
TRIGD: Trigonometrical Functions

with Degree Arguments

Alan Barnes
School of Engineering & Applied Science

Aston University, Aston Triangle,
Birmingham B4 7ET

GREAT BRITAIN (now retired)
Email: Alan.Barnes45678@gmail.com

1 Introduction

This module provides facilities for the numerical evaluation and algebraic
simplification of expressions involving trigonometrical functions with argu-
ments given in degrees rather than in radians. The degree-valued inverse
functions are also provided.

Any user at all familiar with the normal trig functions in REDUCE should
have no trouble in using the facilities of this module. The names of the
degree-based functions are those of the normal trig functions with the letter
D appended, for example SIND, COSD and TAND denote the sine, cosine and
tangent repectively and their corresponding inverse functions are ASIND,
ACOSD and ATAND. The secant, cosecant and cotangent functions and their
inverses are also supported and, indeed, are treated more as first class objects
than their corresponding radian-based functions which are often converted
to expressions involving sine and cosine by some of the standard REDUCE
simplifications rules.

Below I give a brief description of the facilities available together with a
few examples of their use. More examples and the output that they should
produce may be found in the test files trigd-num.tst and trigd-simp.tst

and their corresponding log files with extension .rlg which may be found in
the directory packages/misc of the REDUCE distribution along with the

1

1 INTRODUCTION 2

source code of the module.

These degree-based functions are probably best regarded as functions de-
fined for real values only, but complex arguments are supported for com-
pleteness. The numerical evaluation routines are fairly comprehensive for
both real and complex arguments. However, few simplifications occur for
trigd functions with complex arguments.

The range of the principal values returned by the inverse functions is consis-
tent with those of the corresponding radian-valued functions. More precisely,
for ASIND, ATAND and ACSCD the (closure of the) range is [-90, 90] whilst for
ACOSD, ACOTD and ASECD the (closure of the) range is [0, 180]. In addition
the operator ATAN2D is the degree valued version of the two argument inverse
tangent function which returns an angle in the interval (-180, 180] in the
correct quadrant depending on the signs of its two arguments. For X > 0,
ATAN2D(Y, X) returns the same numerical value as ATAND(Y/X). If X = 0
then ±90 is returned depending on the sign of Y .

It might be thought that the facilities provided in this module couldbe easily
provided by defining suitable rule lists to convert between the radian and
degree-based versions of the trig functions. For example:

1: operator sind, asind$

2: d2r_list := {sind(~x) =>

sin(x*pi/180), asind(~x) => 180*asin(x)/pi}$

3: r2d_list := {sin(~x) =>

sind(180x/pi), asin(~x) => pi*sind(x)/180}$

4: sind(x+360) where d2r_list$

5: ws where r2d_list;

sind(x)

6: sind(360) where d2r_list;

0

However, this approach seldom works — try it! The result produced by
step 4 defeats the current rule1 used to simplify expressions of the form
sin(x+ 2π) although it does manage step 6. The rule list approach is more
reliable if differentiation, integration or numerical evaluation of expressions
involving SIND etc. is required. However it is not particularly convenient
even if the rules and operator declarations are stored in a file so that they
may be loaded at will.

1These rules may be improved in the next version of REDUCE.

2 SIMPLIFICATION 3

This module aims to overcome these deficiences by providing the degree-
based trig functions as first class objects of the system just like their radian-
based cousins. The aim is to provide facilities for numerical evaluation,
symbolic simplification and differentiation totally analgous to those for the
the basic trig functions and their inverses. It is hoped that the module will
be of value to students and teachers at secondary school level as well as being
sufficiently powerful and flexible to be of genuine utility in fields where angles
measured in degrees (and arc minutes and seconds) are in common usage.
For more advanced situations (involving integration, complex arguments
and values etc.), users are urged to use the standard trig functions already
provided by the system.

2 Simplification

As in other parts of REDUCE, basic simplification of expressions involving
the trigd functions takes place automatically (bracketted terms are multi-
plied out, like terms are gathered together, zero terms removed from sums
and so on). The system knows and automatically applies the basic properties
of the functions to simplify the input. For example SIND(0) is replaced by 0
and SIND(-X) by SIND(X). If the switch ROUNDED is OFF all arithmetic is ex-
act and transcendental functions such as SIND are not evaluated numerically
even if their arguments are purely numerical.

The built-in simplification rules are totally analogous to those of the stan-
dard trig functions namely:

• Replacement of a function application by its value if a simple analytical
value is known. For example cosd(60) => 1/2 and acscd(1) => 90.
Currently the only argument values where simplification takes place
correspond to angles that are integral multiples of 15o.

• Use of the odd and even properties of the trig. functions so that for
example sind(-x) => -sind(x), cosd(-x) => cosd(x) and
acosd(-x) => 180 - acosd(x).

• Argument shifts by integral multiples of 180o so that any residual
numerical argument lies in the range −90o . . . 90o.
Thus sind(x+540) => -sind(x), cosd(x+350) => cosd(x-10).

• Removal of argument shifts of ±90o so that for example
sind(x-90) => -cosd(x) and cotd(x+90) => -tand(x).

3 NUMERICAL EVALUATION 4

• Replacement of tand(x) by sind(x)/cosd(x), secd(x) by 1/cosd(x)

and the like, but only when the final result is simpler than the original.

• Basic properties relating a function and it inverse so that for example
sind(asind(x)) => x.

• A few basic rules for ATAN2D when the signs of its arguments can be
determined. For example atan2d(Y, 0) is replaced by ±90 depending
on the sign of Y .

Extra rules can be added by the user for example addition formulae, dou-
ble angle rules and tangent half-angle formulae as and when required as
described in section 11 of the main REDUCE manual.

Rules are provided for the symbolic differentiation of all the trig functions
and their inverses. These rules are sufficient fot the power series of the
trig functions and their inverses to be found using either the TPS or TAYLOR
packages in the standard way.

3 Numerical Evaluation

When the switch ROUNDED is ON and the arguments of the operators evaluate
to numbers, then the floating point value of the expression is calculated to
the currently specified PRECISION in the normal way. The bigfloat capabili-
ties are the same as for the standard trig functions.

If these functions are supplied with complex numerical arguments, numerical
evaluation will NOT be performed when the switch ROUNDED is ON, but the
switch COMPLEX is OFF — the input expression will be returned basically un-
altered. Similarly inputs such as ASIND(2) or ASECD(0.5) are not evaluated
numerically. The values of these expressions are, of course, complex.

If the switch COMPLEX is also ON , numerical evaluation is performed. For
example:

1: load_package trigd$

2: on rounded;

3: asecd(2);

60.0

4: asecd(0.5);

asecd(0.5)

5: on complex;

3 NUMERICAL EVALUATION 5

*** Domain mode rounded changed to complex-rounded

6: asecd(0.5);

75.4561292902*i

The function ATAN2D (like ATAN2) is only defined if BOTH its arguments are
real. If they are also numerical, it will be evaluated whenever ROUNDED is
ON. Attempting to evaluate it with complex numerical arguments will cause
either the unaltered expression to be returned or an error to be raised when
the switch COMPLEX is OFF or ON respectively.

3.1 Conversion between Degrees and Radians

There are a number of utility routines for converting an angle in radians to
degrees and vice-versa. RAD2DEG converts the radian value to an angle in
degrees expressed as a single floating point value (according to the currently
specified PRECISION). The value to be converted may be an integer, a ratio-
nal or a floating value or indeed any expression that simplies to a rounded
value. In particular numerical constants such as π may be used in the input
expression.

RAD2DMS converts the radian value to an angle expressed in degrees, minutes
and seconds returned as a three element list. The degree and minute values
are integers the latter in the range 0 . . . 59 inclusive and the seconds value
is a floating point value in the interval [0, 60.0). There are also operators
DEG2RAD and DEG2DMS whose purpose should be obvious.

The purpose of the operators DMS2RAD and DMS2DEG should also be obvi-
ous. The degree, minute and second value to be converted is passed to the
conversion function as a three element list. There is considerable flexibilty
allowed in format of the list supplied as parameter – all three values may be
integers, rational numbers or rounded values or any combination of these;
the minute and second values need not lie between zero and sixty. The list
supplied is simplified with the appropriate carrys and borrows performed (in
effect at least) between the three values. For example

{60.5, 9.2, 11.234} => {60, 39, 23.234}

{45, 0, -1} => {44, 59, 59}

These operators are not actually part of the TRIGD module but of the RE-
DUCE core system. However, they are not currently documented in the
main manual. Currently they are purely numeric operators; when ROUNDED

3 NUMERICAL EVALUATION 6

is OFF they basically return the input expression (perhaps with their param-
eter simplified somewhat).

