Faculty of Applied Mathematics

University of Twente

University for Technical and Social Sciences

MeEMorANDUM No. 1100

The INTEGRATOR package
for REDUCE. Version 1.0

G.H.M. ROELOFS

NoVEMBER 1992

P.O. Box 217

7500 AE Enschede
The Netherlands
Phone 431-53-893400
Fax +31-53-356695
Telex 44200

ISSN 0169-2690

THE INTEGRATOR pPAcKAGE FOR REDUCE

Version 1.0

MARCEL ROELOFS

Abstract: We give the WEB source of the INTEGRATOR package for REDUCE.
The package can be used to solve overdetermined systems of partial differential
equations, especially those occuring in the computation of symmetries and
prolongation structures of (supersymmetric) systems of partial differential
equations. The package is based on a former package by Kersten.

AMS subject classification (1991): 35N99, 58G37, 68N99, 68Q40, 7T0H33.
Keywords: overdetermined systems, computer algebra software, symmetries,
prolongation structures.

Section Page

Introduction

Integration of overdetermined systems of p.d.e.’s
Initializing an equation set
The integration procedure
Homogeneous Integrationoounoniiiiiiiiiiiiiii ittt iiaineeneeennns
Splitting polynomial equations
Solving Lie algebra relations
Solving a fUnCtionunttiti i e e e
Inhomogeneous integration
Generation of new equations by differentiation

Additional tools

..

..

..

§1 INTEGRATOR INTRODUCTION 1

1. Introduction. In this WEB file we shall describe a REDUCE package for the integration of overde-
termined systems of partial differential equations (p.d.e.’s). This work is mainly based on a similar package
by Paul Kersten for just the determination of symmetry groups (CWI tract 34, Infinitesimal symmetries: a
computational approach, CWI, Amsterdam, 1987) and an extension by myself which also allows the deter-
mination of Wahlquist and Estabrook prolongation algebras.

The main reasons for the implementation of this package, are our improved insight in the internals of
REDUCE, the wish to have one combined integrator for both cases and the availability of substantially
improved versions of some the procedures used in the former packages.

The “banner line” defined here is intended for indentification purposes on loading. It should be changed

whenever this file is modified. System dependent changes, however, should be made in a separate change
file.

define banner = "Integrator package for REDUCE 3.4, $Revision: 1.0,$"

2. We define the following macros for clarity.

define change_to_symbolic_mode = symbolic

define change_to_algebraic_mode = algebraic

define stop_with_error(string_1, expr_1, string_2, ezpr_2) =
msgpri(string_1, expr_1, string_2, ezpr_2, t)

define message(string_1, ezpr_1, string_2, ezpr.2) =
msgpri(string_1 , ezpr_1, string_2, ezpr_2 nil)

define operator_name_of = car

define arguments_of = cdr

define first_argument_of = cadr

define second_argument_of = caddr

define first_element_of = car

define rest_of = cdr

define skip_list = cdr { Skip the ’list in front of an algebraic list }

format function = identifier

3. The following macros are intended as common programming idioms.
define incr(z) = (z:=z+1)
define decr(z) = (z =z - 1)

4. A new REDUCE switch can be introduced using the following code.

define initialize_global(global_name, value) =
global ’(global_name)$
global_name := value

define initialize_fluid (fluid_name, value) =
fluid *(fluid_name)$
fluid_name := value

define new_switch(switch-name, value) =
initialize_fluid (!* Q&switch_-name, value)$
flag ((switch_name),’switch)

5. We do all initializations in the beginning of the package.

change_to_symbolic_mode$
write banner$ terpri()$
(Lisp initializations 9)
change_to_algebraic.mode$

§6 INTEGRATOR INTEGRATION OF OVERDETERMINED SYSTEMS OF P.D.E.’S 2

6. Integration of overdetermined systems of p.d.e.’s. For the determination of symmetry groups
or prolongation structures of (systems of) partial differential equations, the defining relations give rise to
an overdetermined system of p.d.e.’s. Finding the symmetry group or prolongation structure boils down to
solving such a system.

There are, however, some differences between the determination of a symmetry group or the determination
of a prolongation structure. These differences are:

1. The differential equations for the determination of the symmetry group are linear, the equations for
the determination of a prolongation structure are nonlinear. This nonlinearity, however, is of a special
kind, namely, the only occuring nonlinear terms are (possibly nested) liebrackets of the functions to be
integrated.

2. For the determination of symmetry groups, the functions to be determined integrate to polynomials with
constant coefficients. For the determination of prolongation structures, functions integrate to polynomials,
coefficients of which are generators of some unknown Lie algebra. The defining relations of this algebra
are the remaining (nonlinear) relations which have no dependency on the independent variables involved.

From the above it is clear that integration has to be treated slightly different in either of the cases. The
differences are however small enough to allow the implementation of one integrator for both cases.

7. In order to explain all possible p.d.e.’s which can be integrated, we make the following assumptions:

1. Functions are represented by expressions f(n), where f is some specified operator and n is an integer. Since
we intend to use the package for computations for supersymmetric p.d.e.’s, we shall use the notion the
elements with n positive must integrate to an even polynomial and elements with negative n must integrate
to an odd polynomial (this is only useful for computations in prolongation theory, where coefficients can
be even or odd Lie algebra generators).

2. The dependencies of functions are solely listed on the dependency list, i.e. must be stated by the depend’
statement of REDUCE. Notice, however, that we do not allow dependencies of odd variables. The reason
for this is a pragmatic one: due to the anticommutivity of odd variables, n odd variables can only produce
2" different terms containing these variables, hence can be stated explicitly provided that n is not too
big. On the other hand, if we allow dependencies of odd variables, a lot of additional operators have to
be implemented to take care of e.g. partial differentation w.r.t. odd variables.

§8 INTEGRATOR INTEGRATION OF OVERDETERMINED SYSTEMS OF P.D.E.’S 3

8. If fis the operator denoting functions, = the operator denoting Lie algebra generators (or, in the case of
a symmetry group, just constants), then following the description above, a p.d.e. has the following possible
terms (any coefficient ¢ is always some polynomial in the independent variables):

gQw>

[—

terms of the form c,df(f(n),...).
. terms of the form ¢, f(n).
. terms of the form e; 2[21, 22] where 21, 2 are either functions f(n) or Lie algebra generators z(n).
. terms of the form ¢,z(n).
These possibilities lead, in a natural way, to the following strategy of solving the p.d.e.’s:
. If there is only one term of type A, we can integrate this equation homogeneously, i.e. give a polynomial

expression for f(n) using the variables involved in the differential term.

2. If the p.d.e. is a polynomial in one or more independent variables on which none of the occuring functions
depend, all coefficients of this polynomial have to be zero, i.e., the p.d.e. splits up into a set of smaller
p.d.e.’s.

3. If there are only terms of type C and D we have a Lie algebra relation, which can be solved by the
LIESUPER package, if solvable.

4. If there is a function of type B depending on all variables occuring in the p.d.e. and not occuring in a term
of type A, we can solve for this function.

5. If there is one term of type A depending on all variables occuring the p.d.e. and the remaining terms are
polynomial in the variables occuring in the derivative, the p.d.e. can be integrated inhomogeneously.

6. If there is just one function in the p.d.e. which depends on a variable only occuring polynomially in the
rest of the p.d.e., such that the p.d.e. can not be integrated inhomogeneously since the dependencies of
the various occuring functions do not match, we can introduce new equations of type 1 by appropriately
differentiating the p.d.e.

§9 INTEGRATOR INITIALIZING AN EQUATION SET 4

9. Inmitializing an equation set. The integrator will be implemented in such a way that integration
can be performed on different sets of p.d.e.’s at the same time. Different sets of p.d.e.’s will be distinguished
by the name of the operator in which they are stored.

For each operator representing a set of p.d.e.’s we must know: the name of the operator(s) representing
the functions and the operator that must be used to represent constant coefficients during the integration. If
this last operator possesses the indicator bracketname we know that the operator is declared as a Lie algebra
generator, hence that we are in the prolongation case. In this case the name of the associated liebracket is
equal to the value of bracketname.

