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Abstract

We present an extension of constraint logic programming, where the
admissible constraints are arbitrary first-order formulas over some domain.
Constraint solving is realized by effective quantifier elimination. The current
realization in our CLP(RL) system provides as possible domains R, C, and
Q) for primes p. In R and C we admit arbitrary degrees in our constraints.
In Q, we restrict to linear formulas. The arithmetic is always exact. We
describe the conceptual advantages of our approach and the capabilities of
CLP(RL).

*sturm@uni-passau.de,http://www.fmi.uni-passau.de/ sturm/



1 Introduction

Logical programming languages have emerged during the early seventies with
Prolog by Colmerauer and Kowalski being the by far most prominent example.
The first version of Prolog has been finished in 1973 [CR93]. The first effi-
cient implementation in form of a Prolog compiler has been finished by War-
ren in 1977 [War77]. The major conceptual contribution, as stated by Kowal-
ski [Kow79], was disconnecting logic from control. The programmer should not
longer be concerned with specifying and coding algorithmic control structures but
instead declaratively specify the problem to be solved within some formal logi-
cal framework. The programming language itself would then contain a universal
control algorithm for solving the specified problems.

The logical framework was universal Horn clauses. The universal control
algorithm was a deterministic variant of J. A. Robinson’s resolution principle
[Rob65] for automatic theorem proving. Prolog became surprisingly successful,
in particular in connection with the Japanese 5th Generation Computing Project.
It had, however, turned out that the pure approach of declarative specification re-
sulted in a lack of efficiency that was not acceptable. This particularly affected
arithmetic, which had to be defined inductively using a successor function.

Let us have a look at the usual logic programming solution for addition on
natural numbers:

nat(0) <«
nat((s(X)) « nat(X)
plus(X,0, X) <« nat(X)
plus(X.s(Y),s(Z)) « plus(X.Y, Z).

The execution of such a program consists in stating queries like

< plus(s(s(s(0))). s(0). Z).

which would by means of resolution result in the answer Z = s(s(s(s(0)))).

For introducing some notions on one hand and reminding the reader of the
common procedure on the other hand, we sketch how such a query is processed
by SLD resolution. The body plus(s(s(s(O))), 5(0), Z ) of our query forms the
initial goal

G = {plus(s(s(s(0))), 5(0). Z) }.

The interpreter matches via unification the only contained atom with the head
plus(Xl, s(Yy1), s(Zl)) of the instance

plus(Xy, s(Y1), s(Z))) < plus(X,. Y1, Zy)
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of the last clause of the program. This creation of instances by giving fresh names
to all variables is called standardizing apart. A suitable most general unifier
(MGU) for this is

W= o= {X=5(s(500)). Y1 =0,Z = 5(Z))}.

The selected atom in the initial goal is now replaced by the atoms obtained from
the body of our considered clause instance by applying the MGU:

G = {plus(s(s(s(0))),0, Z)) }.

At this point, we remove from g all bindings for variables that occur neither in
the initial query nor in the current goal. The remaining new MGU is u = {Z =

s(Z 1)}. The first and only atom in G matches the head of
plus(X;,0, X;) < nat(X,)

with MGU g = {X, = s(s(s(0)). Z; = s(s(s(0)))}. The new goal is G =
{nat(s(s(s(0))) }, the new MGU is obtained as

# = poon={Z=s(s(s(s00)))), Xz = s(s(s(0)), Z; = s(s(s(0))) },

from which we only keep the binding for Z:

u={Z=s(s(s:s M}

Continuing this way will successively remove successor function symbols from
our goal by means of the second clause, and finally remove the remaining nat(0)
from G by means of the first clause. All this does not affect the binding for Z
in our MGU p anymore. The final ¢ can only contain this binding of the query
variable, which establishes the answer to our query. In fact, 3 + 1 = 4.

It is important to notice that the program can also by used for subtraction by
means of queries like « plus(X, 2, 3). Moreover, a query < plus(X, Y, 3) would
deliver a sample solution for the equation X + Y = 3. We thus see that the
resolution algorithm has in fact a very logical flavor. The validity of the query
is constructively proven by finding a suitable variable binding. Unfortunately,
with every new query, basic things like “3 is a natural number” are proven over
and over again. Moreover, these proofs are performed on a processor that can
handle natural numbers and, in principle, simply add them. On the basis of this
observation, there have been numbers added to Prolog and built-in predicates on
numbers.

One example is the binary predicate “IS.” It is notated infix. Atoms could now
be of the form Z IS 3 + 1 or, more generally, Z IS X + Y, where X, Y, and
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Z are used also elsewhere within the corresponding clause. There are two highly
relevant restrictions with this mechanism. First, when arriving at such an atom,
all expressions on the right hand side of “IS” must be bound to numbers; recall
that there has been some MGU applied at that time. If this is not the case, then the
interpreter will abort with a run-time error. If it is the case, however, the addition
will be carried out. At this point, the second restriction becomes relevant. Success
or failure of the atom is decided via unification of the result of the addition with
the left hand side of “IS.” Hence, <« Z IS 3+ 1 willresultin Z =4, < 41S 3+1
will result in “yes,” « 3 + 1 IS 3 + 1 will result in “no,” since 3 + 1 cannot
be unified with 4. Using addition as subtraction by asking « 3 IS X + 2 will
result in a runtime error. All this, in particular the required binding, forces the
programmer to reflect about the resolution process. This contradicts the original
idea of separating logic and control.

This dilemma has been resolved with the step from logic programming to con-
straint logic programming (CLP) around the mid of the eighties. CLP combines
logical programming languages with constraint solvers. Constraint solving was
another established declarative programming paradigm that had come into exis-
tence already in the early sixties in connection with graphics systems such as the
famous Sketchpad [Sut63]. Constraint solvers have always played a consider-
able role within interactive graphics systems. One famous example is Thinglab
[Bor79] developed around the end of the seventies. In this sense, a constraint
solving problem is given by a finite set of constraints. A constraint is a relational
dependence between several numbers, variables, and certain functions on these
numbers and variables. The type of numbers and the possible functions and rela-
tional dependences make up the domain of the constraint solver. One example are
systems of linear equations. Another example are linear programming problems
(here, the target function can easily be coded as another constraint). In general,
“numbers” can be, of course, any objects. A solution of a constraint system is
one binding of all involved variables such that all constraints are simultaneously
satisfied. A constraint solver computes such a solution if possible. In particular, it
checks this way for feasibility, i.e., the existence of a solution.

Within CLP, constraints may appear, besides regular atoms, within the bodies
of program clauses and within queries. Constraint solvers are supposed to admit at
least equations as valid constraints. Then the concept of syntactic equality, which
was the basis for the use of unification, is replaced by the concept of equality
over the corresponding domain. Consequently, it is handled by the constraint
solver. The resolution procedure sketched above maintained besides the current
goal G a cumulative MGU p. This MGU contained at the end the variable binding
establishing the answer to the initial query. CLP replaces the MGU by a constraint
storage, 1.e., a set C of constraints. This storage is enlarged during resolution in
two ways:



1. Constraints in the query or in the body of clauses never enter the current
goal G but the constraint storage C.

2. Unification is replaced by passing the corresponding equality constraints to
the constraint solver. An atom successfully matches a head of a clause iff
these constraints are feasible. In the positive case they enter C.

The constraint storage C will always contain implicit descriptions, in contrast to
explicit binding within an MGU, of the possible values for all variables involved
in the processes described above. The step of removing variable bindings from
the MGU is replaced by a projection, which the constraint solver is supposed to
provide. This projection is essentially some restricted existential quantifier elim-
ination. If the goal G becomes empty at the end, then C contains an implicit
description of possible values for the variables from the initial query.

The initial step towards this type of systems was Colmerauer’s Prolog II intro-
ducing negated equality “#” and an extended unification that could handle infinite
cyclic terms, also called rational trees. Its foundations were already presented in
terms of constraint solving [Col86]. Around 1988, three constraint logic systems
of high influence appeared independently: cHIp [DVS*88], CLP(R) [JMSY92],
and Prolog III [Col90]. CHIP includes constraint solvers for arithmetic over finite
domains and finite Boolean algebra. It also handles rational linear constraints by
an extended Simplex algorithm. There are several commercial products based on
CHIP marketed. CLP(R) provides the first implementation of a clean declarative
treatment for arithmetic expressions within a logical programming language. The
constraint solver can handle real linear arithmetic using floating point numbers.
The method is again an extended Simplex algorithm. CLP(R) is commercially
marketed. Colmerauer’s Prolog II1 handles, besides Boolean constraints and finite
lists, linear rational arithmetic using exact numbers. The method is once more
based on the Simplex algorithm. Prolog III is also a commercial product.

Our work is going to extend the classical framework of CLP discussed so far
by admitting as constraints arbitrary first-order formulas. Over the reals we have
as relations equality “=,” negated equality “#,” weak ordering “<” and “>,” and
strict ordering “<” and “>.” Instead of restricting to sets of such constraints,
which are considered conjunctive, the constraints can be combined by means of
the usual Boolean operators “-,” “A,)” “V,)” “— 7 “e—7 ¢ . In addition, exis-
tential quantification “3Jx” and universal quantification “Vx” can be applied with
the quantified variable x ranging over domain elements.

Our description will focus very much on the reals because this is a most inter-
esting application area. Also it will be very familiar to the reader, and we consider
it well-suited for making our point. Besides the reals R, our system can compute
over the complex numbers C and over p-adic numbers Q, for fixed primes p. We
will also describe these other domains and give some examples.
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Hong [Hon93] has described a CLP system RISC-CLP(REAL). It allows for
real constraints of arbitrary degree. They are solved by either real quantifier elim-
ination or by Grobner basis methods. The approach has, however, the usual re-
striction of pure lists of constraints in contrast to arbitrary first-order formulas.

There is considerable research being done on first-order constraints. This so
far mostly affects the treatment of finite domains, finite or infinite terms, approx-
imate methods, and decidability considerations for very general domains. The
connection between researchers developing first-order methods on one hand, and
researchers seeking such methods for incorporation into their CLP framework still
appears to be very weak [ColO1].

In a pure CLP approach, one would fix a domain, and then all variables of
a program would be considered variables over this domain. Then the constraint
solver completely replaces unification also for non-constraint subgoals. A more
general approach would admit several types of variables: variables over the do-
main of the solver, variables over other domains treated by other solvers, and
general variables to be traditionally treated by unification. All these extensions do
not at all interfere with the issues that we are going to discuss here. We will thus
allow ourselves to restrict to the basic case that all variables are elements of the
domain of our solver, and that this solver is the only one involved.

In Section 2, we give a summary of real quantifier elimination, existing meth-
ods, and corresponding implementations. Section 3 gives an overview of the im-
plementation in our CLP(RL) system and of the underlying REDLOG system. In
Section 4, we describe in detail how our CLP interpreter works. Moreover, we
will make clear that the use of quantifier elimination as a constraint solver con-
ceptually extends the framework of CLP in a considerable way. The main points
are:

e constraints of arbitrary degree,

e cxact real arithmetic for arbitrary degree,
e absolutely clean treatment of disjunction,
e quantified constraints.

In Section 5 we demonstrate our capabilities for the available non-real domains,
which are at present complex numbers C, and the linear theory of p-adic numbers
Q, for primes p. The sections 4 and 5 include application examples and computing
times to give an idea of the power of our system. In Section 6 we provide an
outlook on the continuation of this research project. We have arrived at the point
where both our concept and the implemented system provide a suitable basis for
introducing



e parametric constraints.

In Section 7 we finally summarize our results and evaluate our work.

2 Real Quantifier Elimination

2.1 A Formal Framework

In order to give a formal framework for real quantifier elimination, we introduce
first-order logic on top of polynomial equations and inequalities. For this, we start
with the language £ = (0,1, 4+, —,-; <, 2, <, >, #) of ordered rings, and expand
it by constants for all rational numbers yielding L£(Q).

Then in £(Q) every term can be equivalently represented by a multivariate
polynomial f(u, x) with rational coefficients, where u = (u; ... ,u,) and x =
(x1,...,x,). We call u parameters and we call x main variables.

Equations will be expressions of the form f = 0, inequalities are of the form
<0, 20, f<0,f>0,or f # 0. Equations and inequalities are called
atomic formulas.

Quantifier-free formulas are “true,” “false,” atomic formulas, and any combi-
nation between these by the logical operators “=,” “A,” “V,” “— 7 “e—" ¢ D

A formula of the form dx; ... Ix,w(u, x), where y(u, x) is a quantifier-free
formula, is called an existential formula. Similarly, universal formulas are of
the form Vx, ... Vx,w(u, x). A prenex first-order formula has several alternating
blocks of existential and universal quantifiers in front of a quantifier-free formula.
General first-order formulas are obtained from “true,” “false,” and atomic formu-
las by arbitrarily mixing and repeating the application of Boolean operators and
quantification. It is not hard to see, however, that every first-order formula is
equivalent to a prenex formula.

We denote by Th(RR) the theory of the real numbers over the language L(Q).
This is the set of all £(Q)-sentences that hold over the reals. The real quanti-
fier elimination problem can be phrased as follows: Given a formula ¢, find a
quantifier-free formula ¢’ such that both ¢ and ¢’ are equivalent in the domain of
the real numbers, formally

Th(R) F ¢' < .

A procedure computing such a ¢’ from ¢ is called a real quantifier elimination
procedure.

Quantifier elimination for an existential formula @(x) = Ix;... Ix,w(u, x)
has a straightforward geometric interpretation: Let

M = {(u, x) € R™" | w(u, x) }
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and let M’ = {u € R™ | @(u) }. Then M’ is the projection of M along the co-
ordinate axes of the existentially quantified variables x onto the parameter space.
Quantifier elimination yields a quantifier-free description of this projection.

2.2 TImplemented Methods

For a thorough survey of the three implemented methods for real quantifier elimi-
nation and their application range, we point the reader at [DSW98]. Here, we are
going to summarize the characteristics of the available systems as far as this is
interesting for our purpose.

The first method to mention is cylindrical algebraic decomposition (CAD)
[Col75]. This is the oldest and most elaborate implemented real quantifier elim-
ination method. It was developed by Collins and his students starting in 1974.
During the last 10 years particularly Hong made very significant theoretical con-
tributions that improved the performance of the method dramatically resulting in
partial CAD [CH91]. Besides Hong, Brown has recently considerably contributed
to the progress in CAD-based quantifier elimination. The time complexity of par-
tial CAD is double exponential in the number of variables, where there is no differ-
ence to be made between main variables and parameters. Its application range is
quite universal. The elimination problems should however not contain too many
variables.

Partial CAD is implemented in the program QEPCAD, which is originally by
Hong. Meanwhile there are versions of QEPCAD available from both Brown and
Hong, which are to some extent being merged together from time to time. There
is a new implementation of partial CAD under development within the REDLOG
system [DS97a], which provides the platform for the project discussed here. We
will discuss REDLOG in more detail in the following Section 3.

The second implemented method is quantifier elimination by virtual substi-
tution. This method dates back to a theoretical paper by Weispfenning [Wei88].
During the last ten years considerable theoretical progress has been made to im-
prove the method. The applicability of the method in the implemented form is
restricted to formulas in which the quantified variables occur at most quadrati-
cally. Moreover, as quantifiers are successively eliminated, the elimination of one
quantifier can increase the degree of other quantified variables. There are vari-
ous heuristic methods built in for decreasing the degrees during elimination. One
obvious example for such methods is polynomial factorization. The time com-
plexity of the virtual substitution method is double exponential in the number of
changes between “3” and “V” in a prenex input formula. With like quantifiers, it
is only single exponential in the number of main variables. The number of param-
eters does not contribute to complexity in any relevant manner. The method has
turned out highly useful for problems containing comparatively many parameters.
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There are surprisingly many practical applications where the degree restrictions
are satisfied.

After promising experimental implementations by the author starting in 1992,
the method has been efficiently reimplemented within the REDLOG system by the
author together with A. Dolzmann.

The third method is based on parametric multivariate real root counting. The
basis for this method is a theorem on real root counting for multivariate polyno-
mials, which is an extension of a univariate theorem by Hermite (1853). It was
found independently by Becker and Wormann [BW94] and Pedersen, Roy, and
Szpirglas [PRS93]. This approach can be extended to obtain the exact number of
roots under several side conditions on the signs of some other polynomials. For
real quantifier elimination, this root counting has to be further extended to multi-
variate polynomials with parametric coefficients in such a way that it will remain
correct for every real specialization of the parameters including specializations
to zero. This task has been carried out by Weispfenning using comprehensive
Grobner bases [Wei198]. There is no result on the theoretical complexity of the
overall procedure. The method is quite special-purpose. There are, however, ex-
amples [DSWO8] where it performs superior to the two other methods. As a rule,
it performs well on input formulas containing many equations.

The method has been implemented by Dolzmann within the package QERRC
of the computer algebra system MAS. There is a reimplementation within REDLOG
in progress currently.

3 The CLP(RL) System

The CLP(RL) system is implemented on top the computer logic system REDLOG.
RL is an abbreviation for REDLOG; inside REDLOG all user-available functions
are prefixed with “r1”; thus the name. REDLOG itself is implemented within
the computer algebra system REDUCE. As REDUCE forms the user interface to
CLP(RL) all facilities of both REDLOG and REDUCE, as well as the Lisp system
underlying REDUCE are fully available to the CLP(RL) user. Moreover REDLOG
provides interfaces to QEPCAD and QERRC. Figure 1 depicts the situation.

3.1 Redlog

REDLOG stands for “REDUCE logic” system. It provides an extension of the com-
puter algebra system REDUCE to a computer logic system implementing symbolic
algorithms on first-order formulas wrt. temporarily fixed first-order languages and
theories. Underlying theories currently available are algebraically closed fields
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CLP(RL)

QEPCAD

Reduce Algebraic Mode Redlog

QERRC
Reduce Symbolic Mode

Standard Lisp

Figure 1: The layered design of CLP(RL)

(“complex numbers”), real closed fields (“real numbers with order”), and dis-
cretely valued fields (“p-adic numbers”).

REDLOG origins from the implementation of real quantifier elimination by
virtual substitution. Successfully applying such methods to both academic and
real-world problems, the authors have developed a large collection of formula-
manipulating tools, many of which are meanwhile interesting in their own right.

Based on experimental implementations beginning in 1992, the author started
the realization of REDLOG in early 1994. In April 1995, the system has been
redesigned by the author together with A. Dolzmann [DS97a]. REDLOG 1.0 had
been published on the Web in October 1996. This first REDLOG distribution was a
great success. Meanwhile REDLOG has become a part of the REDUCE system. The
current version REDLOG 2.0 is part of the the current REDUCE 3.7 of April 1999.
REDLOG is widely accepted inside the scientific community. For a collection of
applications of REDLOG in various fields see [DSW98] and the references there.

3.2 CLP(RL)

CLP(RL) provides support for inputting CLP programs in the algebraic mode of
REDUCE. The notation for clauses follows the usual conventions: “<«” is input as
“:=". Programs are lists of clauses. There is then a function c1lp expecting two
arguments: a program and a query. The return values of clp is a quantifier-free
formula in the query variables, which can then be further processed within the
algebraic mode of REDUCE extended by REDLOG and CLP(RL).

The function clp implements the constraint-based resolution procedure de-
scribed in the following section. For quantifier elimination it uses by default the
REDLOG procedure of the currently selected language and theory. Optionally any
version of QEPCAD or QERRC can be used.
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4 The Resolution Algorithm

A constraint 1s a first-order formula over the language £(Q) as in Section 2.1. An
atom 1is of the form P(ty, ..., t,) for n € N where P is an n-ary predicate symbol
that is not in £(Q), and the ¢4, ... , ¢, are terms.

A clause is of the form fy < f;, ..., B, w, where py, ..., p, are atoms, and y
is a constraint. The atom f is the head of the clause. The sequence f, . . ., /s
is the body of the clause. Notice that it is not possible to have a constraint as the
head of a clause. A program is a finite set of clauses. A query is of the form
—ay,..., a,, @, where ay, ... , a, are atoms, and ¢ is a constraint.

Let IT be a program, and let Q be a query. Then we can fix an expansion
language L£(Q)" O L(Q) containing all predicate symbols and function symbols
occurring in IT and Q. Over this language L£(Q)" we identify clauses

ﬁO <« ﬂl ----- ﬂn’l//

with first-oder formulas fy «— f; A --- A f, A w. Accordingly, we identify the
program IT with the conjunction A IT of the contained clauses. Finally, the empty
head in the query Q is interpreted as “false,” and thus Q = <« a4, ..., a,, @ 1s iden-
tified with =(a; A - - - A, A @). Recall that “true” is a constraint, and that forming
conjunctions is a valid operation for constructing constraints. From this point of
view, it is no restriction that clauses and queries contain exactly one constraint.

