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Abstract: We give the WEB source of the SUPER VECTORFIELD package
for REDUCE. The package implements Z,-graded vectorfields and their
action on Zj-graded functions in local coordinates in REDUCE. It can
be used for the computation of symmetries and prolongation structures of
(supersymmetric) systems of partial differential equations. The package is
based on a former package by Gragert and Kersten.
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§1 SUPER VECTORFIELD SUPER VECTORFIELDS IN REDUCE 1

1. Super vectorfields in REDUCE. In this WEB file we shall implement the action of Z, graded
vectorfields on Z; graded functions. The package is partially based on a former package by Gragert and
Kersten (TW-memorandum 680), which also implemented Z; graded forms and operators like exterior
differentiation, Lie derivatives, etc. Since our methods nowadays mainly consist of using vectorfields, there
is no direct need for an implementation of these operators.

The “banner line” defined here is intended for indentification purposes on loading. It should be changed
whenever this file is modified. System dependent changes, however, should be made in a separate change
file.

define banner = "Supervectorfield, package; for REDUCE 3.4, $Revision: 1.0,$"

2. We define the following macros for clarity.

define change_to_symbolic.mode = symbolic

define change_to_algebraic_mode = algebraic

define stop_with_error(string_1 , expr_1, string 2, ezpr_2) =
msgpri(string_1, ezpr_1 , string_2, ezpr 2, t)

define message(string_1, expr_1 , string 2, expr 2) =
msgpri(string_1, expr_1, string_2, expr 2, nil)

define operator_name_of = car

define arguments_of = cdr

define first_argument_of = cadr

define second_argument_of = caddr

define first_element_of = car

define rest_of = cdr

define skip_list = cdr  {Skip the ’list in front of an algebraic list }

3. The following macros are intended as common programming idioms.
define incr(z) = (z:=z+1)
define decr(z) = (z:=z — 1)

4. A new REDUCE switch can be introduced using the following code.

define initialize_global(global_name , value) =
global *(global_name)$
global_name := value

define new._switch(switch_name, value) =
initialize_global(!* @&kswitch_name, value)$
flag C(switch_name), ’switch)

5. We do all initializations in the beginning of the package.

change_to_symbolic_mode$
write banner$ terpri()$
(Lisp initializations 7)
change_to_algebraic.mode $



§6 SUPER VECTORFIELD SUPER VECTORFIELDS IN REDUCE 2

6. Weshall start with a (very) short description of the local picture of a graded manifold and vectorfields on
these graded manifolds. For a more detailed description we refer to B. Kostant, Lecture Notes in Mathematics

570 (1977).
The local picture of a graded manifold is U C R™ open together with the graded commutative algebra
C*®(U) ® A(n) where A(n) is the antisymmetric (exterior) algebra on n elements sy, ..., s,, with Zj-degree

Isi] = 1 and s;s; = —s;s;. A particular element f € C*°(U) ® A(n) is represented by f =}, fus. where
ﬂGMn={IJ=(/11,~~:Pk) |P:’€N:1SP1 <#2<"'<I‘k5"},
Sy = Su,Su, - Su, and f, € C=(U).

Graded vectorfields on a graded manifold (U, C*(U) ® A(n)) are introduced as graded derivations of the
algebra C°(U)® A(n). It can be shown that they constitute a left C®°(U) ® A(n)-module. Locally a graded

vectorfield V is represented as
= £ ’azi ].=1 g) 63]

with f;, g; € C°(U) ® A(n) and z; (i = 1,...,m) a local coordinate system on U.

The derivations 2z are even, while the derivation . are odd; they satisfy the relations
i i
az; 3Sj 3.’!:,‘ 6s,~
— = — = = — = §;q.
aZk ik 8a:k 0 axt 0’ aS¢ it

7. In REDUCE we shall represent the elements s, € A(n) by EXT(p1,..., ). Thus elements of
C®(U) ® A(n) can be implemented in REDUCE as ordinary algebraic expressions.
(Lisp initializations 7) =
put(’ezt,’simpfn,’simpiden)$
See also section 37.
This code is used in section 5.



88 SUPER VECTORFIELD INITIALIZING VECTORFIELDS 3

8. Initializing vectorfields. In order to introduce graded vectorfields, we need to know the local

coordinates z; on U, as well as the components of o and Bei
1

In this file we want to implement vectorfields as algebraic opérators with a simplification procedure which
takes care of the action on a function. It is our purpose to keep the local coordinates and the components
local to one vectorfield at a time.

The following procedure initializes a super vectorfield. The macro make_oplist is taken from the TOOLS
package; it transforms algebraic and lisp lists and identifiers into the appropriate lisp lists.

We will not give all components of the vectorfield here: it is much easier to give them separately, as we
shall see in the sequel. For this purpose a vectorfield gets a setkfn setk_super_vectorfield, to be explained
later.

define make_oplist(op_list) =
if null op_list then op_list
else if atom op_list then list op_list
else if car op_list = 'list then cdr op_list
else op_list

lisp operator super_vectorfield;

lisp procedure super_vectorfield (operator_name, even_variables, odd_variables);
begin scalar odd_dimension;
if ~idp operator_name then

stop_with_error(“SUPER_VECTORFIELD:", operator_name,"is not an identifier", nil);

put(operator_name, ’simpfn, 'super_der_simp); flag(list(operator_name), full);
even_variables := make_oplist(even_variables);
odd_variables := make_oplist(odd_variables); odd_dimension := 0,
(Adapt odd_dimension according to odd_variables 9);
put(operator_name, ’variables, even_variables);
put(operator_name,’even_dimension, length even_variables);
put(operator_name,’odd_dimension, odd_dimension);
put(operator_name,’setkfn, 'setk_super_vectorfield);
return list(’list, length even_variables, odd_dimension);
end$

9. The list of odd_variables should only contain kernels of the ezt operator with one integer argument.
The odd_dimension is the maximum of the all integer arguments.
{Adapt odd_dimension according to odd_variables 9) =
for each kernel in odd_variables do
if length kernel # 2 V operator_name_of kernel # ’ext V —fizp first_argument_of kernel then
stop_with_error("SUPER_VECTORFIELD:", kernel, "notyayvalidyodd, variable", nil)
else odd_dimension := maz (odd_dimension, firsi_argumenti_of kernel)

This code is used in sections 8 and 12.

10. For non-super applications we provide vectorfield as an alias which initializes the odd_variables of a
super_vectorfield to nil.
lisp operator vectorfield;
lisp procedure vectorfield (operator_name, variables);
super_vectorfield (operator_name, variables,nil)$
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11. Finally we provide two straightforward procedures for extending the number of variables of a vectorfield
or a super vectorfield.

lisp operator add_variables_to_vectorfield;
lisp procedure add_variables_to_vectorfield(operator_name, variables);
if get(operator_name,’simpfn) # ’super_der_simp then
stop_with_error (" ADD_VARIABLE_TO_VECTORFIELD:", operator_name, "notya vectorfield", nil)
else
& variables := append(get(operator-name,’variables), make_oplist(variables));
put(operator_name, 'variables, variables);
put(operator_name,’even_dimension, length variables) >$

12.
lisp operator add_odd_variables_to_vectorfield;
lisp procedure add_odd_variables_to_vectorfield(operator-name, odd_variables);
if get(operator_name,’simpfn) # ’super_der_simp then
stop_with_error(*ADD_VARIABLE_TO_VECTORFIELD:", operator_name, "notyayvectorfield", nil)
else
begin scalar odd_dimension;
odd_variables := make_oplist(odd_variables);
odd_dimension := get(operator_name,’odd_dimension);
(Adapt odd_dimension according to odd_variables 9);
return put (operator_name,’odd_dimension, odd_dimension);

end$
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13. Implementation of exterior multiplication. Before we can implement the action of a graded
vectorfield on a graded function we need to have a function that computes the (exterior) multiplication of
two elements of A(n).

If we have two elements EXT(i1, . ..,%,) and EXT(j1,.. ., jm) then the product will be 0 or an expression
of the form £EXT(...). In order to find this result we need to merge the lists (i1,...,%n) and (j1,. .-, jm)
into one ordered list, taking into account the signs that occur due to the switching of all pairs of elements
of the lists.

