Dakota Reference Manual  Version 6.15
Explore and Predict with Confidence
 All Pages
display_format


Information to be reported from mesh adaptive search's internal records.

Specification

Alias: none

Argument(s): STRING

Description

The display_format keyword is used to specify the set of information to be reported by the mesh adaptive direct search method. This is information mostly internal to the method and not reported via Dakota output.

Default Behavior

By default, only the number of function evaluations (bbe) and the objective function value (obj) are reported.

The full list of options is as follows. Note that case does not matter.

  • BBE: Blackbox evaluations.
  • BBO: Blackbox outputs.
  • EVAL: Evaluations (includes cache hits).
  • MESH_INDEX: Mesh index.
  • MESH_SIZE: Mesh size parameter.
  • OBJ: Objective function value.
  • POLL_SIZE: Poll size parameter.
  • SOL: Solution, with format iSOLj where i and j are two (optional) strings: i will be displayed before each coordinate, and j after each coordinate (except the last).
  • STAT_AVG: The AVG statistic.
  • STAT_SUM: The SUM statistic defined by argument.
  • TIME: Wall-clock time.
  • VARi: Value of variable i. The index 0 corresponds to the first variable.

Expected Outputs

A list of the requested information will be printed to the screen.

Usage Tips

This will most likely only be useful for power users who want to understand and/or report more detailed information on method behavior.

Examples

The following example shows the syntax for specifying display_format. Note that all desired information options should be listed within a single string.

method
  mesh_adaptive_search
    display_format 'bbe obj poll_size'
    seed = 1234

Below is the output reported for the above example.

MADS run {

    BBE OBJ POLL_SIZE

       1    17.0625000000   2.0000000000 2.0000000000 2.0000000000 
       2    1.0625000000    2.0000000000 2.0000000000 2.0000000000 
      13    0.0625000000    1.0000000000 1.0000000000 1.0000000000 
      24    0.0002441406    0.5000000000 0.5000000000 0.5000000000 
      41    0.0000314713    0.1250000000 0.1250000000 0.1250000000 
      43    0.0000028610    0.2500000000 0.2500000000 0.2500000000 
      54    0.0000000037    0.1250000000 0.1250000000 0.1250000000 
      83    0.0000000000    0.0078125000 0.0078125000 0.0078125000 
     105    0.0000000000    0.0009765625 0.0009765625 0.0009765625 
     112    0.0000000000    0.0009765625 0.0009765625 0.0009765625 
     114    0.0000000000    0.0019531250 0.0019531250 0.0019531250 
     135    0.0000000000    0.0004882812 0.0004882812 0.0004882812 
     142    0.0000000000    0.0004882812 0.0004882812 0.0004882812 
     153    0.0000000000    0.0004882812 0.0004882812 0.0004882812 
     159    0.0000000000    0.0009765625 0.0009765625 0.0009765625 
     171    0.0000000000    0.0004882812 0.0004882812 0.0004882812 
     193    0.0000000000    0.0000610352 0.0000610352 0.0000610352 
     200    0.0000000000    0.0000610352 0.0000610352 0.0000610352 
     207    0.0000000000    0.0000610352 0.0000610352 0.0000610352 
     223    0.0000000000    0.0000305176 0.0000305176 0.0000305176 
     229    0.0000000000    0.0000610352 0.0000610352 0.0000610352 
     250    0.0000000000    0.0000152588 0.0000152588 0.0000152588 
     266    0.0000000000    0.0000076294 0.0000076294 0.0000076294 
     282    0.0000000000    0.0000038147 0.0000038147 0.0000038147 
     288    0.0000000000    0.0000076294 0.0000076294 0.0000076294 
     314    0.0000000000    0.0000009537 0.0000009537 0.0000009537 
     320    0.0000000000    0.0000019073 0.0000019073 0.0000019073 
     321    0.0000000000    0.0000038147 0.0000038147 0.0000038147 
     327    0.0000000000    0.0000076294 0.0000076294 0.0000076294 
     354    0.0000000000    0.0000004768 0.0000004768 0.0000004768 
     361    0.0000000000    0.0000004768 0.0000004768 0.0000004768 
     372    0.0000000000    0.0000004768 0.0000004768 0.0000004768 
     373    0.0000000000    0.0000009537 0.0000009537 0.0000009537 
     389    0.0000000000    0.0000004768 0.0000004768 0.0000004768 
     400    0.0000000000    0.0000004768 0.0000004768 0.0000004768 
     417    0.0000000000    0.0000001192 0.0000001192 0.0000001192 
     444    0.0000000000    0.0000000075 0.0000000075 0.0000000075 
     459    0.0000000000    0.0000000037 0.0000000037 0.0000000037 
     461    0.0000000000    0.0000000075 0.0000000075 0.0000000075 
     488    0.0000000000    0.0000000005 0.0000000005 0.0000000005 
     492    0.0000000000    0.0000000009 0.0000000009 0.0000000009 
     494    0.0000000000    0.0000000019 0.0000000019 0.0000000019 
     501    0.0000000000    0.0000000019 0.0000000019 0.0000000019 
     518    0.0000000000    0.0000000005 0.0000000005 0.0000000005 
     530    0.0000000000    0.0000000002 0.0000000002 0.0000000002 
     537    0.0000000000    0.0000000002 0.0000000002 0.0000000002 
     564    0.0000000000    0.0000000000 0.0000000000 0.0000000000 
     566    0.0000000000    0.0000000000 0.0000000000 0.0000000000 
     583    0.0000000000    0.0000000000 0.0000000000 0.0000000000 
     590    0.0000000000    0.0000000000 0.0000000000 0.0000000000 
     592    0.0000000000    0.0000000000 0.0000000000 0.0000000000 
     604    0.0000000000    0.0000000000 0.0000000000 0.0000000000 
     606    0.0000000000    0.0000000000 0.0000000000 0.0000000000 
     629    0.0000000000    0.0000000000 0.0000000000 0.0000000000 
     636    0.0000000000    0.0000000000 0.0000000000 0.0000000000 
     658    0.0000000000    0.0000000000 0.0000000000 0.0000000000 
     674    0.0000000000    0.0000000000 0.0000000000 0.0000000000 

} end of run (mesh size reached NOMAD precision)

blackbox evaluations                     : 674
best feasible solution                   : ( 1 1 1 ) h=0 f=1.073537728e-52

See Also

These keywords may also be of interest: