![]() |
Dakota Reference Manual
Version 6.15
Explore and Predict with Confidence
|
Information to be reported from mesh adaptive search's internal records.
Alias: none
Argument(s): STRING
The display_format
keyword is used to specify the set of information to be reported by the mesh adaptive direct search method. This is information mostly internal to the method and not reported via Dakota output.
Default Behavior
By default, only the number of function evaluations (bbe) and the objective function value (obj) are reported.
The full list of options is as follows. Note that case does not matter.
Expected Outputs
A list of the requested information will be printed to the screen.
Usage Tips
This will most likely only be useful for power users who want to understand and/or report more detailed information on method behavior.
The following example shows the syntax for specifying display_format
. Note that all desired information options should be listed within a single string.
method mesh_adaptive_search display_format 'bbe obj poll_size' seed = 1234
Below is the output reported for the above example.
MADS run { BBE OBJ POLL_SIZE 1 17.0625000000 2.0000000000 2.0000000000 2.0000000000 2 1.0625000000 2.0000000000 2.0000000000 2.0000000000 13 0.0625000000 1.0000000000 1.0000000000 1.0000000000 24 0.0002441406 0.5000000000 0.5000000000 0.5000000000 41 0.0000314713 0.1250000000 0.1250000000 0.1250000000 43 0.0000028610 0.2500000000 0.2500000000 0.2500000000 54 0.0000000037 0.1250000000 0.1250000000 0.1250000000 83 0.0000000000 0.0078125000 0.0078125000 0.0078125000 105 0.0000000000 0.0009765625 0.0009765625 0.0009765625 112 0.0000000000 0.0009765625 0.0009765625 0.0009765625 114 0.0000000000 0.0019531250 0.0019531250 0.0019531250 135 0.0000000000 0.0004882812 0.0004882812 0.0004882812 142 0.0000000000 0.0004882812 0.0004882812 0.0004882812 153 0.0000000000 0.0004882812 0.0004882812 0.0004882812 159 0.0000000000 0.0009765625 0.0009765625 0.0009765625 171 0.0000000000 0.0004882812 0.0004882812 0.0004882812 193 0.0000000000 0.0000610352 0.0000610352 0.0000610352 200 0.0000000000 0.0000610352 0.0000610352 0.0000610352 207 0.0000000000 0.0000610352 0.0000610352 0.0000610352 223 0.0000000000 0.0000305176 0.0000305176 0.0000305176 229 0.0000000000 0.0000610352 0.0000610352 0.0000610352 250 0.0000000000 0.0000152588 0.0000152588 0.0000152588 266 0.0000000000 0.0000076294 0.0000076294 0.0000076294 282 0.0000000000 0.0000038147 0.0000038147 0.0000038147 288 0.0000000000 0.0000076294 0.0000076294 0.0000076294 314 0.0000000000 0.0000009537 0.0000009537 0.0000009537 320 0.0000000000 0.0000019073 0.0000019073 0.0000019073 321 0.0000000000 0.0000038147 0.0000038147 0.0000038147 327 0.0000000000 0.0000076294 0.0000076294 0.0000076294 354 0.0000000000 0.0000004768 0.0000004768 0.0000004768 361 0.0000000000 0.0000004768 0.0000004768 0.0000004768 372 0.0000000000 0.0000004768 0.0000004768 0.0000004768 373 0.0000000000 0.0000009537 0.0000009537 0.0000009537 389 0.0000000000 0.0000004768 0.0000004768 0.0000004768 400 0.0000000000 0.0000004768 0.0000004768 0.0000004768 417 0.0000000000 0.0000001192 0.0000001192 0.0000001192 444 0.0000000000 0.0000000075 0.0000000075 0.0000000075 459 0.0000000000 0.0000000037 0.0000000037 0.0000000037 461 0.0000000000 0.0000000075 0.0000000075 0.0000000075 488 0.0000000000 0.0000000005 0.0000000005 0.0000000005 492 0.0000000000 0.0000000009 0.0000000009 0.0000000009 494 0.0000000000 0.0000000019 0.0000000019 0.0000000019 501 0.0000000000 0.0000000019 0.0000000019 0.0000000019 518 0.0000000000 0.0000000005 0.0000000005 0.0000000005 530 0.0000000000 0.0000000002 0.0000000002 0.0000000002 537 0.0000000000 0.0000000002 0.0000000002 0.0000000002 564 0.0000000000 0.0000000000 0.0000000000 0.0000000000 566 0.0000000000 0.0000000000 0.0000000000 0.0000000000 583 0.0000000000 0.0000000000 0.0000000000 0.0000000000 590 0.0000000000 0.0000000000 0.0000000000 0.0000000000 592 0.0000000000 0.0000000000 0.0000000000 0.0000000000 604 0.0000000000 0.0000000000 0.0000000000 0.0000000000 606 0.0000000000 0.0000000000 0.0000000000 0.0000000000 629 0.0000000000 0.0000000000 0.0000000000 0.0000000000 636 0.0000000000 0.0000000000 0.0000000000 0.0000000000 658 0.0000000000 0.0000000000 0.0000000000 0.0000000000 674 0.0000000000 0.0000000000 0.0000000000 0.0000000000 } end of run (mesh size reached NOMAD precision) blackbox evaluations : 674 best feasible solution : ( 1 1 1 ) h=0 f=1.073537728e-52
These keywords may also be of interest: