
Rational Approximations Package for REDUCE

Lisa Temme
Wolfram Koepf

e-mail: koepf@zib.de
& Alan Barnes

email: Alan.Barnes45678@gmail.com

August 1995 & February 2019

1 Periodic Decimal Representation

The division of one integer by another often results in a period in the decimal
part. The rational2periodic function in this package can recognise and
represent such an answer in a periodic representation. The inverse function,
periodic2rational, converts a periodic representation back to a rational
number.

Periodic Representation of a Rational Number

SYNTAX: rational2periodic(n);
rational2periodic(n, b);

INPUT: n is a rational number
b is the number base, if absent the default is 10.

RESULT: periodic({a1,...,an},{b1,...,bm},{c1,...,ck},±b)
where {a1,...,an} is a list of the digits in the integer part,
{b1,...,bm} is a list of the digits in the non-periodic part,
{c1,...,ck} is a list of the digits in the periodic part
and ±b where b is the number base 2 ≤ b ≤ 16,
a minus indicating the rational number n was negative.

EXAMPLES:
−59/70 written as −0.8428571
1: rational2periodic(-59/70);
periodic({0}, {8}, {4,2,8,5,7,1}, -10)

1

1/80 written as a hexadecimal is 0.03
2: rational2periodic(1/80,16);
periodic({0}, {0}, {3}, 16)

Normally the operator periodic will not be seen as the output will be prettyprinted
as −0.8428571 and 0.03 (base 16) respectively. Currently pretty-printed output
looks better when the switch FANCY is OFF.

Rational Number of a Periodic Representation

SYNTAX:
periodic2rational(periodic({a1,...,an},{b1...bm},{c1,...,ck},±b)
periodic2rational({a1,...,an},{b1...bm},{c1,...,ck},±b)

INPUT:
{a1,...,an} is a list of the digits in the integer part,
{b1,...,bm} is a list of the digits in the non-periodic part,
{c1,...,ck} is a list of the digits in the periodic part
and b is the number base 2 ≤ b ≤ 16, a minus
indicating the rational number result should be negative.
If the base is omitted, 10 is assumed.

RESULT:
A rational number.

EXAMPLES:

0.8428571 written as 59/70
3: periodic2rational(periodic({0},{8},{4,2,8,5,7,1}));

59

70

4: periodic2rational({0},{8},{4,2,8,5,7,1}, -10);

59
- ---

70

Note that periodic2rational will produce the correct rational result when
passed a parameter for the periodic part which is not minimal. Similarly, a par-
ameter for the periodic part which consists of all 9’s (or in base b, all (b − 1)’s)

2

is treated correctly although such periodic parts are not canonical and are never
generated by calls to rational2periodic.

For example,
periodic2rational({0}, {}, {1, 2, 1, 2});
periodic2rational({0}, {1}, {2, 1});
periodic2rational({0}, {1, 2}, {1, 2, 1, 2});

all produce the same rational result, namely 4
33 , as the canonical input

periodic2rational({0}, {}, {1, 2});

Similarly,
periodic2rational({0}, {}, {9});
periodic2rational({0}, {9}, {9});
periodic2rational({0}, {}, {9, 9, 9, 9});

all produce the same rational result, namely 1, as the canonical input
periodic2rational({1}, {}, {});

Although the operators periodic2rational and rational2periodic
work even when ROUNDED is ON, they are best used when ROUNDED is OFF.
The input to rational2periodic should not be a rounded number, otherwise
an error results.

For example, the input rational2periodic(1/7); will produce the in-
tended periodic representation even with ROUNDED ON. However, the input

a := 1/7; rational2periodic(a);

will result in an error as the simplifier is applied in the assignment and rounds the
rational number.

Similarly, although the result of periodic2rational will always be a rational
number (represented by a QUOTIENT prefix form), if the simplifier is applied to
the result a rounded value will be produced.

2 Continued Fractions

A continued fraction (see [?]) has the general form

a0 +
a1

b1 +
a2

b2+
a3

b3+...

.

3

A more compact way of writing this is as

a0 +
a1|
|b1

+
a2|
|b2

+
a3|
|b3

+

Even more succinctly:

{a0, {a1, b1}, {a2, b2}, . . .}

This is represented in REDUCE as

contfrac(Expression,Rational approximant, {a0, {a1, b1}, {a2, b2},})

The operator CFRAC is used to generate a generalised continued fraction expan-
sion of an algebraic expression.

cfrac(〈num〉)
cfrac(〈num〉,〈length〉)
cfrac(〈func〉,〈var〉)
cfrac(〈func〉,〈var〉,〈length〉)

INPUT: 〈num〉 is any real number
〈func〉 is a function
〈var〉 is the function main variable
〈length〉 is the maximum number of terms (continuents)

to be generated and is optional.