In fact, since it is needed for cohomology computations by van den Hijligenberg and Post, we shall
implement an even more general procedure: given two ordered lists (21, ...,im) and (j1,...,Jm), return the
list which results from merging the two lists into one ordered lists, together with a sign due to the switching
of indices. The elements of the list need, however, not only be positive integers anymore, but may also be
negative integers, with the proviso that switching two negative integers does not cause a sign.

The algorithm is rather simple: given two lists I and z2 we construct the merged list 22 as follows (the
notation cz! is an abbreviation for car z1, and the same for all other lists):

1. reverse z1 (zl is now ordered reversely) and move all the elements of z2, with which the first element of
zl (i.e. the highest element) has to be interchanged for merging both lists, in reverse order on the list lz2.
Keep track if the number of elements of Iz2 is odd or even with help of the boolean oddskip.

2. if either z1 or Iz2 is empty return the appropriate result.

3. if czl = clz2 then we can return nil if both are positive, due to the anticommutativity.

4. if cz1 > clz2 put czl in front of £2 and adjust the sign according to oddskip only if cz! is positive: if
czl is negative, so are all elements of iz2 and thus no sign need to be added. Continue with 2.

5. if cz1 < clz2 put clz2 in front of z2 and adjust oddskip. Continue with 2.

Since it is used quite frequently, we shall implement this procedure using labels in order to prevent overhead
caused by (recursive) function calls.

lisp procedure merge_lists(z1 ,z2);
begin scalar cz!, cz2,1z2, clz2, oddskip, sign;
{Prepare 21, z2 and Iz2, if ready goto b 14);

b: ( Weave all elements of z1 and Iz2 in front of 22, return if done 15};
end$

14. The implementation of step 1.

{Prepare z1, z2 and {z2, if ready goto b 14) =
sign := 1; zl := reverse z1;
if z1 then czl := car zl else goto b;
a: if z2 then cz2 = car z2 else goto b;
if ¢zl < cz2 then goto b;
iz2 = cz2 . lz2;
oddskip := —oddskip;
z2 = cdr z2;
goto a
This code is used in section 13.
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15. The implementation of steps 2 and 3.

( Weave all elements of z1 and Iz2 in front of 2, return if done 15) =
if null z1 then return sign . nconc(reversip lz2,z2);
if null iz2 then return sign . nconc(reversip z1,z2);
clz? := car lz2;
if czl = clz2 A cz1 > 0 then return nil;
if czl > clz2 then goto bI;
(Move first element of {z2 to z2 and goto b 16);
b1: (Move first element of zI to 22 and goto b 17)

This code is used in section 13.

16. The implementation of step 3.

(Move first element of Iz2 to £2 and goto b 16) =
z2 = clz2 . z2;
Iz2 := cdr 122,
oddskip := —oddskip;
goto b

This code is used in section 15.

17. And finally step 4.

{Move first element of z1 to 2 and goto b 17) =
8 = crl . 2,
zl = cdr zl1;
if oddskip A czl > 0 then sign := —sign;
if z1 then czl = car z1;
goto b

This code is used in section 15.

18. It’s a piece of cake now the write a procedure for the multiplication of two “EXT” kernels. By definition
ezt() is equal to 1.

define sign_of = car
define arg_list_of = cdr

lisp procedure ezt_mult(z1,z2);
(if null z thennil ./ 1
else if null arg_list_.of z thenl./1
else (((/*a2k ezt . arg.list_of z) .1 1) * sign_of z) .+ mil) ./ 1)
where z = merge_lists(arguments_of z!,arguments_of z2)$
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19. The simplification procedure for vectorfields. The only thing left now is to implement the
action of a vectorfield on a function by means of the simplification procedure super_der_simp.

. J .
If V is a vectorfield we shall assume that the components of Bae and 5‘:— are given by V(0,1) and V (1, j),
i ¥
respectively.
Since we want to be able to look at the value of the components, we have to make the following distinction:
if a vectorfield has just one argument it is the action on a function, otherwise we just have to return the
value of the kernel.

lisp procedure super_der_simp u;
if length u = 2 then (Return the action of the vectorfield on a function 20)
else stmpiden u$

20. The action is not very complicated: collect all the even and odd components of the vectorfield and
apply the vectorfield to the numerator and denominator of the function, using the quotient rule.

Notice that we don’t want denominators of any function to contain odd variables, since such an expression
can always be rewritten to a finite expression without odd variables in the denominator.

{Return the action of the vectorfield on a function 20) =
begin scalar derivation_name, variables, even_components, odd_components,
splitted_numr, splitted.denr;

derivation_name := reval operator_name.of u;

variables := get(derivation_name, variables);

u = simp!* first_argument_of u;

{ Get the lists splitted_numr, splitted_denr, even_components and odd_components 22);

return subirsq(
quotsq(addsq(even_action (even_components, splitted_numr),
odd_action (odd_components, splitted_numr)), denr u ./ 1),
quotsg(mulisq(numr u ./ 1, even_action(even_components, splitted_denr)),
multf (denr u, denr u) ./ 1));

end

This code is used in section 19.
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21. Getting the vectorfield components. Finding all linear kernels of an algebraic operator and
their coefficients in a standard form is performed by the procedure split_form of the TOOLS package, which
acts on standard forms. Since it is more convenient for the components of the vectorfield to have the
coefficients returned by split_form as standard quotients instead of standard forms, the following procedure
applies split_form to the numerator of a standard quotient and takes care of the necessary conversion of the
coefficients to standard quotients.

In order to allow simple processing of the lists the independent part must be preceded by ezt().

define independent_part.of = car
define kc_list_of = cdr

define kernel_of = car

define coefficieni_of = cdr

lisp procedure split_ezt(sq, op_list);
begin scalar denr_sq, splitted_form;
denr_sq := denr sq; splitted_form := split_form(numr sq, op_list);
return (list(’ezt) . cancel(independent_part_of splitted_form ./ denr_sq)) .
for each kc_pair in kc_lisi_of splitted_form collect
(kernel_of kc_pair . cancel(coefficient_of kc_pair ./ denr_sq))
end$

22. For a proper action of even_action and odd_action all components need to be decomposed into “EXT”
kernels and their coefficients. Since the action is most conveniently performed recursively on standard forms,
the numerator and denominator are decomposed at standard form level.

(Get the lists splitted_numr, splitted_denr, even_components and odd_components 22) =
splitted_numr := split_form(numr u,’(ezt));
splitted_numr := (list(’ezt) . independent_part_of splitled_numr) . kc_lisi_of splitied_numr;
splitted_denr := split_form(denr u,’(ezt));
splitted_denr := (list(ext) . independent_part_of splitted_denr) . kc_list_of splitted_denr;
even_components := for i := l:get(derivation_name,’even_dimension) collect
(nth(variables, i) . split_ext(component,’(ext)))
where component = simp!* list(derivation_name,0,1);
odd_components := for i := 1:get(derivation_name,’odd_dimension) collect
(i . split_ezt(component,’(ezt)))
where component = simp!* list(derivation_name, 1, 1)
This code is used in section 20.
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23. Action of the even components. The action of the even part of a vectorfield on a function is
fairly simple at top level: just add the actions on all kernel-coefficient pairs.

lisp procedure even_action(components, splitted_form);
begin scalar action;
action :=nil ./ 1;
for each kc_pair in splitted_form do
action := addsq(action, even_action_sf (components, coefficienti_of kc_pair, kernel of kc_pair,1));
return action;
end$

24. The action on a standard form is the sum of the actions on all terms. If the last term is a domain
element we don’t have to take it into consideration.

lisp procedure even_action_sf(components, sf, ezi_kernel, fac);
begin scalar action;
action :=nmil ./ 1;
while —domainp sf do
< action := addsq(action, even_action_term(components, it sf, ext_kernel, fac)); sf := red sf >;
return action;

end$

25. For the action on the leading term we use the derivation property: the action on the leading power
has to be added to the action on the leading coefficient. The last argument of even_action_sf is the product
of all leading powers which have already been treated and with which the result has to be multiplied.