Let I1 be a program. The completion II of II is obtained by adding to IT for
each n-ary predicate symbol P in I a first-order formula y as follows: Let P be
defined by clauses

P(tll ..... tln) <« Bl P(tml ..... tmn) <« Bm
Let xi, ..., x, be pairwise distinct variables not occurring in these clauses. De-
note fori € {1,..., m} by yi1, ..., Yi, the variables occurring in the i-th clause

above. Then y is given by

i=1 j=1

Note that in the special case that P does not occur in the head of a clause, this
amounts to P(xy, ..., x,) «<— false, which is equivalent to = P(xy, ..., X,).

A variable v is free in a first-order formula ¢ if v occurs in ¢ outside the
scope of all quantifiers 3v and Vv. We denote by var(@) the set of all variables
that are free in . Let V = {v,..., v} be a finite set of variables. Then AV ¢
1s a concise notation for 3v; ... Iv,p. Even more concisely, 3¢ stands for the
existential closure Ivar(@) @, and Vo stands for the universal closure Vvar(g) .
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In view of our identification of syntactic entities with first-order formulas above,
all these definitions can obviously be applied also to the former.

Let I1 be a program, and let Q = « «ay, ..., @y, @ be a query. Then a correct
answer for Il and Q is a quantifier-free constraint ¢’ such that var(¢’) = var(Q)
and

Mod(l:I UTh(]R)) EV(Qp — ai A Nag A ).

Note that the model class is over the expanded language £(Q)" while Th(R) al-
ways denotes the L£(Q)-theory of the reals.

Besides quantifier elimination, our following resolution algorithm applies a
simplifier to the final result formula. Simplifiers map first-order formulas to sim-
pler equivalent ones. In the case of the reals, we use a simplification method

based on Grobner bases. For details and a discussion of the notion of simplicity
see [DS97b].

Algorithm 1 Input: A program Il and a query Q = « ay, .. ., a, @. Output: A
correct answer for Il and Q. Termination: The algorithm does not necessarily ter-
minate. Used subroutines: simplify is a simplifier; qe is a quantifier elimination
procedure.
begin
(G, C) = clpqe({al ..... a}, (p)
C' := simplify(C")

return C’

end

procedure clpqe(G, C)

begin
V :=var(C) \ (Var(G) U Var(Q))
C:=qe(dVC)

if G = @ or C = false then
return (G, C)
fi
while G # & do
remove P(¢y, ..., t,) € G from G
standardize apart all variables in I1
if exists P(sq, ..., s,) < B,y eIl
s.t. setting p := A\_, s; = t; we have qe@(,u A C)) = true

then
G =GUB
C=CAuhy
return clpge(G, C)
else
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return (G, false)
fi
od
return clpge(a, C)
end

Given the program II = {p(X) « X 20,pX) « X < O} and the query
« p(X), it is clear that “true” is a correct answer. There are, however, exactly two
possible answers that can be computed by the algorithm: X > 0 and X < 0. The
algorithm is complete only in the following sense:

Let 1 be a program, let Q be a query, and let ¢' be a correct answer
for 11 and Q. Then there are finitely many runs of Algorithm 1 on
IT and Q with corresponding results ¢, ..., @, such that Th(R) k=

Y(q” — Vi qoi)

A proof for this restricted completeness as well as for the correctness of Algo-
rithm 1 can be derived from the corresponding proofs for other constraint solvers
in any textbook on CLP. It is not hard to see that our quantifier eliminations exactly
provide the various services required from constraint solvers there.

So far, we resolve the non-determinism in Algorithm 1 exclusively by select-
ing the first possible program clause in the order of notation and maintaining a
stack of goals. Though common in logic programming, this is a considerable re-
striction, because it can lead to infinite runs of Algorithm 1 where there would
exist finite runs yielding correct answers.

We are now going to discuss the most striking features of our extremely gen-
eral and powerful approach.

