Faculty of Applied Mathematics

University of Twente

University for Technical and Social Sciences

P O. Box 217

7500 AE Enschede
The Netherlands
Phone +31-53-4893400
Fax +31-53-4892255
Email c.h g.hassing-
assink@math.utwente.nl

MEMORANDUM No. 1331

A manual for the package TOOLS 2.1

G.F. PosT

AucusT 1996

ISSN 0169-2690

A manual for the package ToOLS 2.1.

Gerhard Post
August 21, 1996

Abstract

The package TOOLS for REDUCE contains procedures for handling al-
gebraic operators and some procedures which are handy when doing
algebra. In particular we provide a mechanism to handle (multi)linear
operators.

AMS subject classification : 68C20.
Keywords: Computer algebra.

1 Introduction

If one is dealing with large systems of algebraic expressions, there are a
number of operations that one would like to be able to perform. Let us give
some examples.

Suppose one has the expression

1: equ := 15%a(5)*beta + 10%a(4) + 3*a(2) + a(l) + 7;
Maybe one would like to know what kernels of the type a(i) are present:

2: get_kernels(equ,a);

{a(5),a(4) ,a(2),a(1)}

Or just one of them (if one wants to solve respect to some a(i)):
3: get_kernel(equ,a);
a(s)
4: linear_solve(equ,get_kernel(equ,a));
- 10*a(4) - 3%a(2) - a(1) - 7

15%beta

Or one would like to know all coefficients of the a(i):

4: operator_coeff(equ,a);

{7,{a(1),1},{a(2),3},{a(4),10},{a(6) , 15*beta}}

This type of operations are not very difficult to produce in REDUCE, however
they are not present. The package TOOLS tries to fill in this gap. Apart from
the operations above, we provide some procedures to handle expressions
which are non-linear. In particular we provide a procedure multi_coeff
which generalizes coeff and operator_coeff:

5: equ;
15*%a(5)*beta + 10%*a(4) + 3*a(2) + a(l1) + 7
6: multi_coeff(equ,{a,betal});

{7,{a(1),1},{a(2),3},{a(4),10},{a(5) xbeta, 15}}

Finally we mention here the multilinear declaration:

6: multilinear d(a); % makes d linear w.r.t the operator a.
7: d(equ);

15%xd(a(5))*beta + 10*¥d(a(4)) + 3*d(a(2)) + d(a(i)) + 7*d(1)

We refer to the next sections for a detailed description.

The package TOOLS was constructed by Marcel Roelofs, who made the
versions 1.1 up to 1.17. Quite extensive additions made by the present
author are included in version 2.1.

All procedures described here, are expected to be called from algebraic
mode; the switch exp is expected to be on.

A final remark. The names used for the procedures are sometimes long,.
One can shorten them by using the define mechanism.

1:
define lsa=linear_solve_and_assign;

2:
1sa(a - 3,a);

3

2 Manipulating algebraic operators

A way to think of algebraic operators in REDUCE is as indexed variables; one
has a collections of variables which more or less play the same role. Then
it is natural to reflect this in the names of the variables. A way to do this
is using an algebraic operator. If one has a large number of variables and
a large number of expressions, it would be pleasant to have certain tools to
handle all the information. Here we provide some procedures. We split the
procedures in two types: the first part trcats proccdures which investigate
expressions with respect to one or more operators, the second part treats
procedures which give information on the use of one operator. The next
section treats a way for aliasing variables as operator elements. Finally we
describe a more efficient way to handle “large” operators, i.e. operators with
many elements set or used.

2.1 Examining expressions

2.1.1 get kernels

Call: get kernels(exprss,oplist)

Goal: The polynomial expression exprss is scanned for the presence of oper-
ator kernels of the operators in op-1list. Here op_list is either an algebraic
list of atoms or an atom. All occurrences of the operator(s) are returned in
an algebraic list.

Remarks: The expression exprss is expected to be a polynomial in the op-
erator kernels of op_list. Therefore only the numerator is checked; the
denominator is ignored. Moreover only top level presence is detected, for
deeper levels you should use get_deep kernels.