For reasons of efficiency it is more convenient to have the factor as in standard quotient in even_action_pow.

define term_pow = car
define term_coeff = cdr

lisp procedure even_action_term(components, term, ezxt_kernel, fac);
addsq(even_action_pow (components, lerm_pow term, ext_kernel, !*f2q mullf (fac, term_coeff term)),
even_action_sf(components, term_coeff term, ezt_kernel, multf (fac, !*p2f term_pow term)))$

26. Finally we have to implement the action on leading powers. For this we have to find all dependencies
of the main variable on local coordinates occuring in the vectorfield, and act accordingly.

lisp procedure even_action_pow (components, pow, ext_kernel, fac);
begin scalar kernel,n, component, derivative, action, active.components;
kernel := car pow; n:= cdr pow; {pow = kernelfn}
(If kernel is one the even local coordinates, return the action on pow 27);
(Find all the dependencies of kernel and construct active_components 31);
(Return the sum of the actions of active_components on pow 32);
end$

27. We can check if kernel is one of the local coordinates by a simple assoc on components.

(If kernel is one the even local coordinates, return the action on pow 27) =
if (component := assoc(kernel, components)) then

return
& derivative :=if n =1 then 1 ./ 1 else ((((kernel .1 n— 1) # n) .+ nil) ./ 1);
action := componeni_action {component, ezt_kernel, derivative);

maultsq(action, fac) >

This code is used in section 26.
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28. The procedure componeni_aclion takes care of returning the sum of all products of the kc_pairs in
componeni with ezi_kernel and derivative.

Recall that super vectorfields have a left C*°(U) ® A(n) module structure. This means that we have to
take care that the arguments in the ezt_mult call have to be in the right order: components of the vectorfield
left and the ezt_kernel’s from the function right. Of course, if the product of the two “EXT” kernels is zero,
there is no need to consider the summand.
define combined_product(z,y,z) =

multsqg(multsq(z, y), 2)

lisp procedure component_action(component, ext_kernel, coefficient);

begin scalar action;

action :=nil ./ 1;

for each kc_pair in kc_list_of component do

(if numr ezt_product then
aclion := addsq(action, combined_product(ert_product, even_coefficient, coefficient)))

where eri_product = ext_mult(kernel_of kc_pair, ext_kernel),
even_coefficient = coefficient_of kc_pair;

return action;

end$

29. If a kernel is not one of the local coordinates, it may still depend on them, in which case we can still
differentiate it w.r.t. such a coordinate.

The following procedure tries finds all active components in kernel as completely as possible.
define get_dependencies_of (kernel) =
((if deplentry then cdr depl_entry) where depleniry = assoc(kernel, depl!*))
lisp procedure find_active_components(kernel, components, components_found);
begin components_found :=
update_components (kernel . gel_dependencies_of (kernel), components, cor..ponents_found)$
if ~atom kernel then
for each element in kernel do
components_found := find_active_components(element, components, components_found),

return components_found;
end$

30. The procedure updale_components takes care that componenis_found contains all active components
just once.

lisp procedure update_components(dependencies, companents, components_found );
begin scalar component;
for each kernel in dependencies do
if (component := assoc(kernel, components)) A —assoc(kernel, components_found) then
components_found := component . components_found;
return components_found;

end$

31.

(Find all the dependencies of kernel and construct active_components 31) =
active_components := find_aclive_components(kernel, components, nil)
This code is used in section 26.
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32. Once we know all active components we can simply apply diffp to compute the derivatives of pow and
componeni_action to compute the action of the different components. Recall that the final result has to be
multiplied with fac.

(Return the sum of the actions of active.components on pow 32) =
action :=mil ./ 1;
for each component in aclive_components do
& derivative := diffp (pow, kernel_of component);
action := addsg(action, component_action(component, ext_kernel, derivative)) >;
return multsq(action, fac)

This code is used in section 26.
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33. Action of the odd components. The action of the odd components is much simpler than the
action of the even components since the dependencies are clear at once: the only dependency on odd variables
are the indices of the “EXT” kernels.