For non-rational function or irrational number input the 〈length〉 argument specifies
the number of continuents (ordered pairs, {ai, bi}), to be returned. Its default value
is five. For rational function or rational number input the length argument can
only truncate the answer, it cannot return additional pairs even if the precision is
increased. The default for rational function or rational number input is the complete
continued fraction.

For a non-rational function, power series expansion is necessary. The new switch
cf_taylor controls whether the TAYLOR or the TPS package is used to produce
the power series required. By default this switch is OFF and so the TPS package is
normally employed. In most cases the choice is not important, but the TPS option
is somewhat better at handling cases where the series expansion is rather sparse. In
a few cases TPS may fail to produce a series expansion when TAYLOR succeeds
and vice-versa.

For numerical input the default value is exact for rational number arguments whilst
for irrational or rounded input it is dependent on the precision of the session. The

4

length argument will only take effect if is smaller than the number of ordered
pairs which the default value would return.

If the number of continuent pairs returned does not exceed twelve, the result will
usually be pretty-printed as a two element list consisting of the convergent followed
by a rendering of the traditional continued fraction expansion. For a larger number
of pairs the output is of the second element is printed as a list of pairs. Thus, usually
the operator contfrac is not seen in the output.

EXAMPLES

cfrac(pi, 4);

355 1
{pi,-----,3 + ----------------}

113 1
7 + ----------

1
15 + ---

1

cfrac(sqrt 2, 5);

41 1
{sqrt(2),----,1 + ---------------------}

29 1
2 + ---------------

1
2 + ---------

1
2 + ---

2

cfrac(23.696, 4);

2962 237 1
{------,-----,23 + ---------------}

125 10 1
1 + ---------

1
2 + ---

3

cfrac((x+2/3)^2/(6*x-5), x, 10);

5

2
9*x + 12*x + 4

{-----------------, exact,
54*x - 45

6*x + 13 1
---------- + -------------}

36 24*x - 20

9

cfrac(e^x, x);

3 2
x x + 9*x + 36*x + 60

{e , -----------------------,
2

3*x - 24*x + 60

x
1 + ---------------------------}

x
1 - ---------------------

x
2 + ---------------

x
3 - ---------

x
2 + ---

5

The operator CF is a synonym for the operator CONTINUED_FRACTION.

cf(〈num〉)
cf(〈num〉,〈size〉)
cf(〈num〉,〈size〉,〈numterms〉)

The meaning of the arguments is the same as for the operator CONTINUED_FRACTION:
the original number to be expanded 〈num〉, an optional maximum size 〈size〉
permitted for the denominator of the convergent and an optional maximum
number of continuents 〈numterms〉 to be generated.

6

The output is in the same format as that of CFRAC described above. As with
the operator CFRAC output of CF is normally pretty-printed so the operator
confract will not be seen.

The accessor operators CF_EXPRESSION, CF_CONVERGENT and
CF_CONTINUENTS allow the various parts of a continued fraction
object 〈cf_object〉 (as returned by any of the operators cf, cfrac,
continued_fraction and cf_euler) to be extracted.

These three operators return, respectively, the originating expression of the
continued fraction object, the last convergent of the continued fraction, a
list of its continuents (that is a list of pairs of partial numerators and de-
nominators).

The operator CF_CONVERGENTS returns a list of all the convergents of
the expansion.

cf_expression(〈cf_object〉)
cf_convergent(〈cf_object〉)
cf_continuents(〈cf_object〉)
cf_convergents(〈cf_object〉)

EXAMPLES

2: cf(6/11);

6 6 1
{----,----,---------------}

11 11 1
1 + ---------

1
1 + ---

5

3: a := cf(pi,1000);

355 1
a := {pi,-----,3 + ----------------}

113 1
7 + ----------

1
15 + ---

1

7

4: cf_convergents a;

22 333 355
{3,----,-----,-----}

7 106 113

5: cf_continuents a;

{3,7,15,1}

6: precision 20;

12

7: cf pi;

21053343141
{pi,-------------,{3,7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1}}

6701487259

The operator CF_EULER is used to generate a generalised continued frac-
tion expansion of an algebraic expression using a formula due to Leonhard
Euler (see [?])).

cf_euler(〈func〉,〈var〉)
cf_euler(〈func〉,〈var〉,〈length〉)

INPUT: 〈func〉 is a function
〈var〉 is the function main variable
〈length〉 is the maximum number of continuents

to be generated and is optional.