Examples:

1: get_kernels(a 2xb 2-3,b);

{2}

2: get_kernels(a 2+b 2-3*a(1,2*a 3),{a,b});
{a(2),b(2),a(1,2%a(3))}

3: get_kernels(a 2*%sqrt b 2-3*a(1,2%b 3),b);

{3

2.1.2 get_deep kernels

Call: get_deep kernels(exprss,oplist)

Goal: The expression exprss is scanned for the presence of operator kernels
of the operators in op_list. Here op_list is either an algebraic list of atoms
or an atom. All different occurrences of operator kernels are returned in an
algebraic list.

Remark: The denominator of exprss is also considered.

Examples:

1: get_deep_kernels(a 2+*sqrt b 2-3+a(1,2+b 3),b);
{b(3),b(2)}
2: get_deep_kernels(a 2*b 2-3xa(1,2xb 3)/b(x),{a,b});
{a(1,2%b(3)),b(3),b(2) ,b(x) ,a(2)}
3: get_deep_kernels(a(a(e”(a 2)/a 3))/a 4,a);

a(2) a(2)

{a(a(-=-----)),a(-—--—---),a(2),a(3),a(4)}

2.1.3 get kernel

Call: get_kernel(exprss,op-list)

Goal: The scalar expression exprss is scanned for the presence of operator
kernels of the operators in op_list. Here op_list is either an algebraic list
of atoms or an atom. The first encountered appearance is returned.

Remarks: The expression exprss is expected to be a polynomial in the ele-
ments of op_list. Therefore only the numerator is checked; the denominator
is ignored; moreover only top level presence is detected.

Examples:

1: get_kernel(a 2*b 2-3,b);
b(2)

2: get_kernel(a 2*b 2-3,{a,b});

a(2)

3: get_kernel(sqrt a 2/a 3,a); % empty result

2.1.4 operator_coeff

Call: operator_coeff (exprss,oplist)

Goal: The linear expression exprss is decomposed with respect to the oper-
ator kernels from op_list. The result is an algebraic list of which the first
element is the term not containing operator kernels from op_list, and the
remaining terms are pairs (algebraic lists of two elements) of which the first
element is the operator kernel, and the second element is its coefficient.

Remarks: The expression should be linear; for a non-linear variant see be-
low, multi_coeff. An error occurs when exprss is not linear. Only top
level appearance is found; deeper occurrences are ignored (without error
message).

E;camples:

1: operator_coeff(2%a(2)*b(3) + a(1,3)*c + a(l) + beta,a);
{beta,{a(1),1},{a(1,3),c},{a(2),2*b(3)}}

2: operator_coeff(b(3) + a(1,3)xc + a(l) + beta,{a,b});
{beta,{b(3),1},{a(1),1},{a(1,3),c}}

3: operator_coeff(sqrt a 2+a 3,a);

{sqrt(a(2)),{a(3),1}}

2.1.5 independent_part

Call: independent _part (exprss,op_list)

Goal: The terms of exprss, independent of op_list, are found.

Remarks: The denominator should be independent of op_list; only top
level dependencies are checked. Hence the result is the same as first
operator_coeff (exprss,op_list).

Examples:

1: independent_part(a 2"3+a 2*b 3+b 4+23,{a,b});

23
2: independent_part(i/a 2,a);

*x*x* INDEPENDENT_PART: denominator not independent

2.1.6 top_level_operators

Call: top_level operators(exprss)

Goal: The operators appearing at top level in exprss are found.

Remark: Both, numerator and denominator are checked. The results can be
used as second argument in operator_coeff.

Example:

1: top_level_operators((sqrt a 1+b 3*c 4+al)/d 4);
{b,c,expt,d} % sqrt is internally expt !!

2: equ:=13*a 3+15%b 5;

equ := 13*a(3) + 15%b(5)

3: operator_coeff(equ,top_level_operators equ);

{0,{b(5),15},{a(3),13}}

2.2 Diagnosis of an algebraic operator

Next we describe some procedures to retrieve information stored for an alge-
braic operator. These procedures are rather simple, but nevertheless quite
useful.

2.2.1 known

Call: known(opr)

Goal: Returns the number of elements of opr that are known.

Remark: The number of known elements is taken to be the length of the
kvalue-list.

Example:

1: a 1:=a 2+b 3;

a(1) := a(2) + b(3)

2: a 4:=a T+a 8+3*al;

a(4) := a(8) + a(7) + 3+al
3: known a;

2

2.2.2 used

Call: used(opr)

Goal: Returns the number of elements of opr that are used.