Moreover, we have to know the total number of equations used, in view of the additional equations that
may be generated and which must be numbered subsequently. In connection with the integrations taking
place we also have to know the number of functions, resp. constants (generators) being in use.

This is all taken care of by the procedure initialize_equations, which assigns to an operator operator_name,
the total number of used equations total used, the list variable_list of all occuring independent variables,
the operator constant_operator, elements of which act as constants, and an arbitrary number of operators
function_operator acting as functions. constant_operator and each function_operator should be given a an
algebraic list of the form {operator, number of even elements used, number of odd elements used}.

In order to allow an arbitrary number of parameters we make initialize_equations a psopfn. How psopfn’s
are dealt with internally is explained in the documentation of either the TOOLS package or the LIESUPER
package.

(Lisp initializations 9) =

put(’initialize_equations, ’psopfn, 'initialize_equations1)$

See also sections 13, 18, 33, 53, and 66.

This code is used in section 5.

10.

lisp procedure initialize_equationsl specification_list;
begin scalar operator_name, total_used, variable_list, specification, even_used, odd_used ,
constant_operator, bracketname, function.name, function_list;

if length specification_list < 5 then
rederr("INITIALIZE_EQUATIONS: wrong number,of parameters");

if —idp(operator_name := first_element.of specification_list) then
rederr("INITIALIZE_EQUATIONS: equations operator must, be, identifier");

if ~fizp(total_used := reval first_element_of (specification_list := rest_of
specification_list)) V total_used < 0 then
rederr(“ INITIALIZE_EQUATIONS: total number,of equationsymust be posit ive");

put(operator_name, ’total_used, total_used);

variable_list := reval first_element_of (specification_list := rest_of specification_list);

if atom variable_list V operator_name_of variable_list # ’list then
rederr("INITIALIZE_EQUATIONS: variable list must be algebraic,list");

put(operator_name,’variable_list, skip_list variable_list);

{ Check and initialize constant_operator 11);

(Check and initialize function_list 12);

end$

§11 INTEGRATOR INITIALIZING AN EQUATION SET 5

11. The constant_operator can either be a Lie algebra generator or not. If so, we also have to assign the
associated liebracket to operator_name and used the procedure define_used to take care of the assignment
of the used dimensions to the liebracket. If constant_operator is not a Lie algebra generator, we store these
dimensions in the same way as happens for liebrackets.

define check_valid_function_declaration(op_list, op_name) =
if atom op_list V length op_list # 4 V operator_name_of op_list # ’list
V —idp(op-name := first_argument_of op_list) V —fizp(even_used := reval caddr op_list)
V —fizp(odd_used := reval cadddr op_list) V even_used < 0V odd_used < 0 then
stop_with_error("INITIALIZE_EQUATIONS: invalid,declarationyof", op_list, nil nil)
define put_used_dimensions(op_name, even_used, odd_used) =
if get(op-name,’bracketname) then define_used(bracketname, list(’list, even_used, odd_used))
else
begin put(op_name,’even_used, even_used);
put(op_name,’odd_used, odd_used);
end

(Check and initialize constant_operator 11) =
spectfication_list := rest_of specification_list; specification := first_element_of specification_list;
check_valid_function_declaration (specification , constant_operator);
put(operator_name,’constant_operator, constant_operator);
if (bracketname := get(constant_operator,’bracketname)) then
put(operator_name,’bracketname, bracketname);
put_used_dimensions(constant_operator, even_used , odd_used)

This code is used in section 10.

12.

(Check and initialize function_list 12) =
for each function_specification in rest_of specification_list do
begin check_valid_function_declaration (function_specification, function_name);
put_used_dimensions (function_name, even_used, odd_used);
function_list := function_name . function_list;
end;
put(operator_name,’function_list, function_list)

This code is used in section 10.

13. Since we can apparently choose different sets of p.d.e.’s for solving, we must tell the integrator which
set to take. This is done via a global variable cur_eq_set/*. We will take the operator equ as the default
cur_eq_set!*. In this file we will use the abbreviation ces!* for cur_eg_set!*.

define ces!* = cur_eq_set!*
(Lisp initializations 9) + =
initialize_global(ces!*,’equ)$

14.

lisp operator use_equations;
lisp procedure use_equations operator_name;
begin
if idp operator_name then ces!* := operator_name
else rederr("USE_EQUATIONS: argumentymustybeyidentifier");
end$

§15 INTEGRATOR THE INTEGRATION PROCEDURE 6

15. The integration procedure. The implementation of the integrator follows the description of all
the possible steps given above.

For the use of the fluid variable listpri_depth!*, see below. Its local rebinding is necessary for a proper
printing of the messages given by the procedure.

lisp operator integrate_equation;
lisp procedure integrate_equation n;
begin scalar listpri_depth!* , total_used, equation, denominator, solvable_kernel, solvable_kernels,
df_list, function_list, present_functions_list, variable_list, absent_variables, linear_functions_list,
constants_list, bracketname, df-terms, df functions, linear_functions, functions_and_constants_list,
commautator_functions, present_variables, nr_of_variables, integration_variables;
listpri_depth!* := 200; terpri!* t;
(Find the equation to be integrated 16);
(Step 1: search for homogeneous integration 20);
(Step 2: search for polynomial behaviour 29);
(Step 3: search for a Lie relation 37);
(Step 4: search for a solvable function 39);
(Step 5: search for inhomogeneous integration 43);
(Step 6: search for a useful differentation 54});
(Step 7: print a “Not solved” message 59);
solved: { Go here when the equation is solved or its type is determined }
end$

16. The part of the equation containing all necessary information is its numerator. For reasons that will
become clear in the sequel we need, however, also know its denominator. If the equation is zero, no analysis
has to be performed.

define nullify_equation(n) =
setk(list(ces!*,n),0)
(Find the equation to be integrated 16) =
if null(total_used := get(ces!*,’total_used)) V n > total_used then
stop_with_error (" INTEGRATE_EQUATIONS: properly,initialize", ces!*, nil nil);
if null(equation := cadr assoc(list(ces!*,n), get(ces!*,’kvalue))) then
stop_with_error("INTEGRATE_EQUATION:", list(ces!*,n), "isynon-existent", nil);
denominator := denr(equation := simp!* equation); equation := numr equation;
if null equation then
L write ces!* " (", n, ") =,0"; terpri!* t; nullify_equation(n); goto solved >

This code is used in section 15.

§17 INTEGRATOR HOMOGENEOUS INTEGRATION 7

17. Homogeneous integration. Homogeneous integration must be performed if the equation consists
of just one df term. In order to find all possible df terms we apply split_form to equation. This returns a
list the car of which is the part of equation independent of the df operator, the cdr of which is a list of all
linear df terms, together with their coefficients. split_form will return with an error if nonlinear df terms
occur.

define independent_part_of = car

define kc_list_of = cdr

define kernel.of = car {For use with a kernel-coefficient list }

define coefficient_of = cdr {For use with a kernel-coefficient list }

18. If there is one df term, we only solve it if its coefficient is a number, by default. This behaviour is
governed by the switch coefficient_check, which is on by default. In order to check the coefficient we will
use the procedure find_solvable_kernel to be explained below.
(Lisp initializations 9) + =

new_switch(coefficient_check, t)$

19. Before continuing we introduce some auxiliary macros and procedures.

define assoc_delete(kernel, assoc_list) =
delete(assoc(kernel, assoc_list), assoc_list)

lisp procedure successful_message_for(n, action, kernel);
L write ces!* " (", n,") :y", action; maprin kernel; terpri!*(—!*nat);
nullify_equation (n); t>$
lisp procedure not_a_number_message_for(n, action, kernel);
L write "¥x*," ces!* (", n,") 1", action, " failed:"; terpri/* t;
write "yuuucoefficientynotya number, for,"; maprin kernel; terpri!*(—!*nat);
write "yuyuSolvable with,’off ,coefficient_check’";
terpri/* t; t>>$

20.

(Step 1: search for homogeneous integration 20) =

df_list := split_form (equation,’(df));

if try_a_homogeneous_integration (n, denominator, df_list) then goto solved
This code is used in section 15.

21.

lisp procedure try_a_homogeneous_integration(n, denominator, df_list);
begin scalar solvable_kernel, solvable_kernels, df_kernel;
return
if null independent_part_of df-list A (kc_list_of dflist) A length(kc list_of df_list) =1 then
if (solvable_kernel := find_solvable_kernel(
solvable_kernels := list(kernel_of first_element_of kc_list_of df list),
kc_list_of df list, denominator)) then
L dfkernel := first_argument_of solvable_kernel;
setk(df-kernel, homogeneous_integration_of (solvable_kernel));
depl!* := assoc_delete(df-kernel, depl!*); { Remove df_-kernel from the depl!* list }
successful_message_for(n, "Homogeneousintegrationyof,", solvable_kernel) >

else not_a_number_message_for(n, "Homogeneous,integration", firsi_element_of solvable_kernels)
end$

§22 INTEGRATOR HOMOGENEOUS INTEGRATION 8

22. The procedure find_solvable_kernel tries to find the first element of kernellist which has a number
as coefficient. If coefficient_check is off we can simply take the first element of kernel_list, otherwise we
can most conveniently implement a recursive procedure first_solvable_kernel, which finds the first element of
kernel_list with a number as coefficient. We can check this by first checking if the numerator of the coefficient
is a domain element, or if the whole coefficient is a number.

lisp procedure find_solvable_kernel(kernel_list, kc_list, denominator);
if *coefficient_check then first_solvable_kernel(kernel_list, kc_list, denominator)
else first_element_of kernel_list$

lisp procedure first_solvable_kernel(kernel_list, kc_list, denominator);
if kernel list then
(if domainp coefficient_of kc_pair V numberp !*{f2a(coefficient_of kc_pair, denominator) then
kernelof kc_pair
else first_solvable_kernel(rest_of kernel list, kc_list, denominator))
where kc_pair = assoc(first_element_of kernel list, kc_list)$

23. The equation
ok oFm
621’5: oo azmkm f(:cl, .o

Za)=0 (m<n)

has general solution
m kj—1

f=2 Z ::;j_fj,;’.(ml,...,z?},...,:c,,).

j=114;=0

Thus, given a homogenous p.d.e., homogeneous_integration_of has to return the REDUCE equivalent of the
last expression.

If f depends on only one variable the f; ;; are constants, otherwise they are new functions with dependency
on one less variable. In the Lie algebra case the constants are generators of the Lie algebra. Since the
dimensions of a liebracket in REDUCE have to be given on beforehand, there may not be enough generators
left to generate f. In this case, we have to enlarge the liebracket.
define get_dependencies_of (kernel) =

(Gf deplentry then cdr depl_entry)
where depl_entry = assoc(kernel, depl!¥*))

lisp procedure homogeneous_integration_of df-term;

begin scalar df_function, function_number, dependency_list, integration_list, coefficient_name,
bracketname, even_used, odd_used , integration_variable,
number_of_integrations, solution, new_dependency_list;

(Check if df-term can be integrated, find df_function and function_number 24);

dependency_list := get_dependencies_of (df_function);

if length dependency_list = 1 then coefficient_name := get(ces!*,’ constant_operator)

else coefficient_name := operator_name_of df_function;

(Get even_used, odd_used and if necessary bracketname 25);

integration_list := rest_of arguments_of df-term;

(Find the next integration_variable and number_of-integrations 26);

if bracketname then (Check and possibly enlarge dimensions of bracketname 27);

(Perform the integration 28);

return solution

end$

§24 INTEGRATOR HOMOGENEOUS INTEGRATION 9

24. We required df-term to be of the form df (f(k),...) where f is a function occuring on the function_list
of ces!* and k is an integer not equal to zero.

(Check if df-term can be integrated, find df_function and function_number 24) =
df_function := first_argument_of df-term;
if ~member(operator_name_of df_function, get(ces!*,’function_list))
V =fizp (function_number := first_argument_of df_function) V function_number =0 then
stop_with_error("PERFORM_HOMOGENEOUS_INTEGRATION: integration,of", df_function,
"notyallowed", nil)

This code is used in section 23.

25. In the liebracket case even_used and odd_used are stored as properties of bracketname instead of
coefficient_name.

(Get even_used, odd_used and if necessary bracketname 25) =

if (bracketname := get(coefficient_name,’bracketname)) then
begin even_used := get(bracketname,’even_used);
odd_used := get(bracketname,’odd_used);
end

else
begin even_used := get(coefficient_name,’even_used);
odd_used := get(coefficient_name,’odd_used);
end

This code is used in section 23.

26. Finding the integration variables is rather straightforward.

(Find the next integration_variable and number_of_integrations 26) =
if integration_list then integration_variable := first_element_of integration_list
else integration_variable := nil;
if integration_variable A (integration_list := rest_of integration_list)
A fizp first_elemeni_of integration_list then
<& number_of_integrations := first_element_of integration_list;
integration_list := rest_of integration_list >
else number_of_integrations := 1

This code is used in sections 23 and 28.

27. If df-function depends on only one variable, the number of constants being introduced is equal to
the number_of-integrations. The even and odd dimension of bracketname are stored as the properties
even_dimension and odd_dimension.

(Check and possibly enlarge dimensions of bracketname 27) =
if function_number > 0 then
(if even_used + number_of_integrations > get(bracketname,’even_dimension) then
change_dimensions_of (bracketname, even_used + number_of_integrations,
get(bracketname,’odd_dimension)))
else
(if odd-used + number_of_integrations > get(bracketname,’odd_dimension) then
change_dimensions_of (bracketname, get(bracketname,’even_dimension),
odd_used + number_of_integrations))

This code is used in section 23.

§28 INTEGRATOR HOMOGENEOUS INTEGRATION 10

28. The actual integration is fairly straightforward by now: for all the possible integration variables we
can simply add new terms to solution.

define new_coefficient =
list(coefficient_name,
if function_number > 0 then incr(even_used)
else —incr(odd_used))
define ezt_mksq(kernel, power) =
if power =0 then1./1
else mksq(kernel, power)
define depend_new_coefficient(dependency_list) =
depl!* := (list(coefficient_name,
if function_number > 0 then even_used
else —odd_used) . dependency_list) . depl!*;
(Perform the integration 28) =
solution :=nil ./ 1;
while integration_variable do
begin new_dependency_list := delete(integration_variable, dependency_list);
for i := 0:number_of_integrations — 1 do
< solution := addsq(solution, multsq(ezxt-mksq(integration_variable, i), mksq(new_coefficient, 1)));
if new_dependency_list then depend_new_coefficient(new-dependency_list) >;
(Find the next integration_variable and number_of_integrations 26)
end;
solution := mk!/*sq subs2 solution;
put_used_dimensions(coefficient_name, even_used, odd_used)

This code is used in section 23.

§29 INTEGRATOR SPLITTING POLYNOMIAL EQUATIONS 11

29. Splitting polynomial equations. For the polynomial behaviour of equation we need to know
the dependencies of all the functions occuring in equation at any level. If there occur any other variables in
equation and equation is polynomial in these variables, the coefficients of this polynomial give rise to a new
set of equations.

define pc_list_of = kc_lisi_of {power-coefficient list }
define powers_of = kernel_of

(Step 2: search for polynomial behaviour 29) =
(Find present_functions_list and the absent_variables 30);
if split_equation_polynomially(n, total_used, equation, absent_variables) then goto solved

This code is used in section 15.

30. Finding all the functions in equation can be done by applying the procedure get_recursive_kernels of
the TOOLS package.

(Find present_functions_list and the absent_variables 30) =
function_list 1= get(ces!*,’function_list);
present_functions_list := get_recursive_kernels(equation, function_list);
variable_list := get(ces!* ,’variable_list); absent_variables := variable_list;
for each function in present_functions_list do
for each variable in get_dependencies_of (function) do
absent_variables := delete(variable, absent_variables)

This code is used in section 29.

31.

lisp procedure split_equation_polynomzally(n, total_used , equation, abseni_variables);
begin scalar polynomial_variables, equations_list;
(Find the polynomial_variables and test for polynomial behaviour 32});
(If possible, split up equation into smaller equations 35)
end$

32. In most cases the equations under consideration are polynomial in any of the variables and therefore we
shall by default not test for polynomial behaviour. This testing is governed by the switch polynomial_check
which, be default, is off . If it is on testing is done by the procedure polynomialp to be defined below.

(Find the polynomial_variables and test for polynomial behaviour 32) =
polynomial_variables := absent_variables;
if *polynomial_check then
polynomial_variables := for each variable in polynomial_variables join
if polynomialp(equation, variable) then list(variable)

This code is used in section 31.

33. (Lisp initializations 9) + =
new_switch(polynomial_check,nil)$

34. Checking a standard form for polynomial behaviour in some kernel can be done by checking the main
variable, the leading coefficient and the reductum, respectively.

lisp procedure polynomialp (ezpression , kernel);
if domainp ezpression then t
else ((main_variable = kernel V ~depends(main_variable, kernel))
A polynomialp (lc ezpression, kernel) A polynomialp(red ezpression, kernel))
where main_variable = mvar ezpression$

§35 INTEGRATOR SPLITTING POLYNOMIAL EQUATIONS 12

35. The coeflicients of a polynomial can be found by applying the procedure multi_split_form from the
TOOLS package.
If equation can be split into smaller equations, split_equation_polynomially has to return t.
(If possible, split up equation into smaller equations 35) =
equations_list := multi_split_form(equation, polynomialvariables);
if length equations_list > 1 then
< for each pc_pair in pc_list_of equations_list do
setk (list(ces!*, incr(total_used)), mk!*sq((coefficient_of pc_pair) ./ 1));
if independent_part_of equations_list then
setk (list(ces!*, incr(total_used)), mk!*sq((independent_part_of equations_list) ./ 1));
write ces!*, " (", n, ") breaksyintoy", ces!*, " (", get(ces!*, ’total_used) + 1,
"), ..., ces!® (" total_used, ") ubyy";
maprin partial_list(polynomial_variables,b); terpri!*(=!*nat);
nullify_equation(n); put(ces!*,’total_used, total used)>;
if length equations_list > 1 then
return t

This code is used in section 31.

36. In order to get messages in a readable form, we sometimes need to print lists partially. This is taken
care of the following procedures.

lisp procedure partial_list(printed_list, nr_of_items);
'list . broken_list(printed_list, nr_of_items)$

lisp procedure broken_list(list,n);
if list then

else car list . broken_list(cdr list,n — 1)$

§37 INTEGRATOR SOLVING LIE ALGEBRA RELATIONS 13

37. Solving Lie algebra relations. If‘the first two steps have failed, we need to analyze equation in a
more drastic way: we need to find all functions occuring linearly in equation, and if a liebracket is specified,
all commutators and algebra generators occuring in equation as well. Since we have already looked for df
terms in equation in each next step we only have to examine the independent part of the previous step.

(Step 3: search for a Lie relation 37) =
linear_functions_list := split_form(independent_part_of df-list, function_list);
df_list .= kc_list_of df_list;
constants_list := split_form (independent_part_of linear_functions_list, list get(ces!*,’ constant_operator));
linear_functions_list := kc_list_of linear_functions._list;
if (bracketname := get(ces!*,’bracketname)) then (Solve equation if it is a Lie expression 38)

This code is used in section 15.

38. Inthe Lie algebra case we can try to solve the Lie expression if there are no df terms or linearly occuring
functions. Solving Lie expression can be done using the procedure relation_analysis of the LIESUPER
package. relation_analysis returns either the kernel for which the relation is solved or an atom indicating
the nature of the non-solvability.
(Solve equation if it is a Lie expression 38) =
if length(df_list) = 0 A length(linear_functions_list) = 0 then
L if atom(solvable_kernel := relation_analysis (!*{f2a (equation, denominator), bracketname)) then
K write ces!*," (", n,")yisyaynon-solvable Lie relation"; terpri/* t>>
else
K write ces!*," (", n,")ysolved for,"; maprin solvable_kernel; terpri!* t;
nullify_equation (n) >;
goto solved >

This code is used in section 37.

§39 INTEGRATOR SOLVING A FUNCTION

14

39. Solving a function. If equation is not a Lie expression, there may be a function or a constant for

which we can solve it. In order to do this we need to

— find all variables preseni_variables, on which at least one of the present functions recursive_functions_list

depends; of course it is the complement of absent_variables in variable_list.

— find all linearly occuring functions solvable_kernels which depend on all of the present_variables; these are
the possible candidates for solving. If there are no present_variables, equation is apparently a relation

between some constants and we can try to solve one.

— remove all functions from solvable_kernels, which also occur in a df term, or in the liebracket case, in a

commutator.

— if coefficient_check is on we must only solve for those functions which have a number as coefficient. This

is checked by the procedure find_solvable_kernel.

Before doing anything we shall, however, construct lists containing all functions occuring in df terms,
occuring linearly (and the constants) and, if necessary, occuring in commutators. These lists will also come

in handy in the next steps.

(Step 4: search for a solvable function 39) =
(Construct df-terms, df functions, linear_functions and commutator_functions 40);
(Get present_variables and nr_of variables 41);
for each kernel in linear_functions do
if length get_dependencies_of (kernel) = nr_of-variables then
solvable_kernels := kernel . solvable_kernels;
for each kernel in append (df_functions, commutator_functions) do
solvable_kernels := delete(kernel, solvable_kernels);
if solvable_kernels then (Try to solve a function 42)
This code is used in section 15.

40. Of course we are only interested in df terms of functions occuring on function_list.
(Construct df-terms, df-functions, linear_functions and commutator_functions 40) =
df-terms := for each df_term in df.list join
if member(operator_name_of first_argument_of kernel of df-term, function_list) then
list kernel_of df-term;
for each df_term in df-terms do
if ~member(first_argument_of df-term,df functions) then
df_functions := first_argument_of (df-term) . df_functions;
functions_and_constants_list := append (linear_functions_list, kc_list_of constants_list);
linear_functions := for each linear_function in functions_and_constants_list collect
kernel_of linear_function;
if bracketname then commutator_functions :=
get_recursive_kernels(independent_part_of constants_list, get(ces!*,’function_list));
This code is used in section 39.

41. (Get present_variables and nr_of-variables 41) =
present_variables := variable_list,;

for each variable in absent_variables do present_variables := delete(variable, present_variables);

nr_of_variables := length preseni_variables

This code is used in section 39.

§42 INTEGRATOR SOLVING A FUNCTION 15

42. (Try to solve a function 42) =
< solvable_kernel := find_solvable_kernel(solvable_kernels, functions_and_constants_list, denominator);
if solvable_kernel then
& linear_solve_and_assign (!*{f2a (equation, 1), solvable_kernel);
depl!* := assoc_delete(solvable_kernel,, depl!*);
{Remove the dependencies of the solved function }
successful_message_for(n,"Solved for", solvable_kernel); goto solved >
else
< not_a_number_message_for(n, "Solving a function", partiallist(solvable_kernels, 3));
goto solved >>

This code is used in section 39.

§43 INTEGRATOR INHOMOGENEOUS INTEGRATION 16

43. Inhomogeneous integration. For an inhomogeneous integration, we are looking for a maximal
df term, i.e. which has dependency on all the present_variables, such that the remaining part of equation
is polynomial in the variables, w.r.t. which the function in the df term is differentiated, i.e. a) we only have
to look at df terms which are differentiated w.r.t. variables on which none of the non-maximally occuring
functions in equation depend, and b) if polynomial check is on , we must check explicitly if the rest of
equation is polynomial in these variables.

We shall collect the list of “integrable” variables in the list integration_variables.

(Step 5: search for inhomogeneous integration 43) =
(Find the possible integration_variables 44);
if try_an_inhomogeneous_integration(n, equation , denominator, df_list, df terms, integration_variables,
nr_of-variables) then goto solved
This code is used in section 15.

44. Finding the integration_variables is rather easy using the lists df functions, linear_functions and
commutator_functions. Starting with present_variables we have to delete all variables on which on of the
linear_functions or commutator_functions depend, or one of the df_functions, which do not have maximal
dependency, i.e. which do no depend on nr_of_variables variables.
(Find the possible integration_variables 44) =
integration_variables := present_variables;
for each kernel in append (linear_functions, commutator_functions) do
for each variable in gei_dependencies_of (kernel) do
integration_variables := delete(variable, integration_variables);
for each df_function in df functions do
if —length get_dependencies_of (df-function) = nr_of_variables then
for each variable in get_dependencies_of (df_function) do
integration_variables := delete(variable, integration_variables)

This code is used in section 43.

45. Finding the integrable df terms is rather easy know: find all the df terms which have maximal
dependency and are only differentiated w.r.t. variables occuring on integration_variables. In order to check
this last item we need to know the form of df term: it is a list ’(df function differentiation_sequence), where
differentiation_sequence is a sequence of variables, each variable optionally followed by a integer indicating
the number of differentiations w.r.t. to that variable. The procedure check_differentiation_sequence checks
whether all variables in a differentiation_sequence are member of the second argument variable_list.
lisp procedure check_differentiation_sequence (sequence , variable_list);
if null sequence then t

else if fizp first_element_of sequence V member(firsi_element_of sequence,variable_list) then
check_differentiation_sequence(rest_of sequence, variable_list)$

46.

lisp procedure try_an_inhomogeneous_integration (n, equation, denominator, df_list, df_terms,
integration_variables, nr_of_variables);
begin scalar solvable_kernel, solvable_kernels, forbidden_functions,
df_kernel, inhomogeneous_term;
(Find the integrable df-terms 47);
(Find a solvable_kernel, check the inhomogeneous_term and possibly integrate 48)
end$

847 INTEGRATOR INHOMOGENEOUS INTEGRATION 17

47. There one situation we have to take care of specifically: if there are more df-terms for the same
function, only one of which is differentiated just w.r.t. integration_variables, we are not allowed to integrate,
since the function would be expressed in itself. In this case, we will make solvable_kernels a list of at least
length 2 in order to prevent integration.

(Find the integrable df_terms 47) =
for each df_term in df_terms do
<L if length get_dependencies_of (first_argument_of df-term) = nr_of_variables
A (check_differentiation_sequence(rest_of arguments_of df_term,integration_variables)
V member (first_argument_of df-term, forbidden_functions)) then
solvable_kernels := if member(first_argument_of df_term, forbidden_functions) then list(nil, nil)
else df_term . solvable_kernels;
forbidden_functions := (first_argument_of df-term) . forbidden_functions >;

This code is used in section 46.

48. (Find a solvable_kernel, check the inhomogeneous_term and possibly integrate 48) =
return
if solvable_kernels then
if length(solvable_kernels) = 1 then
if (solvable_kernel := find_solvable_kernel(solvable_kernels, df-list, denominator)) then
if (inhomogeneous_term := linear_solve(mk!*sq(equation ./ 1), solvable_kernel))
A (=!*polynomial_check
V check_polynomial_integration (solvable_kernel, inhomogeneous_term)) then
& df-kernel = first_argument_of solvable_kernel;
setk(df-kernel, inhomogeneous_integration_of (solvable_kernel, inhomogeneous_term));
depl!* := assoc_delete(df-kernel, depl!*); { Remove df_kernel from the depl!* list }
successful_message_for(n, "Inhomogeneous,integrationyof,", solvable_kernel) >
else
<L write ces!*,"(",n,") : Inhomogeneous integration failed:"; terpri/* t;
write "inhomogeneousterm not polynomial,in integration,variables"; terpri!/* t;
t>
else not_a_number_message_for(n, "Inhomogeneous integration",
first_element_of solvable_kernels)
else
K write ces!*,"(",n,"): Inhomogeneous, integration failed:"; terpri/* t;
write "moreyterms, with maximal dependency"; terpri/* t; t>>
This code is used in section 46.

§49 INTEGRATOR INHOMOGENEOUS INTEGRATION 18

49. Checking that the inhomogeneous term is polynomial in the integration variables is fairly easy. For all
the integration variables we have to check that the denominator does not depend on it and the numerator
should be polynomial.
lisp procedure check_polynomial_integration (df-term, integration_term);
begin scalar numerator, denominator, integration_variables, variable, ok;
numerator := numr simp integration_term; denominator := denr simp integration_term;
integration_variables := for each argument in rest_of arguments_of df-term join
if —fizp argument then list argument;
ok :=t;
while ok A integration_variables do
K variable := first_element_of integration_variables;
ok := (~depends(denominator, variable) A polynomialp (numerator, variable));
integration_variables := rest_of integration_variables >;

return ok;
end$

50. We can perform the inhomogeneous integration by applying multi_split_form to find all the polyno-
mial components of the inhomogeneous term and homogeneous_integration_of for solving the homogeneous
equation.
lisp procedure inhomogeneous_integration_of (df_term, inhomogeneous_term);
begin scalar df_sequence, integration_variables, int_sequence , variable, nr_of_integrations,
integration_terms, solution, powers, coefficient, int_factor, solution_term,n, k;
df_sequence := rest.of arguments_of df_term;
(Find the integration_variables and int_sequence 51);
integration_terms := multi_split_form(numr simp inhomogeneous_term, integration_variables);
integration_terms := (nil . independent_part_of integration_terms) . pc_list_of integration_terms;
{Make integration_terms a full blown pc_list }
(Perform the inhomogeneous integration of the numerator of inhomogeneous_term 52);
solution := multsq(solution,1 ./ denr simp inhomogeneous_term);
solution := mk!*sq subs2 addsq(solution, simp homogeneous_integration_of df-term);
return solution
end$

51. We must analyze df_sequence to get all the integration variables, together with the number of integra-
tions belonging to them.

(Find the integration_variables and int_sequence 51) =
while df_sequence do
K variable := first_element_of df_sequence; df_sequence := rest_of df_-sequence;
if df_sequence A fizp first_element_of df-sequence then
<& nr_of-integrations := first_element_of df_sequence; df-sequence := rest_of df-sequence >>

else nr_of_tntegrations := 1;

integration_variables := variable . integration_variables;

int_sequence := (variable . nr_of_integrations) . int_sequence >

This code is used in section 50.

§52 INTEGRATOR INHOMOGENEOUS INTEGRATION 19

52. The particular solution of the equation F(¥)(z) = z" is

1 n
F(=) = (n+ 1)---(n+lc)z .

This process has to be performed for all the terms in integration_terms and for all integrations in ¢ni_sequence.

(Perform the inhomogeneous integration of the numerator of inhomogeneous_term 52) =
solution ;= nil ./ 1;
for each term in integration_terms do
& powers := powers_of term; coefficient := coefficient_of term; int_factor :=1;
solution_term :=1 ./ 1;
for each integration in int_sequence do
& variable := car integration; k := cdr integration;
n := (if power then cdr power else 0) where power = assoc(variable, powers);
{If variable does not occur in term, n =0}
for i := 1:k do int_factor := (n + i)*int_factor;
solution_term := multsq(solution_term, mksq(variable, n + k)) >>;
solution_term := maultsq(solution_term, coefficient ./ int_factor);
solution := addsq(solution, solution_term)>>

This code is used in section 50.

§53 INTEGRATOR GENERATION OF NEW EQUATIONS BY DIFFERENTIATION 20

53. Generation of new equations by differentiation. As a last method of solving we notice the
following: if there is a variable, such that just one df term or just one linearly occuring function depends
on it and all the other terms are polynomial in this variable, let’s say of degree n, then we can differentiate
equation n + 1 times to get a new equation of type A.

Experience has proven, however, that applying the above mentioned method, generally will lead to multiple
generation of equivalent terms in the answer. Therefore we will only generate a new equation if the switch
allow_differentiation is on , otherwise we will only generate a message that it is possible to generate a new
equation of type A. Solving of such a new equation is always left to the responsibility of the user.

(Lisp initializations 9) + =
new_switch(allow_differentiation , nil)$

54. After this introduction it is clear what we have to do for step 6:

(Step 6: search for a useful differentation 54) =
if try_a_differentiation(n, total_used, equation, present_variables, df_terms, linear_functions,
commutator_functions) then goto solved

This code is used in section 15.