4.1 Constraints of Arbitrary Degree

By default CLP(R) uses the extremely efficient quantifier elimination by virtual
substitution in REDLOG. In spite of the degree restrictions mentioned in Sec-
tion 2.1, we are not at all restricted to linear constraints even in this case. As an
example, consider the computation of Pythagorean triples, i.e., natural numbers
x, ¥, z € N with x*> + y* = z2. We use the following program:

nat(0) <«
nat(X +1) <« nat(X), X =0
pyth(X.Y, Z) « nat(X), nat(Y), nat(Z), 2< X <YK ZAX*+Y*= 27"

The query < pyth(3,4, Z) yields Z —5 = 0 in 0.05 s. For « pyth(X,9, Z) we
obtain X —12=0A Z — 15 =01n 0.7 s, and < pyth(X, Y, 9) results in “false”
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after 0.3 s. A completely parametric query < pyth(X, Y, Z) would result in an
infinite run.

Our next example is taken from Hong [Hon93]. The program describes the
Wilkinson polynomial equation:

20
wilkinson(X, E) « [](X+i+EXx"” =0

i=1

Mind that this product actually occurs in the program in the following expanded
polynomial form:

X2+ 210+ E)XY +20615X" + 1256850X "7 + 53327946 X '°
+ 1672280820X "> + 40171771630X " + 756111184500X '
+ 11310276995381X " + 135585182899530X ! + 1307535010540395X 1°
+ 10142299865511450X° + 63030812099294896 X 8
+311333643161390640X 7 + 1206647803780373360.X°
+ 3599979517947607200X° + 8037811822645051776 X*

+ 12870931245150988800.X" + 13803759753640704000 X >
+ 8752948036761600000.X + 2432902008176640000.

On the query « wilkinson(X,0), —20 < X < —10 we obtain after 0.3 s the
answer

20

Vx+i=o

i=1

For the query « wilkinson(X,27%%), —20 < X < —10 with a slight perturbation,
we obtain after 0.9 s the following answer (in expanded form):

20
8388608 - (H(X+i)+2‘23X19> —0AX+2020AX+10<0.

i=1

The integer factor is the least common denominator of the coefficients of the prod-
uct polynomial. This answer is contradictory. This could be tested, e.g., by apply-
ing quantifier elimination to its existential closure. Hong’s RISC-CLP(REAL) actu-
ally delivers the result “false.” It generally applies some sophisticated processing
to its results including DNF computation at the risk of exponentially increasing the
size of the output. Since our CLP(RL) lives inside a computer algebra system, we
prefer to leave the responsibility of how to proceed to the user. In this situation it
would be straightforward to apply the partly numerical function realroots of
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REDUCE to the left hand side polynomial of the equations. This yields after 0.5 s
the result

X € {-20.8469, -8.91725, -8.00727, —6.9997, —6.00001, -5, -4, =3, =2, —1}.

If one wishes to remain exact, one could, e.g., apply QEPCAD to the existential
closure of the answer, which immediately yields “false.” In general, numerical
methods will be more efficient, of course.

4.2 Exact Arithmetic

The minimal perturbation of Wilson’s equation in the previous section has dra-
matically demonstrated how sensitive the root behavior of polynomials and thus
algebraic equations and inequalities are even to smallest rounding errors. Within
CLP(RL) all arithmetic is exact. The price is that we possibly obtain only implicit
solutions as we have also seen in the previous section. Then one has the choice to
either remain exact, or to apply approximate methods.

As long as we are within the CLP framework, however, we remain absolutely
exact, and the answers—though not necessarily explicit—are always of the best
possible quality from the point of view of exactness.

4.3 Disjunction

Recall that in traditional CLP, constraints are finite sets of relational dependences,
which are regarded as conjunctions. There has been a considerable discussion
about disjunctions of constraints within clauses and corresponding modifications
of the resolution algorithm for treating certain restricted variants of disjunction in
an appropriate way. All suggested solutions eventually led to further restrictions
of completeness such that one did not really obtain a procedural counterpart to the
declarative meaning of disjunction.

Within our framework, disjunction is most naturally and absolutely completely
handled by the constraint solver itself. Our resolution algorithm does not at all
know about the possible existence of disjunctive constraints. One standard exam-
ple when discussing disjunctive constraints is the minimum function. Our pro-
gram for this would look as follows:

mnX,Y,Z) « (X<YAZ=X)VYSXAZ=Y)

The answers that can be derived from this program are as complete and concise
as the definition itself. For the query « min(3, 4, Z) we obtain Z — 3 = 0. For
<« min(X, Y, 3) the answer is

(X -3=0AY-=320)V(X—-3>0AY -3=0).
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Asking for < min(X, Y, Z), we obviously get the definition itself. These compu-
tations take no measurable time.