Remark: The number of used elements is taken to be the length of the klist.
Example:

1: a 1:=a 2+b 3;

a(l) := a(2) + b(3)

2: a 4:=a T+a 8+3*al;

a(4) := a(8) + a(7) + 3xal

3: used a;

2.2.3 clear.op

Call: clear.op al,a2,...,an

Goal: Clears the operators al,a2,...,an.

Remark: We allow clear_op also be used to clear elements of na_operators,
see below.

Example:

1: a 1:=b 3+1;

a(l) :=b(3) + 1

2: prop ’a;

((kvalue ((a 1) (I*sq (((((®3) . 1) . 1) . 1) . 1) ©))N
(klist ((a 1) nil)) (simpfn . simpiden)
(breakfunction . reset))

3: prop ’b;

((klist ((b 3) nil used!*)) (simpfn . simpiden))

4: clear_op a,b;

5: prop ’a; J empty result.

2.2.4 vwrite_defs

Call: writedefs opr

Goal: Writes all known elements of the operator opr from the kvalue.

Remark: If the switch nat is off, then the written results, saved in a file,
can be used as input for a new session.

Example:

1: a 1:=a 2+6;

a(1) := a(2) + 6

2: a 4:=a T+a 8+3xal;

a(4) :=

a(8) + a(7) + 3*al

10: write_defs a;

a(1)

a(4)

a(2) + 6

a(8) + a(7) + 3xal

2.2.5 reassign.defs

Call: reassign.defs opr

Goal: Assigns to all known elements of opr the current value, i.e.

assignments are worked out.
Remark: After this command simplifications can be much faster.

Example:

1: al

a(2) :=
3: get(

(((a 1)
((a 2)

1=a 2+6;

a(2) + 6

:=a 3+10;

a(3) + 10

’a, ’kvalue);

(txsq (((((a 2) . 1) . 1) . 6) . 1) nil))
(t*xsq (((((a 3) . 1) . 1) . 10) . 1) nil)))

4: reassign_defs a;

5: get(’a,’kvalue);

(((a 1)
((a 2)

(1*xsq (((((a 3) . 1) . 1) . 16) . 1) nil))
(t*sq (((((a 3) . 1) . 1) . 10) . 1) nil)))

nested

2.3 Aliasing scalars as algebraic operator elements

Here we describe a mechanism to make operator elements look like atoms.
The procedures described are purely devised for readability and aesthetical
reasons. What you should be aware of is that the identifiers you type are
internally operator elements (the parser makes the convertion). This way
one can apply the procedures mentioned above for operators and one can
work with non-commuting "optical” identifiers.

2.3.1 operator_representation

Call: operator_representation(opr,alg.list_1,alg list_2)

Goal: To represent the atoms {a-1, ... ,an} , resp. {b-1, ... ,bm} in
the algebraic list alg-1ist_1, resp alg-list_2 as elements of the operator
opr. Here a_1, ... ,an are represented as opr(1), ... ,opr(a)
and b_1, ... ,bm are represented as opr(-1), ... ,opr(-m).

The third argument alg list_2 is optional.

Remark: The reason to split the representation in positive and negative is
that it can be profitable to distinguish between two types of arguments. Here
we especially think of linear spaces with a Zg-grading (“odd” and “even”
elements.)

Example:

1: operator_representation(x,{f1,£2},{gl,g2,g3});
2: multi_coeff (3+4*f1*g2+7+g3+%gd,x);
{3,{g3,7+ga}, {f1#g2,4}}

3: g3:=5;

5: fl:=6x*al;

f1 := 6%al

6: get(’x,’kvalue);

(((x =-3) 5) ((x 1) (1*sq ((((al . 1) . 6)) . 1) t)))
7: noncom X;

8: f2#gl-gl*f2;

10

f2xgl - glxf2

9: on defn;
10: £f1;
(aeval (list ’x 1))

2.3.2 add_to.operator_representation

Call: add_to_operator_representation(opr,alglist.1,alg list_2)

Goal: To add the atoms {a.1, ... ,an} and {opt-a-1) ... ,opt_am} from
alg-list_1 and alg_list_2 to the operator_representation of opr. Hence
we assume that already some elements have been represented, say opr(1),

. ,opr(m) and opr(-1), ... ,opr(-m).
Now a_1, ... ,ar are represented as opr(n+1), ... ,opr(n+r)
and opt_a_1l, ... ,opt.as asopr(-m-1), ... ,opr(-m-s).

The third argument alg.list_2 is again optional.

Remark: Only adding is allowed. For other changes one first has to apply
clear_operator representation, after which one can restart by calling
operator_representation.

Example:

1: operator_representation(x,{f1,£2});

2: add_to_operator_representation(x,{},{gl,g2,g3});

3: fl:=1;
f1 :=1
4: gl:=-1;
gl := -1

5: get(’x,’kvalue);
((x 1) 1) (Ux -1 -1)

6: clear gil;

11

g2 := -2
8: get(’x,’kvalue);

(1) 1) (x-2) -2))

2.3.3 clear_operator_representation

Call: clear operator representation(opr)

Goal: To remove the connection between the atoms and operator elements as
set by operator representation.

Remark: If values are assigned, these remain, i.e. the klist and kvalue of
opr are not touched. (You can removed them by clear_op).

Example:

1: operator_representation(x,{f1,f2},{gl,g2,g3});

2: f1:=5;

3: g3:=-10;
g3 = -10
4: prop ’x;
((alias_vector 3 2 . [g3 g2 gl nil f1 £2])
(kvalue ((x 1) 5) ((x -3) -10))
(klist ((x 1) nil) ((x -3) nil))
(prifn . print_alias) (simpfn . simpiden) used!*)
5: clear_operator_representation x;
6: prop ’x;
((kvalue ((x 1) 8) ((x -3) -10))

(klist ((x 1) nil) ((x -3) nil))
(simpfn . simpiden) used!*)

12

2.4 Nested association operators

The klist and kvalue mechanism is not very efficient for operators with
many operator elements, as these lists are both search linearly. If there are
several hundreds of elements it is better to look for other ways of handling
such operators. Here we provide an example. Using it is very simple: in-
stead of operator al,a2,... one should do na_operator ai1,a2,.... The
procedure clear_op can be used to clear either operator elements or the
whole operator at once.

2.4.1 na_operator

Call: na operator a1, ... ,an

Goal: To turn the atoms a_1, ... ,a.n into nested association operators. In
particular the handling of the klist and kvalue is combined into the list
na_values. Externally there are no differences between na_operators and
operators. Only one should use clear_op (see below) instead of clear for
removing values.

Remark: The alternative is especially meant for (extremely?) big operators.
Real differences are found in case of 100 elements or more; for just a few
elements (up to 50) the differences are small. We give a time comparison of
a session with the Fibonacci sequence, and an example chosen especially to
make na_operators look superb.

Care must be taken in turning operators, with special simplification func-
tions, into na_operators. For example, the sumplification function of df is
simpdf, which uscs explicitly the kvalue-list.

Example:

1: na_operator a;

2: operator b;

3: on time;

Time: 30 ms

4: for i:=2:10 do a i:=a(i-1)+a(i-2);
Time: 10 ms

6: for i:=2:10 do b i:=b(i-1)+b(i-2);

Time: 10 ms

13

6: for 1:=2:50 do a i:=a(i-1)+a(i-2);
Time: 30 ms
7: for 1:=2:50 do b i:=b(i-1)+b(i-2);
Time: 50 ms
8: for i1:=2:100 do a i:=a(i-1)+a(i-2);
Time: 50 ms
9: for 1:=2:100 do b i:=b{(i-1)+b(i-2);
Time: 120 ms
10: for i:=2:1000 do a i:=a(i-1)+a(i-2);
Time: 1570 ms
11: for i:=2:1000 do b i:=b(i-1)+b(i-2);
Time: 7100 ms

A new session:
1: na_operator a;
2: operator b;
3: on time;
Time: 30 ms

4: for 1:=1:20
do for j:=1:20 do for k:=1:20 do a(1,j,k):=ixjxk;

Time: 1480 ms

5: for i:=1:20
do for j:=1:20 do for k:=1:20 do b(1,j,k):=i*j*k;

Time: 260170 ms

14

2.4.2 clear_op

Call; clearop a.1,...,an
Goal: To clear the values of the operator elements a_1,...,an
Remarks: If no value is assigned, & warning is printed. If one of the argu-

ments a-1,...,an is an atom, it is assumed that it is an operator name;
correspondingly this operator is cleared (see above).
Example:

1: na_operator a,b;

2: a 1:=4;
a(l) := 4
3: b 3:=7;
b(3) =7

4: clear_op a 1,b 1,b 3;

*%x CLEAR_OP: b(1) not found

3 Performing algebraic operations

Here we will describe some procedures for performing algebraic operations.
The first procedure we describe is multi_coeff. It is an extension of coeff
and operator_coeff at the same time. Hence it decomposes multi-variate
expressions in (monic) monomials and their coefficient. The reason for keep-
ing operator_coeff is that it 1s faster.