Note the sine of an angle specified in degrees, minutes and seconds cannot
be calculated by calling SIND directly with a dms list (i.e. as a list of length
3). Instead one must first convert the dms values to degrees using a call
to DMS2DEG and then call SIND on the result. Applied directly to a list (of
any length) any TRIGD function wil be applied to each member of the list
separately just like most other REDUCE operators. Here is an example
illustrating tese points:

1: load_package trigd$

2: on rounded;

3: sind dms2deg {60, 45, 30};

0.872567064923

4: sind {60,45, 30};

{0.866025403784,0.707106781187,0.5}

5: off rounded;

6: sind{60, 45, 30};

sqrt(3) sqrt(2) 1

{---------,---------,---}

2 2 2

Of course the results will be formatted much more attractively on a terminal
supporting nice graphics.

3.2 The operators ARGD and ARG

Although not directly related to the trig functions, the module TRIGD also
provides an operator ARGD; when the switches ROUNDED and COMPLEX are both
ON, it will return the argument in degrees of the complex number supplied
as its parameter — supplying zero as the parameter causes an error to be
raised. If only ROUNDED is ON, ARGD will return the argument of the real
numerical value supplied as its parameter — this will be 0 or 180 when the
value is positive or negative respectively.

The operator ARG is similar to ARGD, but returns the argument expressed
in radians. There is also an operator NORM which returns the modulus (or
absolute value or norm) of a complex number. ARG and NORM are actually
part of the REDUCE core system, but are not currently documented in the

4 BUGS, RESTRICTIONS AND PLANNED EXTENSIONS 7

main manual. Currently they are purely numeric operators; when ROUNDED is
OFF they basically return the input expression (perhaps with their parameter
simplified).

Example

1: load_package trigd$

2: on rounded;

3: {argd(-5), argd(1+i)};

{180.0, argd(i + 1)}

4: on complex;

*** Domain mode rounded changed to complex-rounded

5: {argd(1+i), argd(-1-i)};

{45.0, -135.0}

6: {arg(3+4i), norm(3+4i)};

{0.927295218002, 5.0}

4 Bugs, Restrictions and Planned Extensions

The behaviour of the numerical evaluation routines for inverse trig functions
with complex arguments at branch points could be improved; these values
are undefined and attempting to evaluate such a function at one of its branch
points ought to raise an error, however sometimes the input expression will
be returned unaltered. It is hoped to improve this behaviour in due course.

Currently there are no facilities analogous to those provided in the module
TRIGSIMP for the standard trig. functions. There users have a wide range
of standard simplification formulae available for use and can control which
are to be used depending on the requirements of their particular application:
whether to eliminate sin in favour of cos or vice-versa or to get rid of both in
favour of tan of half-angles; or whether to use the trigonometrical addition
formulae in order to transform trig functions whose arguments are sums
into a form where the arguments are single terms or whether to perform
the inverse transformations. It is hoped to make the TRIGSIMP faciliites
available for use with the TRIGD functions in the near future.

Integration is not directly supported although the approach using rule-lists
to convert the TRIGD functions to standard trig ones should work well. In-
troducing direct support for integration will not therefore be a priority.

4 BUGS, RESTRICTIONS AND PLANNED EXTENSIONS 8

For the standard sine function there is a rule for imaginary arguments
namely: sin(I*X) => I*sinh(X). The corresponding rule for the degree
version is sind(I*X) => I*sinh(X*PI/180). However, currently such rules
are NOT implemented by the system. They may be implemented in future,
but it is not a high priority as it is felt that the radian-based trig functions
are best suited for such symbolic calculations.

There are NO D versions of the hyperbolic functions — that would be a
step too far! And should the new functions be called sinhd and so on? Or
perhaps sindh2 etc?

2One is perhaps reminded here of the (in)famous bilingual pun: peccavi attributed
to Charles James Napier — apparently no relation to his logarithmic namesake – see
Wikipedia for details!