55.

lisp procedure try_a_differentiation(n, total_used, equation , present_variables, df_terms, linear_functions,
commautator_functions);
begin scalar differentiations_list, polynomial_order;
(Count the number of occurences of all present_variables 56);

(If possible and allowed, generate new equations 57)
end$

§56 INTEGRATOR GENERATION OF NEW EQUATIONS BY DIFFERENTIATION 21

56. Counting the occurence of variables is rather easy. For all functions in df-terms, linear_functions and
commutator_functions, we have to count the occurences of all the variables in their respective entries on the
dependency list depl!*.

For this purpose we rebuild present_variables to an association list with entries of the form wariable .
origin . number_of-occurences where origin indicates the df term, linear_function or commutator_function
in which variable occured last.

The action of the following macros, which harmlessly make use of the procedure rplacd, is clear.
define reinitialize_present_variables =

present_variables := for each variable in present_variables collect (variable . nil . 0)
define variable_of = car
define origin_of = cadr
define counter_of = cddr
define update_variable (variable, origin) =

rplacd (entry, origin . (counter_of entry + 1)) where entry = assoc(variable, present_variables)
define update_variables_using (kernel list, kernel_selector, flag_function) =

for each kernel in kernellist do

for each variable in get_dependencies_of (kernel_selector (kernel)) do
update_variable (variable, flag_function (kernel));

define identity_function(kernel) = kernel
define empty_function(kernel) = nil
(Count the number of occurences of all present_variables 56) =

reinitialize_present_variables;

update_variables_using (df_terms, first_argument_of , identity_function);

update_variables_using (linear_functions, identity_function, identity_function);

update_variables_using (commutator_functions, identity_function, empty_function)

This code is used in section 55.

§57 INTEGRATOR GENERATION OF NEW EQUATIONS BY DIFFERENTIATION 22

57. After the preceding step we can generate new equations by differentiating equation w.r.t. to all those
variables which occur in only one df-term or linear_function and for which all other terms of equation are

polynomial. Using the above code one can check that these variables are exactly the ones for which the
origin has a value and the counter is 1.

(If possible and allowed, generate new equations 57) =
differentiations_list := for each entry in present_variables join
if origin_of entry A counter_of entry =1
A (polynomial_order :=
get_polynomial_order(linear_solve(mk!*sq(equation ./ 1), origin_of entry), variable_of entry))

then list (variable_of entry . origin_of entry . (polynomial_order + 1));
return

if differentiations_list then
if *allow_differentiation then
< for each entry in differentiations_list do
setk (list(ces!* , incr(total_used)),
mk!*sq simpdf list(mk!*sq(equation ./ 1), variable_of entry, counter_of entry));
write ces!* " (", n,"): Generationyof", ces!*, " (", get(ces!*, ’total_used) +1,"),...,"
ces!* " (", total_used,") by differentiation w.r.t. "; terpri/* t;
maprin partial list(for each entry in differentiations_list collect
list(list, variable_of entry, counter_of eniry),10);
terpril* (= !/*nat); put(ces!*,’total_used, total_used); t>
else
&L write "*xk " ces!* (" n,
") :uGeneration of new,equations by differentiation possible."; terpri/* t;
write ", uuSolvableywith’onyallow_differentiation’"; terp'ri!* t t>
This code is used in section 55.

)

58. An algebraic expression is polynomial in a variable if the denominator does not depend on it and if
the numerator is polynomial (we only have to check this if polynomial_check is on). The polynomial order
we can obtain by simply reordering the numerator w.r.t. the variable involved.
lisp procedure get_polynomial_order(ezpression, variable);
if ~depends(denr (ezpression := simp ezpression), variable)
A (=!*polynomial_check V polynomialp (numr ezpression,variable)) then
begin scalar kord!*;
setkorder list !*a2k variable; ezpression := reorder numr ezpression;

return if mvar ezpression = variable then ldeg ezpression else 0;
end$

59. If none of the above methods can be applied, we cannot solve equation.
(Step 7: print a “Not solved” message 59) =

write ces!*," (", n,")ynot solved"; terpri!/* t
This code is used in section 15.

§60 INTEGRATOR ADDITIONAL TOOLS 23

60. Additional tools. The following procedures are meant for solving more equations at a time or
solving “exceptional” equations, which need the least restrictive setting of the switches coefficient_check,
polynomial_check or allow_differentiation.

algebraic procedure integrate_equations(m,n);
for i := m:n do integrate_equation (1)$
lisp operator integrate_ezceptional_equation;
lisp procedure tntegrate_ezceptional_equation (n);
integrate_equation (n) where
Hecoefficient_check = nil,
*polynomial_check = nil,
Hallow_differentiation = t$

61. For a system of equations which is not too difficult it may be possible to solve the system without
intervenience of the user. For such systems the procedure auto_solve tries to solve a system automatically.
If successful, it returns a message saying so, otherwise it returns the list of equation numbers left unsolved.
The parameter nr_list gives either the equation number or the list of equation numbers to be considered:
the other equations may contain conditions which should only be considered when all the higher equations
are solved, for instance when we solve using some kind of grading and solve the system degree by degree.

lisp operator auto_solve;
lisp procedure auto_solve nr_.list;
begin scalar total, old_total, to_do, unsolved , old_unsolved , stuck;
total := old_total := get(ces!*, total_used);
to_do := if fizp nr_.list then list nr_list
else if car nr_list = ’list then cdr nr_list
else nr_list;
while —~stuck A to_do do
begin
for each eg_nr in to_do do
<K integrate_equation eq_nr;
if cadr assoc(list(ces!*, eq-nr), get(ces!*, kvalue)) # 0 then unsolved := eg_nr . unsolved >>;
total := get(ces!*, ’total_used);
if total = old_total A unsolved A unsolved = old_unsolved then stuck : =t
else < old_unsolved := unsolved; to_do := reverse unsolved; unsolved := nil;
to_do := append (for eq_nr := old_total + 1:total collect eq_nr,to_do); old_total := total >
end;
if stuck then return ’list . reverse unsolved
else < terpri(); write "Successfulyintegrationyofyall equations"; terpri()>>;
end$

§62 INTEGRATOR ADDITIONAL TOOLS 24

62. As a last set of tools, we shall give a procedure to print an equation together with all the functions
occuring in it and their dependencies, and some procedures for showing and changing the properties of an

equation set and a the functions/constants used.
As a side effect the procedure show_equation will reassign the shown equation to its current value.

lisp operator show_equation;
lisp procedure show_equation n;
begin scalar equation, total_used , function_list;
if null(total_used := get(ces!*,’total_used)) V n > total_used then
stop_with_error("SHOW_EQUATION: properly,initialize", ces/*, nil, nil);
if (equation := assoc(list(ces!* n), get(ces!*,’kvalue))) then
begin equation := setk(list(ces!*,n), aeval cadr equation);
varpri(equation, list (’setk, mkquote list(ces!*,n), mkquote equation),’only);
function_list := get_recursive_kernels(numr simp equation, get(ces!*,’function_list));
if function_list then
L terpri!* t; write "Functions,occurring:"; terpri/* t;
for each fn in function_list do
<K maprin(fn . get_dependencies_of (fn)); terpri!*(=!*nat)>>
else terpri/* nil
end
end$

algebraic procedure show_equations(m,n);
for i := m:n do show_equation i$

63.

lisp operator functions_used, put_functions_used , equations_used , put_equations_used;

lisp procedure functions_used function_name;
list(list, get (function_name,’even_used), get(function_name,’odd_used))$

lisp procedure put_functions_used (function_name, even_used , odd_used);
begin
if —fizp even_used V even_used < 0V —fizp odd_used V odd_used < 0 then

stop_with_error("PUT_FUNCTIONS_USED:used, functionsynumberyinvalid", nil, nil nil);

put(function_name,’ even_used, even_used); put(function_name,’odd_used, odd_used);
end$

lisp procedure equations_used;
get(ces!* ’total_used)$

lisp procedure put_equations_used (n);
if =fizp n Vn < 0 then
stop_with_error("PUT_EQUATIONS_USED:,used equation number,invalid", nil, nil nil)

else put(ces!*, total_used,n)$

§64 INTEGRATOR ADDITIONAL TOOLS 25

64. There is one slight detail which we have not dealt with yet: in prolongation theory differentiation
should act as a derivation on the arguments of a (eventually nested) commutator. In REDUCE 3.4 there is
a hook which can take care of this situation. In the procedure diffp, which takes care of differentiation of
standard powers, if this standard power is an operator kernel, the property dfform is checked for operator
concerned. If this property has a value, it should be a function which takes care of the differentiation of such
a standard power.