Next we describe two procedures, multilinear and multimorph, which
makes an operator multilinear w.r.t some operators or variables. Their dif-
ference is that multilinear only works for operators and linear expressions
in this operator, and multimorph works for non-linear expressions and vari-
ables as well.

15

3.1 multi.coeff

Call: multi_coeff (exprss,vars)

Goal: The expression exprss is decomposed with respect to vars. Here
vars is an atom, representing a variable or an operator name or vars is
an algebraic list of such. The result is an algebraic list of which the first
element is the part independent of vars, and the remaining list are pairs, of
which the first element is the monomial in vars and the second element the
corresponding coefficient. Non-commuting variables in vars are allowed.

Remarks: The expression exprss is expected to be a polynomial in the ele-
ments of vars. Therefore only the numerator is checked; the denominator
should be independent of vars. IMPORTANT: the coefficients must be
commuting objects. If not, all kind of strange results may occur.

Examples:

1: multi_coeff (3+4*x 5+6xx 7*x 8+9xy+10*a*x 11,{x,y});
{3, {y.9}, {x(56),4}, {x(8)*x(7),6}, {x(11),10%a}}
2: noncom Xx;
3: multi_coeff(x 1*x 2+3%x 4*x B+x 2xx 1+7,%x);
{7, {x (D) *x(2) , 1}, {x(2)*x(1) ,1},{x(4) *x(5) ,3}}
4: multi_coeff(x 1+3*x°2,x); % even this works.
2
{0,{x ,3},{x(1),1}}
5: noncom a; %4 so non-commuting coefficients!
6: multi_coeff(a 1%x 1-x 1*a 1,x);
{0,{x(1),0}} % this is not what you want, probably, while:
7: multi_coeff(a 1*x 1-x 1*a 1,{a,x});

{0, {x(1)*a(1),-1},{a(1)*x(1),1}} % this is OK.

16

3.2 multilinear

Call: multilinear map(op-list [,resimp function])

Goal: The call turns the mapping map into a multilinear operator. Hence map
is used in the form map(arg.1,arg2, ..., argn). Here the arguments
are elements of a linear space: products of scalars with vectors, where the
vectors are represented by operator elements from the operators of op.1list,
an algebraic list of atoms. The denominator is ignored. The role of the
resimp_function is explained later. Let us first give some examples.

Examples:

1: multilinear d{({x,y});

2: operator x,y;

3: d(x 1+3xx 2);

3*d(x(2)) + d(x(1))

4: d(al*x(2,1)+y 4,al*x(2,1)+y 4);

2
d(x(2,1),x(2,1))*al + d(x(2,1),y(4))*al + d(y(4),x(2,1))*al

+ d(y(4),y(4))
5: for all ii,jj such that ii neq jj let d(x ii,x jj)=0;
6: for all ii let d(x ii,x ii)=1;
7: d(x 1+2*%x 2+x 3,3%x 1 + 4*x 2+ 5xx 3);
16
8: d(x 1*x 2,x 3); Y% if you really want this, see multimorph.
x¥*x%* SPLIT_F: expression not linear w.r.t. {x,y}

9: d(1/x 1); Y take care of this.

17

Goal (continued): The third argument in the call of multilinear is optional.
If it is present, it is called the resimp_function of map. To explain the use, let
us explain the method of multilinear. To map is given a new simplification
function (instead of the default simpiden), namely simp multilinear. This
takes care of the multilinear splitting. If this is finished we are left with a
sum of expressions, which are now offered to simpiden, unless map has a
resimp_function. Hence the resimp_function takes care of the elementary
pieces. In the last example above (where { z; } is made orthonormal), the
resimp_function would take care of d(z;,z;). As an example let us give a
resimp-function to map which has the same effect: d(x(1),x(j)) is made
orthonormal, all other expressions are left untouched.

1:

lisp procedure resimp_d u; %4 NB: the car of u is just d.
begin scalar argl,arg?2;

if length cdr u neq 2 % The cdr of u are the args of d.
then return simpiden u; % We only act if 4 has 2 args.
argl:=cadr u;

arg2:=caddr u; % There are exactly 2 arguments.
if atom argl or atom arg2

then return simpiden u; % The arguments can be 1.

if car argl neq ’x

or car arg2 neq ’x % check if both args are x(..):

then return simpiden u; % if not, we do nothing.

return % the result is either O or 1:
1f cadr argl=cadr arg2

then (1 . 1) % 1 as sqform (like simpiden)!!
else (nil . 1) % 0 as sqform.
end$

2: operator x,y;

3: multilinear d({x,y},resimp_d);

4: d(x 1+2*x 2+x 3,3*x 1 + 4*x 2+ 5xx 3);
16

5: d(x 1, y 3);

d(x(1),y(3))

6: d(x 1, y3);

18

d(x(1),1)+y3

To summarize: the resimp_function gets as argument map(a_1, ... ,an),
and it should return an sqform.

3.3 multimorph

Call: multimorph map(op_list [,resimp_function])

Goal: The call turns the mapping map into a multilinear operator in an algebra.
Hence map is used in the form map(arg_1,arg2, ... ,argmn). Here the
arguments are elements of an algebra : products of scalars with algebra
elements, which are represented by (products of) operator elements from
the operators of op_list, an algebraic list of atoms. The denominator is
ignored. The role of the resimp_function is similar like in multilinear
(see below).

Examples:

1: operator x,y,

2: multimorph d({x,y});

3: d(x 1*x 2+3%x 3,y 3+al*y 4);

d(x(2)*x(1) ,y(4))*al + d(x(2)*x(1),y(3)) + 3*d(x(3),y(4))*al
+ 3*d(x(3),y(3))

4: d(x 1,x 2*x 3):=23;

d(x(1),x(3)*x(2)) := 23

5: d(x 1,1+3%x 2*x 3);

d(x(1),1) + 69

Goal (continued): The resimp_function works in the same way as in multi-
linear. As a useful example, we turn d into a morphism of algebras.

1:

lisp procedure algebra_morphism(u);
resimp_algebra_morphisml(cadr u,car u)$

19

2:
lisp procedure resimp_algebra_morphismi(exprss,morphism);
if atom exprss
then simpiden list(morphism,exprss)
else if car exprss=’times
then algebra_morphism_times(cdr exprss,morphism)
else if car exprss=’expt
then (algebra_morphism_expt(arg,caddr exprss,morphism))
where arg=resimp_algebra_morphisml(cadr exprss,morphism)
else simpiden list(morphism,exprss)$

3:

lisp procedure algebra_morphism_times(u,morphism);

if null u

then 1 . 1

else multsq(resimp_algebra_morphismi(car u,morphism),
algebra_morphism_times(cdr u,morphism))$

4:

lisp procedure algebra_morphism_expt(u,n,morphism);

if n=1 then u

else multsq(u,algebra_morphism_expt(u,n-1,morphism))$

5: multimorph d(x,algebra_morphism);

6: operator x;

7: d(x 1*x 2%x 3 + 4*x 576 + 7);

6
4%d(x(5)) + d(x(3))*d(x(2))*d(x(1)) + 7*d(1)

% note that the order is changed; all objects are commuting:
8: nonconm d;
9: d(x 1*x 2);

d(x(2))*d(x(1)) % so noncom d is not enough:
% x 1*x 2 evaluates to x 2*x 1.

10: noncom d,x;

11: d(x 1*x 2);

20

d(x(1))xd(x(2))

4 Solving linear equations

In our programs we want to do a lot of automated computations on al-
gebraic expressions containing algebraic operators. In particular we think
it is convenient to have, together with the procedures linear_solve and
linear_solve_and.assign, a procedure that searches an algebraic expres-
sion for kernels of some specified operator with respect to which the algebraic
expression is linear, but with the coefficients of these kernels not depending
on some other operators.

Let us give an example in which such a procedure can be used fruitfully.
Suppose we have an expression a(3)*a(2)-a(1) from which we want to
solve one the a(1)’s automatically. Taking the first operator element at
sight, we would get a(3):=a(1)/a(2). This, however, is undesirable, be-
cause a(2) may be equated to 0 during the process, in which case we are in
trouble. Therefore the solution should be a(1) :=a(3)*a(2).