Odd differentiations can cause an additional sign:

a

——S8i, ... 8§
38;’. !

PN =(—1)"."ls,’1 ...§E...s,~n

Additional signs are governed by the boolean sign. After the deletion of one index we have to apply /*a2k
in order to get a unique kernel.
lisp procedure odd_action (components, splitted_form);
begin scalar action, sign, derivative, kernel, coefficient, component;
action :=nil ./ 1;
for each kc_pair in splitted_form do
L kernel := kernel_of kc_pair;
coefficient := !*f2q coefficient_of kc_pair;
sign = t;
for each i in arguments_of kernel do
L sign = —sign;
derivative := *a2k delete(i, kernel);
component := assoc(i, components);
action := addsq(action, componeni_action(component , derivative,

if sign then negsq coefficient else coefficient)) > >;
return action;

end$
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34. Assigning values to vectorfield components. If V is a vectorfield we recall that the components

of Bo: and Far given by V(0,i) and V(1, ), respectively. However, assigning a value to, for instance,
Z; 8j

V(0,7) has to be done very thoughtfully, since the correspondence between the index i and the i-th variable

z; is mostly not a logical one in practical situations. It would be much easier if one could say V(z;) := y, if

V(0, 1) has to become y.

Such a task can be easily accomplished by using a setkfn: if an algebraic operator possesses an indicator
setkfn, this function is used for assignment instead of the default method, which is a call to let2. For
vectorfields we introduce the setkfn setk_super_vectorfield, which takes care of the kind of assignments
described above. This is fairly simple: if the number of arguments of val below is not 1, we can just
apply the default call to let2, otherwise val apparently is of the form V{(z;) or V(s;) and we must store
value in V(0,1) or V(1,7), respectively.

lisp procedure setk_super_vectorfield(val, value);

begin scalar vectorfield, var, variables, i, tuple;

if length val # 2 then return let2(val, value, nil, t);

vectorfield .= operator-name_of val; var := first_argument_of val,
(If possible, translate var into an appropriate tuple 35);

return let2(vectorfield . tuple, value, nil, t);
end$

35. If var = ezt(j) then tuple must be (1, j), else if var is the i-th entry of the even wariables associated
to v, tuple must be (0,7). In all other cases no assignment is useful and we can return with an error.

(If possible, translate ver into an appropriate tuple 35) =
tuple := if —atom var A operator_name.of var = ’ext A length var = 2 then
list(1, first_argument_of var)
else < variables := get(vectorfield,’variables); i := 1;
while variables A var # first_element_of variables do
< variables := rest_of variables; incr(i)>>;
if null variables then
stop_with_error(*SETK_SUPER_VECTORFIELD:", var, “notyayvalid variable for", veclorfield)
else [ist(0,7) >

This code is used in section 34.
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36. Multiplication of graded expressions. Since it is useful in practical problems, we shall finally
implement a procedure super_product for multiplying two graded expressions. Using some of the above
procedures this is not difficult at all.

format product = car

lisp operator super_product;
lisp procedure super_produci(z, y);
begin scalar splitted_z, splitted_y, product;
splitted_z = split_ezt (simp z,’(ext)); splitted_y := split_ezt(simp y,’(ezt));
product :=mnil ./ 1;
for each term_z in splitted_z do
for each term_y in splitted_y do
product := addsq(product,
combined_product(coefficient_of term_z, coefficient_of term_y,
ezt_mult (kernel_of term_z, kernel of term.y)));
return mk!/*sq subs?2 product;
end$

37. In order to facilitate natural input we will implement a switch nafural_wedges which introduce a new
token /"/* in REDUCE that parses left associative to super_product and takes precedence over times. In
conjunction with this token we assign a print function to the ezf operator, which takes care of eventual
aliases of ezt-kernels, introduced by the operator_representation of the TOOLS package.

We start with the definition of the switch natural_wedges. By assigning the simpfg property to the switch
natural_wedges we can make the appropriate call to the procedure natural_wedges_handler if it is put on or
off | respectively.