lisp operator df_acts_as_derivation_on;

lisp procedure df_acts_as_derivation_on operator_name;
begin put (operator_name,’dfform,’df as_derivation);
end$

65. The procedure df_as_derivation is quite straightforward: apply df to all the arguments of the operator,
one at a time, leaving the other ones untouched.

lisp procedure df_as_derivation(kernel, variable, power);
begin scalar left_part, right_part, argument, derivative;
if power # 1 then stop_with_error("DF_AS_DERIVATION:", kernel, "mustyoccur linearly", nil);
left_part := list operator_name_of kernel;
right_part := arguments_of kernel;
dertvative :=nil . 1;
while right_part do
< argument := first_element_of right_part;
right_part := rest_of right_part;
derivative := addsq(derivative, simp append (reverse left_part,list(’df, argument,
variable) . right_part));
left_part := argument . left_part;>>;
return dertvative;
end$

66. In order to get nice output of some of the messages given by integrate_equation we redefine the print
function listpri for algebraic lists. Namely, we want don’t want algebraic lists to split over multiple lines
in the messages we give. For this purpose, we introduce a fluid variable listpri_depth!* which governs the
depth for which algebraic lists are split along lines. The default value is the same as the value in the used
in REDUCE.

(Lisp initializations 9) + =
initialize_fluid (listpri_depth!* ,40)$

67. The following procedure can be used at algebraic level to change listpri_depth!*.

lisp operator listlength$
lisp procedure listlength I;
listpri_depth!* := I$

§68 INTEGRATOR ADDITIONAL TOOLS 26

68. The definition of listpri is basically that of inprint, except that it decides when to split at the comma
by looking at the size of the argument, using the global variable listpri_depth!*.

symbolic procedure listpri [;
begin scalar orig, split, u;
w:=1; := cdr l; prin2!* get(’!*lcbkt!*,’prick); { Do it this way so table can change}
orig := origl*;
origl* := if posn!* < 18 then posn!* else orig!* + 3;
if null [then go to b;
split .= treesizep (I, listpri_depth!*);
a: maprint(negnumberchk car 1,0); | := cdr I,
if null [then go to b;
oprin ’*commal*;
if split then terpri/* t;
go to a;
b: prin2!¥* get(’!*rcbkt!* ’prich); orig!* := orig;
return u
end$

69. The end of a REDUCE input file must be marked with end.
end;

§70 INTEGRATOR

INDEX 27

70. Index. This section contains a cross reference index of all identifiers, together with the numbers of
the mdules in which they are used. Underlined entries correspond to module numbers where the identifier

was declared.

I¥: 4,

Hallow_differentiation: 57, 60.
*a2k: 58.

*coefficient_check: 22, 60.
H*commal*: 68.

*f2a: 22, 38, 42.

I*lcbkt!*: 68.

nat: 19, 35, 57, 62.
polynomial_check: 32, 48, 58, 60.
Hrcbkt!*: 68.

L11. 36.

absent_variables: 15, 29, 30, 31, 32, 39, 41.
action: 19.

addsq: 28, 50, 52, 65.

aeval: 62.

allow_differentiation: 53, 60.
append: 39, 40, 44, 61, 65.
argument: 49, 65.

arguments_of : 2, 23, 47, 49, 50, 65.
assoc: 16, 19, 22, 23, 52, 56, 61, 62.
assoc_delete: 19, 21, 42, 48.
assoc_list: 19.

atom: 10, 11, 38.

auto_solve: 61.

banner: 1, 5.

bracketname: 9, 10, 11, 15, 23, 25, 27, 37, 38, 40.

broken_list: 36.

cadddr: 11.

caddr: 2, 11.

cadr: 2, 16, 56, 61, 62.

car: 2, 17, 36, 52, 56, 61, 68.

cddr: 56.

cdr: 2, 17, 23, 36, 52, 61, 68.

ces!*: 13, 14, 16, 19, 23, 24, 30, 35, 37, 38, 40,
48, 57, 59, 61, 62, 63.

change_dimensions_of : 27.

change_to_algebraic_mode: 2, 5.

change_to_symbolic_mode: 2, 5.

check_differentiation_sequence: 45, 47.

check_polynomial_integration: 48, 49.

check_valid_function_declaration: 11, 12.

coefficient: 50, 52.

coefficient_check: 18, 22, 39, 60.

coefficient_name: 23, 25, 28.

coefficient_of : 17, 22, 35, 52.

commutator_function: 56.

commutator_functions: 15, 39, 40, 44, 54, 55, 56.

constant_operator: 9, 10, 11, 23, 37.

constants_list: 15, 37, 40.

counter: 57.

counter_of: 56, 57.

cur_eg_set!*: 13.

decr: 3.

define_used: 11.

delete: 19, 28, 30, 39, 41, 44.

denominator: 15, 16, 20, 21, 22, 38, 42, 43,
46, 48, 49.

denr: 16, 49, 50, 58.

depend_new_coeffictent: 28.

dependency_list: 23, 28.

depends: 34, 49, 58.

depl!*. 21, 23, 28, 42, 48, 56.

deplentry: 23.

derivative: 65.

df: 17,18, 20, 24, 37, 38, 39, 40, 43, 45, 53, 65.

df_acts_as_derivation_on: 64.

df_as_derivation: 64, 65.

df_function: 23, 24, 27, 44.

df_functions: 15, 39, 40, 44.

df kernel: 21, 46, 48.

df-list: 15, 20, 21, 37, 38, 40, 43, 46, 48.

df_sequence: 50, 51.

df-term: 23, 24, 40, 47, 49, 50, 56, 57.

df_-terms: 15, 40, 43, 46, 47, 54, 55, 56.

dfform: 64.

differentiations_list: 55, 57.

diffp: 64.

domainp: 22, 34.

empty_function: 56.

entry: 56, 57.

eg-nr: 61,

equ: 13.

equation: 15,16, 17, 20, 29, 30, 31, 32, 35, 37, 38,
39, 42, 43, 46, 48, 53, 54, 55, 57, 59, 62.

equations_list: 31, 35.

equations_used: 63.

even_dimension: 27.

even_used: 10, 11, 12, 23, 25, 27, 28, 63.

expr-1: 2.

expr 2: 2.

erpression: 34, 58.

ert_mksq: 28.

find_solvable_kernel: 18, 21, 22, 39, 42, 48.

1 ==

first_argument_of : 2, 11, 21, 24, 40, 47, 48, 56.

§70 INTEGRATOR

first_element_of : 2, 10, 11, 21, 22, 26, 45, 48,
49, 51, 65.

first_solvable_kernel: 22.

fizp: 10, 11, 24, 26, 45, 49, 51, 61, 63.

flag: 4.

flag_function: 56.

fluid: 4.

flurd_name: 4.

fn: 62.

forbidden_functions: 46, 47.

function: 2, 30.

function_list: 10, 12, 15, 24, 30, 37, 40, 62.

function_name: 10, 12, 63.

function_number: 23, 24, 27, 28.

function_operator: 9.

function_specification: 12.

functions_and_constants_list: 15, 40, 42.

functions_used: 63.

get: 11, 16, 23, 24, 25, 27, 30, 35, 37, 40, 57,
61, 62, 63, 68.

get_dependencies_of : 23, 30, 39, 44, 47, 56, 62.

get_polynomial_order: 57, 58.

get_recursive_kernels: 30, 40, 62.

global: 4.

global_name: 4.

homogeneous_integration_of : 21, 23, 50.

identifier: 2.

tdentity_function: 56.

wdp: 10, 11, 14.

mer: 3, 28, 35, 57.

independent_part_of: 17, 21, 35, 37, 40, 50.

inhomogeneous_integration_of : 48, 50.

tnhomogeneous_term: 46, 48, 50.

wnitialize_equations: 9.

initialize_equations1: 9, 10.

wnitialize_fluid: 4, 66.

initialize_global: 4, 13.

mprint: 68.

tnt_factor: 50, 52.

int_sequence: 50, 51, 52.

integrate_equation: 15, 60, 61, 66.

integrate_equations: 60.

integrate_exceptional_equation: 60.

tntegration: 52.

integration_list: 23, 26.

integration_term: 49.

integration_terms: 50, 52.

integration_variable: 23, 26, 28.

integration_variables: 15, 43, 44, 45, 46, 47,
49, 50, 51.