4.4 Quantified Constraints

Since our constraints are first-order formulas, they may also contain quantifica-
tion. It follows, of course, from the existence of a quantifier elimination procedure
for the reals that this does not increase the expressiveness. On the other hand, it
supports the concise formulation of programs.

The following program, for instance, describes that in real 2-space the point
(uy, uy) 1s the image of the point (x, x,) under central projection from the punctual
light source (cy, ¢2):

2
pr(Cy, Gy, X1, X, Uy, Uy) EIT<T>0/\/\U,-:T(X,-—C,-)>.

i=1

Notice that this description covers all degenerate cases that arise when some of
the points or coordinates coincide. The following is a possible quantifier-free
description with 10 atomic formulas:

(Cl =0/\C2=0/\U1 =X1/\U2=X2)V
(C2 ?é O/\C2U2 > C2X2/\C1U2 —C1X2 —C2U1 +C2X1 = O)V
(Cl #O/\ClUl > C1X1 /\C1U2—C1X2—C2U1 +C2X1 =0)

The quantified formulation is taken from [SW98], the quantifier-free result is ob-
tained by quantifier-elimination with REDLOG. In higher dimension the effect
becomes more dramatic. The quantifier-free description in 3-space has 18 atomic
formulas, the one in 4-space 28.

S Beyond Real Numbers

The design of CLP(RL) exclusively depends on the existence of a quantifier elim-
ination procedure over the considered domain. Although the theory of real closed
fields is the by far most prominent example for effective quantifier elimination,
such procedures exist also for other theories. REDLOG itself implements quan-
tifier elimination also for algebraically closed fields, i.e., complex numbers, and
for p-adically closed fields, i.e., p-adic numbers for primes p [Stu0O]. The p-adic
quantifier elimination is restricted to linear formulas. Both elimination procedures
can be used within CLP(RL) without any restrictions.
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The language used for the p-adic theory is kept one-sorted by coding ordering
between values as abstract divisibilities: Let x, y € Q,, then we define

x|y e—=v) <v(y)., x|yie—=v(x)<v(y).

The following program is analogous to the definition of nat in Section 4.1. It
defines the powers of the prime p. For each query, p must be chosen to be a fixed
prime.

ppow(l) <«
ppow(p- X) <« ppow(X), 1|X

The constraint 1 | X states that X is a p-adic integer. It is obvious that successive
division by p eventually leads to a number with negative value. Thus the constraint
can play the role of the emergency brake such as X > 0 does in the definition of
nat. For p = 101 the query

< ppow(12201900399479668244827490915525641902001)

yields “true” after 0.1 s. If we increase this number, which is 101%°, by 1, then the
corresponding query immediately yields “false.” In this case, the constraint solver
12041 -

recognizes that 101T is not a p-adic integer.

6 Parametric Constraints

The next conceptual extension to what we have described so far is support for
parametric constraints. A variable that is free in a constraint is considered a
parameter if it does not occur elsewhere in the clause or query in which the con-
straint is located. Parameters are not standardized apart. The existential closure
in the ge call replacing unification also applies to parameters. They are, however,
never projected away.

After a successful run, the answer contains variables from the query and pa-
rameters. When fixing the parameters in the answer to domain elements, the an-
swer becomes equivalent to the one that would have been obtained when fixing
these parameters in the program and in the query before the run. REDLOG pro-
vides rich facilities for the further processing and evaluation of such parametric
answers.

7 Conclusions

We have introduced an extension of CLP, where the constraints are arbitrary first-
order formulas over some domain. Constraint solving consists in various appli-
cations of quantifier elimination. Our approach is implemented in our system
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CLP(RL) based on REDLOG. Implemented domains are at the moment R, C, and
Q,. The advantages of our approach include constraints of arbitrary degree, exact
arithmetic, absolutely clean treatment of disjunction and other Boolean operators,
and quantified constraints. Our approach delivers a basis for considering paramet-
ric constraint solving as a next step.
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