(Lisp initializations 7) + =
new_switch(natural_wedges, nil)$
put ("natural-wedges,’simpfq,’((t(natural_wedges_handler t)) (nil(natural_wedges_handler nil))))$

38. The handler natural wedges_handler prepares and removes the token /“/” and the print function
wedge_print.
lisp procedure natural_wedges_handler on_off ;
begin scalar save_swilch;
if on_off then
<& newtok '((!" !") super_product); precedence(’super_product,’times);
put(’est, 'prifn,  wedge_print) >
else
<& save_swilch := get(’!", swilch!*);
save_swiich := delete(assoc(’!", car save_swilch), car save_switch) . cdr save_switch;
put(’!", swilch!*, save_swiich); remprop(ezt,’prifn) >
end$

39. The print function wedge_print is fairly simple: if the operator has one argument use print_alias for
printing, which checks for aliases, otherwise apply inprint on the list of arguments surrounded by ezt.
lisp procedure wedge_print ezt_kernel,
if length exi_kernel < 2 then prini_alias ezt_kernel
else inprint(’super_product, 0, kernels_on_list)
where kernels_on_list = for each arg in arguments_of ext_kernel collect list(’ezt, arg)$

40. The end of a REDUCE input file must be marked with end.
end;
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41. Index. This section contains a cross reference index of all identifiers, together with the numbers of
the mdules in which they are used. Underlined entries correspond to module numbers where the identifier

was declared.

¥ 4

*a2k: 18, 33.
1%f2q: 25, 33.
*pof. 25.

/" 38.

110 37, 38.

action: 23, 24, 26, 27, 28, 32, 33.
aclive_componenis: 26, 31, 32.
add_odd_variables_to_vectorfield: 12.
add_variables_to_vectorfield: 11.
addsqg: 20, 23, 24, 25, 28, 32, 33, 36.
append: 11.

arg: 39.

arg_list_of: 18.

arguments_of : 2, 18, 33, 39.
assoc: 27, 29, 30, 33, 38.

atom: 8, 29, 35.

banner: 1, 5.

b1:. 15.
caddr: 2.
cadr: 2.

cancel: 21.

car: 2, 8,13, 14, 15, 17, 18, 21, 25, 26, 36, 38.
cdr: 2, 8, 14, 16, 17, 18, 21, 25, 26, 29, 38.
change_to_algebraic_mode: 2, 5.
change_to_symbolic_mode: 2, 5.

cr2: 13, 15, 16.

coefficient: 28, 33.

coefficient_of : 21, 23, 28, 33, 36.
combined_product: 28, 36.

component: 22, 26, 27, 28, 30, 32, 33.
component_action: 27, 28, 32, 33.
components: 23, 24, 25, 26, 27, 29, 30, 31, 33.
components_found: 29, 30.

exl: 13, 14, 15, 17.

cz2: 13, 14.

decr: 3.

delete: 33, 38.

denr: 20, 21, 22.

denr_sq: 21.

dependencies: 30.

depl!*: 29.

deplentry: 29.

derivation.name: 20, 22.

derivative: 26, 27, 28, 32, 33.

diffp:  32.

domainp: 24.

element: 29.

even_action: 20, 22, 23.
even_actien_pow: 25, 26.
even_action_sf: 23, 24, 25.
even_action_term: 24, 25.
even_coefficient: 28.
even_components: 20, 22.
even_dimension: 8, 11, 22.
even_variables: 8.

expr_1: 2.

expr 2: 2.

ext: 7,9, 18, 21, 22, 35, 36, 37, 38, 39.
exi_kernel: 24, 25, 26, 27, 28, 32, 39.
eri_mult: 18, 28, 36.

ezt_product: 28.

fac: 24, 25, 26, 27, 32.
find_active_components: 29, 31.
first_argument_of: 2, 9, 20, 34, 35.
first_element_of : 2, 35.

fizp: 9.
flag: 4, 8.
full: 8.

get: 11,12, 20, 22, 35, 38.
gel_dependencies_of :  29.

global: 4.

global_name: 4.

wdp: 8.

mer: 3, 35.
independent_parti.of: 21, 22.
initialize_global: 4.