INDEX 28
ke list: 22.
ke list_of : 17, 21, 29, 37, 40.
kc_pair: 22.

kernel: 19, 23, 28, 34, 39, 44, 56, 65.

kernel_list: 22, 56.

kernelof: 17, 21, 22, 29, 40.

kernel_selector: 56.

kord!*: 58.

kvalue: 16, 61, 62.

le: 34.

ldeg: 58.

left_part: 65.

length: 10,11, 21, 23, 35, 38, 39, 41, 44, 47, 48.

liebracket: 23.

linear_function: 40, 56, 57.

linear_functions: 15, 39, 40, 44, 54, 55, 56.

linear_functions_lzst: 15, 37, 38, 40.

linear_solve: 48, 57.

linear_solve_and_assign: 42.

hst: 2,10, 11, 16, 21, 28, 32, 35, 36, 37, 40, 47,
49, 57, 58, 61, 62, 63, 65.

listlength: 67.

Listpri: 66, 68.

listpri_depth!*: 15, 66, 67, 68.

main_variable: 34.

maprin: 19, 35, 38, 57, 62.

maprint: 68.

member: 24, 40, 45, 47.

message: 2.

mkl*sq: 28, 35, 48, 50, 57.

mkquote: 62.
mksq: 28, 52.
msgpri: 2.

multi_split_form: 35, 50.

multsq: 28, 50, 52.

muvar: 34, 58.

negnumberchk: 68.

new_coefficient: 28.

new-dependency_list: 23, 28.

new_switch: 4, 18, 33, 53.
not_a_number_message_for: 19, 21, 42, 48.
nr list: 61.

nr_of_integrations: 50, 51.

nr_of_items: 36.

nr_of_variables: 15, 39, 41, 43, 44, 46, 47.
null: 16, 21, 45, 62, 68.

nullify_equation: 16, 19, 35, 38.
number_of_integrations: 23, 26, 27, 28.
number_of_occurences: 56.

numberp: 22.

§70 INTEGRATOR

numerator: 49.

numr: 16, 49, 50, 58, 62.
odd_dimension: 27.

odd_used: 10, 11, 12, 23, 25, 27, 28, 63.
ok: 49.

old_total: 61.

old_unsolved: 61.

only: 62.

op_list: 11.

op_name: 11.

operator_name: 9, 10, 11, 12, 14, 64.
operator_name_of: 2, 10, 11, 23, 24, 40, 65.
oprin: 68.

orig: 68.
origl*: 68.
origin: 56, 5T7.

origin_of: 56, 57T.
partial_list: 35, 36, 42, 57.

pelist: 50.
pelist_of - 29, 35, 50.
pc_pair: 35.

polynomial_check: 32, 33, 43, 58, 60.
polynomial_order: 55, 57.
polynomial_variables: 31, 32, 35.
polynomialp: 32, 34, 49, 58.
posnl*: 68.

power: 28, 52, 65.

powers: 50, 52.

powers_of : 29, 52.
present_functions_list: 15, 30.

present_variables: 15,39,41, 43, 44, 54, 55, 56, 57.

printed_list: 36.

prin2!/*. 68.
prich: 68.
psopfn: 9.

put: 9,10, 11, 12, 35, 57, 63, 64.

put_equations.used: 63.

put_functions_used: 63.

put_used_dimensions: 11, 12, 28.

recursive_functions_list: 39.

red: 34.

rederr: 10, 14.

reinitialize_present_variables: 56.

relation_analysis: 38.

reorder: 58.

rest_of: 2, 10, 11, 12, 22, 23, 26, 45, 47, 49,
50, 51, 65.

reval: 10, 11.

reverse: 61, 65.

right_part: 65.

INDEX 29

rplacd: 56.
second_argument_of : 2.
sequence: 45b.

setk: 16, 21, 35, 48, 57, 62.
setkorder: 58.
show_equation: 62.

show_equations: 62.

simp: 49, 50, 58, 62, 65.

simpl*. 16.

simpdf: 57.

skip_list: 2, 10.

solution: 23, 28, 50, 52.

solution_term: 50, 52.

solvable_kernel: 15, 21, 38, 42, 46, 48.
solvable_kernels: 15, 21, 39, 42, 46, 47, 48.
solved: 15, 16, 20, 29, 38, 42, 43, 54.
specification: 10, 11.

specification_list: 10, 11, 12.

split: 68.

split_equation_polynomially: 29, 31, 35.
split_form: 17, 20, 37.

stop_with_error: 2, 11, 16, 24, 62, 63, 65.
string_1: 2.

string_2: 2.
stuck: 61.
subs2: 28, 50.

successful_message_for: 19, 21, 42, 48.

switch: 4.

switch.name: 4.

term: 52.

terpri: 5, 61.

terpri/*: 15, 16, 19, 35, 38, 48, 57, 59, 62, 68.

to_do: 61.

total: 61.

total_used: 9, 10, 15, 16, 29, 31, 35, b4, 55,
57, 61, 62, 63.

treesizep: 68.

try-a_differentiation: 54, 55.

try_a_homogeneous_integration: 20, 21.

try_an_inhomogeneous_integration: 43, 46.

unsolved: 61.

update_variable: 56.

update_variables_using: 56.

use_equations: 14.

value: 4.

variable: 30, 32, 41, 44, 49, 50, 51, 52, 56, 58, 65.

variable_list: 9, 10, 15, 30, 39, 41, 45.

variable_of: 56, 57.

varpri: 62.

write: 5, 16, 19, 35, 38, 48, 57, 59, 61, 62.

§70 INTEGRATOR NAMES OF THE SECTIONS

(Check and initialize constant_operator 11) Used in section 10.

(Check and initialize function_list 12) Used in section 10.

(Check and possibly enlarge dimensions of bracketname 27) Used in section 23.

(Check if df-term can be integrated, find df_function and function_.number 24) Used in section 23.

(Construct df_terms, df_functions, linear_functions and commutator_functions 40) Used in section 39.

(Count the number of occurences of all present_variables 56) Used in section 55.

(Find a solvable_kernel, check the inhomogeneous_term and possibly integrate 48) Used in section 46.
(Find the equation to be integrated 16) Used in section 15.

(Find the integrable df terms 47) Used in section 46.

(Find the next integration_variable and number_of_integrations 26) Used in sections 23 and 28.
(Find the possible integration_variables 44) Used in section 43.

(Find the integration_variables and int_sequence 51) Used in section 50.

(Find the polynomial_variables and test for polynomial behaviour 32) Used in section 31.
(Find present_functions_list and the absent_variables 30) Used in section 29.

(Get even_used, odd_used and if necessary bracketname 25) Used in section 23.

(Get present_variables and nr_of_variables 41) Used in section 39.

(If possible and allowed, generate new equations 57) Used in section 55.

(If possible, split up equation into smaller equations 35) Used in section 31.

(Lisp initializations 9, 13, 18, 33, 53, 66) Used in section 5.

30

(Perform the inhomogeneous integration of the numerator of inhomogeneous_term 52) Used in section 50.

(Perform the integration 28) Used in section 23.

(Solve equation if it is a Lie expression 38) Used in section 37.

(Step 1: search for homogeneous integration 20) Used in section 15.
(Step 2: search for polynomial behaviour 29) Used in section 15.
(Step 3: search for a Lie relation 37) Used in section 15.

(Step 4: search for a solvable function 39) Used in section 15.

(Step 5: search for inhomogeneous integration 43) Used in section 15.
(Step 6: search for a useful differentation 54) Used in section 15.
(Step 7: print a “Not solved” message 59) Used in section 15.

(Try to solve a function 42) Used in section 39.