The meaning of the parameters is similar to those of CFRAC, but the contin-
ued fraction expansion generated will usually be different. Note that unlike
CFRAC, CF_EULER cannot currently generate continued fraction expan-
sion of numbers and for a rational function argument (with a non-constant
denominator) the expansion will not be exact.

A number of operators are provided for transforming their continued frac-
tion argument 〈cf_object〉 into an equivalent expansion, that is one with
exactly the same convergents. They all accept as their single argument any
continued fraction object 〈cf_object〉. These are:

8

cf_unit_denominators converts all partial denominators to 1.
cf_unit_numerators converts all partial numerators to 1.
cf_remove_fractions converts the denominators of the partial

numerators and partial denominators in
the continuents to 1.

cf_remove_constant removes the zeroth continuent (if non-zero)
absorbing it into the first continuent pair.

The operator CF_TRANSFORM is a general purpose function for transform-
ing its continued fraction argument 〈cf_object〉 into an equivalent expan-
sion. Unlike the four preceding operators it requires a second argument: a
list of multipliers used to modify the partial numerators and denominators
of the original expansion.

cf_transform(〈cf_object〉,〈multiplier-list〉)

To understand the operation of cf_transform consider first the special
case where 〈multiplier-list〉 is a list of the form {1, 1, . . . , 1, ln, 1, . . . , 1}
whose nth element is ln. Only the nth continuent pair {an, bn} and (n+1)th
partial numerator an+1 are altered and become {lnan, lnbn} and lnan+1 re-
spectively. For a 〈multiplier-list〉 that has more than one non-unit element,
the above transformations are applied sequentially from left to right.

If the number of continuent pairs in the 〈cf_object〉 is greater than the length
of the 〈multiplier-list〉, the latter is (in effect) padded with 1’s. Conversely
if it is shorter, the surplus elements of 〈multiplier-list〉 are ignored.

The operator CF_EVEN_ODD splits its continued fraction argument 〈cf_object〉
into two continued fraction objects: namely its even and odd parts (in that
order) which are returned as a two-element list.

cf_even_odd(〈cf_object〉)

The convergents of the even part are the even-numbered convergents of the
original expansion and those of the odd part are the odd-numbered ones
(except the zeroth convergent which is necessarily zero). For the contin-
ued fraction expansions generated by the operators cf and cfrac with a
numerical first argument 〈num〉. The convergents of the even part form a
monotonically increasing sequence whilst those of the odd part (after the
zeroth) form a monotonically decreasing sequence.

EXAMPLES

cf_remove_fractions(cf_euler(e^x, x, 4));

9

3 2
x x + 3*x + 6*x + 6

{e , ---------------------,
6

1
-------------------------------------}

x
1 - -------------------------------

x
(x + 1) - -------------------

2*x
(x + 2) - -------

x + 3

a := cf_remove_fractions(cf_euler(4*atan x, x, 4));

a := {4*atan(x),

7 5 3
- 60*x + 84*x - 140*x + 420*x

-----------------------------------,
105

4*x
---}

2
x

1 + ---
2

2 9*x
(- x + 3) + -------------------------------

2
2 25*x

(- 3*x + 5) + -------------
2

- 5*x + 7

b := (a where x => 1);

304 4

10

b := {pi,-----,----------------------}
105 1

1 + ----------------
9

2 + ----------
25

2 + ----
2

c := cf(pi, 0, 6);

104348 1
c := {pi,--------,3 + ------------------------------}

33215 1
7 + ------------------------

1
15 + -----------------

1
1 + -----------

1
292 + ---

1

cf_remove_constant c;

104348 22
{pi,--------,-------------------------------}

33215 1
7 + -------------------------

22
333 + -----------------

1
1 + -----------

1
292 + ---

1

c:= cf(pi, 0, 8)$
d := cf_even_odd c;

208341 15
d := {{pi,--------,3 + ----------------------},

11

66317 292
106 - --------------

15
4687 - -----

585

312689 22
{pi,--------,-------------------------}}

99532 1
7 + -------------------

22
355 - -----------

1
294 - ---

3
cf_convergents c;