inprint:  39.

kc_list_of : 21, 22, 28.

kc_pair: 21, 23, 28, 33.
kc.pairs: 28.

kernel: 9, 26, 27, 29, 30, 31, 33.
kernelof: 21, 23, 28, 32, 33, 36.
kernels_on_list:  39.

length: 8,9, 11, 19, 34, 35, 39.
let2: 34.

list: 2, 8, 21, 22, 35, 39.

it: 24.

iz2: 13, 14, 15, 16.
make_oplist: 8, 11, 12.

maz: 9.

merge_lists: 13, 18.

message: 2.

mkl*sq. 36.
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msgpri: 2.

multf: 20, 25.

multsq: 20, 27, 28, 32.
natural_wedges: 37.
natural_wedges_handler: 37, 38.
nconc: 15.

negsq: 33.

new.switch: 4, 37.

newlok: 38.

nth: 22.

null: 8, 15, 18, 35.

numr: 20, 21, 22, 28.
odd_action: 20, 22, 33.
odd_components: 20, 22.
odd_dimension: 8, 9, 12, 22.
odd_variables: 8, 9, 10, 12.
oddskip: 13, 14, 16, 17.
on_off: 38.

op_list: 8, 21.
operator_name: 8, 10, 11, 12.

operator_name_of: 2, 9, 20, 34, 35.

operator_representation: 37.
pow: 26, 32.
precedence: 38.

prifn: 38.

print_alias: 39.

product: 36.

put: 7, 8, 11, 12, 37, 38.
quotsq: 20.

red: 24.

remprop: 38.

rest_of: 2, 35.

reval: 20.

reverse: 14.

reversip: 15.
save_switch: 38.
second_argument_of : 2.
setk_super.vectorfield: 8, 34.
setkfn: 8, 34.

sf: 24.

sign: 13, 14, 15, 17, 33.
sign_of: 18.

simp: 36.

simp!*: 20, 22.

simpfg: 37.

simpfn: 7, 8, 11, 12.
simpiden: 7, 19.
skip_list: 2.

split_ezt: 21, 22, 36.
split_form: 21, 22.

INDEX

splitted_denr: 20, 22.
splitted_form: 21, 23, 33.
splitted_numr: 20, 22.
splitted_z: 36.
splitted_y: 36.
sq: 21,
stop_with_error:
string_1: 2.
string_2: 2.
subs2: 36.
subirsq: 20.
super_der_simp: 8, 11, 12, 19.
super_product: 36, 37, 38, 39.
super_vectorfield: 8, 10.

switch: 4.

swilch!*: 38.

switch_name: 4.

term: 25.

term_coeff: 25.

term_pow: 25.

term_z: 36.

term_y: 36.

terpri: 5.

times: 37, 38.

tuple: 34, 35.
update_components: 29, 30.

val: 34.

value: 4, 34.

var: 34, 35.

variables: 8, 10, 11, 20, 22, 34, 35.
veclorfield: 10, 34, 35.
wedge_print: 38, 39.

write: 5.

zl:. 13, 14, 15, 17, 18.

z2: 13, 14, 15, 16, 17, 18.

2,8, 9, 11, 12, 35.

16
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(Adapt odd_dimension according to odd.variables 9) Used in sections 8 and 12.

(Find all the dependencies of kernel and construct active_components 31) Used in section 26.
(Get the lists splitted_numr, splitted_denr, even_components and odd_components 22) Used in section 20.
(If possible, translate var into an appropriate tuple 35) Used in section 34.

(If kernel is one the even local coordinates, return the action on pow 27) Used in section 26.
(Lisp initializations 7,37) Used in section 5.

(Move first element of Iz2 to z2 and goto b 16) Used in section 15.

{Move first element of z/ to z2 and goto b 17) Used in section 15.

(Prepare z1, z2 and Iz2, if ready goto b 14) Used in section 13.

(Return the action of the vectorfield on a function 20) Used in section 19.

{Return the sum of the actions of active_components on pow 32) Used in section 26.

( Weave all elements of z1 and iz2 in front of z2, return if done 15) Used in section 13.