But how can we discover that we must solve for a(1)? The answer to this
question is to use the procedure solvable kernels, which we will specify
in a moment: the call solvable kernels(a(3)*a(2)-a(1),a,a) searches
the expression a(3)*a(2)-a(1) for kernels of operator a (second argument),
but only those which don’t have coefficients containing kernels of operator
a (third argument). Hence this call returns the list a(1) which is exactly
the list of all kernels for which we may solve without risc.

4.1 1linear_solve

Call: linear solve(exprn,var)

Goal: Solve the equation exprn = 0 with respect to the kernel var. Here var
should occur linearly. The solution is not assigned to var (like in solve).
Remarks: The procedure first factorizes the numerator of exprn; the denom-

inator is ignored. The factors independent of var and also double factors
are removed. Only after this linear solving is tried.
Examples:

1: linear_solve(a - 3,a);

21

2: linear_solve(x*(a-3),a);

3: linear_solve((a-3)"100,a);

4.2 linear_solve_and-assign

Call: linear_solve._and assign(exprn,var)

Goal: Solve the equation exprn = 0 with respect to the kernel var. Here var
should occur linearly. The solution is assigned to var.

Remark: The procedure first applies linear_solve, see above. Thereafter
this value is assigned to var.

Examples:

1: linear_solve_and_assign(a - 3,a);

3

4.3 solvable_kernels

Call: solvable kernels{exprn,oplist,bad oplist)

Goal: Here oplist and bad_oplist and algebraic lists of operator names.
The expression exprn is checked for linear occurences of operator elements
of oplist. These operator elements are selected. If the coeflicient of such
an element contains operator elements from bad_oplist, then such element
is removed.

Examples:

1: solvable_kernels(a 1*a 2 - a 3*c 4 + a 4,{a},{c});
{a(1),a(2),a(4d)}

2: solvable_kernels(a 1*%a 2 - a 3*c 4 + a 4,{a}, a);

{a(3),a(@)}
3: solvable_kernels(a 1*a 2 - a 3*%c 4 + a 4, a ,{a,c});

{a(d)}

Remark: This allows to make an automatic solver. We give an example of it.
We assume the equations are stored in an operator equ in particular in the
operator elements equ(i-1), ..., equ(in). Hence we use equ globally.
The variable equ_list is the algebraic list { i1, ..., in } . We solve
for a, the second argument, an operator name, and forbid the operators from
ac, the third argument. The result is the list of unsolved equations.

1:
procedure lin_solve_equ(equ_list,a,ac);
begin scalar vars,curr_equ,unsolved_list;
unsolved_list:={};
for each j in equ_list
do << curr_equ:=equ J;
vars:=solvable_kernels(curr_equ,a,ac);
if length vars > 0
then linear_solve_and_assign(curr_equ,first vars)
else unsolved_last:= j . unsolved_list
>>;
if unsolved_list={}
then return;
write "The following equations from equ are not solved:";
return reverse unsolved_list
end$

2: equ(l):=c 1xa 2-3;

equ(1) := a(2)*c(1) - 3

3: equ(3):=a 4-7;

equ(3) := a(4) - 7

4: equ(10):= 3*a 2-5;

5: lin_solve_equ({1,3,10}, a ,{a,c});

The following equations from equ are not solved:

23

{1} % this, {1}, is the returned value.

6: equ i; % can be solved now, at least with respect to c.
Bxc(1) - 9

7: lin_solve_equ(ws 5,c,c);

8: write_defs a;

a(4) :

[
~

a(2)

9: write_defs c;

c(1) := ——

END OF SESSION, end of manual.

24

Index

add_to_operator_representation, 11

clear_op, 8, 15
clear_operator_representation, 12

define, 2
defn, 11

get_deep kernels, 4
get_kernel, 4
get_kernels, 3

independent_part, 5
known, 7

linear.solve, 21
linear_solve_and_assign, 22

multi_coeff, 16
multilinear, 17
multimorph, 19

na_operator, 13

operator_coeff, 5
operator.representation, 10

reassign._defs, 9
resimp-function, 17, 19

solvable kernels, 22
top-level_operators, 6
used, 7

write_defs, 8

25