22 333 355 103993 104348 208341 312689
{3,----,-----,-----,--------,--------,--------,--------}

7 106 113 33102 33215 66317 99532

cf_convergents first d;

333 103993 208341
{3,-----,--------,--------}

106 33102 66317

cf_convergents second d;

22 355 104348 312689
{0,----,-----,--------,--------}

7 113 33215 99532

3 Padé Approximation

The Padé approximant represents a function by the ratio of two polynomials
(see [?] §4.2). The coefficients of the powers occuring in the polynomials
are determined by the coefficients in the Taylor series expansion of the func-
tion (see [?]). Given a power series

f(x) = c0 + c1(x− h) + c2(x− h)2 . . .

12

and the degree of numerator, n, and of the denominator, d, the pade func-
tion finds the unique coefficients ai, bi in the Padé approximant

a0 + a1x+ · · ·+ anx
n

b0 + b1x+ · · ·+ bdxd
.

SYNTAX: pade(f, x, h, n, d);

INPUT: f the funtion to be approximated
x the function variable
h the point at which the approximation is evaluated
n the (specified) degree of the numerator
d the (specified) degree of the denominator

RESULT: Padé Approximant, ie. a rational function.

ERROR MESSAGES:
***** not yet implemented
The Taylor series expansion for the function, f, has not yet been imple-
mented in the REDUCE Taylor Package.

***** no Pade Approximation exists
A Padé Approximant of this function does not exist.

***** Pade Approximation of this order does not exist
A Padé Approximant of this order (ie. the specified numerator and denom-
inator orders) does not exist but one of a different order may exist.

EXAMPLES

23: pade(sin(x),x,0,3,3);

2
x*(- 7*x + 60)

2
3*(x + 20)

24: pade(tanh(x),x,0,5,5);

13

4 2
x*(x + 105*x + 945)

4 2
15*(x + 28*x + 63)

25: pade(atan(x),x,0,5,5);

4 2
x*(64*x + 735*x + 945)

4 2
15*(15*x + 70*x + 63)

26: pade(exp(1/x),x,0,5,5);

***** no Pade Approximation exists

27: pade(factorial(x),x,1,3,3);

***** not yet implemented

28: pade(asech(x),x,0,3,3);

2 2 2
- 3*log(x)*x + 8*log(x) + 3*log(2)*x - 8*log(2) + 2*x
--

2
3*x - 8

29: taylor(ws-asech(x),x,0,10);

11
log(x)*(0 + O(x))

13 6 43 8 1611 10 11
+ (-----*x + ------*x + -------*x + O(x))

768 2048 81920

30: pade(sin(x)/x^2,x,0,10,0);

14

***** Pade Approximation of this order does not exist

31: pade(sin(x)/x^2,x,0,10,2);

10 8 6 4 2
(- x + 110*x - 7920*x + 332640*x - 6652800*x

+ 39916800)/(39916800*x)

32: pade(exp(x),x,0,10,10);

10 9 8 7 6
(x + 110*x + 5940*x + 205920*x + 5045040*x

5 4 3
+ 90810720*x + 1210809600*x + 11762150400*x

2
+ 79394515200*x + 335221286400*x + 670442572800)/

10 9 8 7 6
(x - 110*x + 5940*x - 205920*x + 5045040*x

5 4
- 90810720*x + 1210809600*x

3 2
- 11762150400*x + 79394515200*x

- 335221286400*x + 670442572800)

33: pade(sin(sqrt(x)),x,0,3,3);

(sqrt(x)*
3 2

(56447*x - 4851504*x + 132113520*x - 885487680))\

3 2
(7*(179*x - 7200*x - 2209680*x - 126498240))

15

References

[1] Jones, W B.; Thron, W.J.,
Continued fractions. Analytic Theory and Applications, (Encyclopedia
of Mathematics and its Applications, Vol 11), Addison-Wesley Publish-
ing Company, Reading, Massachusetts, 1980.

[2] L Euler L., Introductio in analysin infinitorum, Vol 1, Chapter 18, 1748.

[3] Baker(Jr.), G.A. and Graves-Morris, P.,
Padé Approximants, Part I: Basic Theory, (Encyclopedia of Mathemat-
ics and its Applications, Vol 13), Addison-Wesley Publishing Company,
Reading, Massachusetts, 1981.

16

