REDUCE interface to the CUBA integration library

Kostas N. Oikonomou
AT&T Labs Research, Middletown, NJ, U.S.A.

koQ@research.att.com

March 18, 2015

1 Introduction

The cuba package is an interface between REDUCE (CSL) and the CUBA library for multi-
dimensional numerical integration. The library can be found at http://www.feynarts.de/
cuba and offers a choice of four integration methods: Vegas, Suave, Divonne, and Cuhre.
The first three are Monte Carlo-based and the fourth is deterministic. It is recommended
to read the CUBA manual, and, optionally, to look at the other documentation provided

on the site.

Here is some basic information on the algorithms, copied from the CUBA web site.

ROUTINE | BASIC INTEGRATION METHOD ALCORITHM | VARIANCE REDUCTION
Sobol quasi-random sample, Monte Carlo
Vegas or Mersenne Twister pseudo-random sample, | Monte Carlo | importance sampling
or Ranlux pseudo-random sample Monte Carlo
Sobol quasi-random sample, Monte Carlo | globally-adaptive
Suave or Mersenne Twister pseudo-random sample, | Monte Carlo | subdivision +
or Ranlux pseudo-random sample Monte Carlo | importance sampling
Korobov quasi-random sample, Monte Carlo | stratified sampling,
or Sobol quasi-random sample, Monte Carlo | aided by methods
Divonne or Mersenne Twister pseudo-random sample, | Monte Carlo | from numerical
or Ranlux pseudo-random sample, Monte Carlo | optimization
or cubature rules deterministic
Cuhre cubature rules deterministic | globally-adaptive
subdivision

Vegas is the simplest of the four. It uses importance sampling for variance reduction,
but is only in some cases competitive in terms of the number of samples needed to reach a
prescribed accuracy. Nevertheless, it has a few improvements over the original algorithm
and comes in handy for cross-checking the results of other methods.

http://www.feynarts.de/cuba
http://www.feynarts.de/cuba

Suave is a new algorithm which combines the advantages of two popular methods:
importance sampling as done by Vegas and subregion sampling in a manner similar to
Miser. By dividing into subregions, Suave manages to a certain extent to get around
Vegas’ difficulty to adapt its weight function to structures not aligned with the coordinate
axes.

Divonne is a further development of the CERNLIB routine D151. Divonne works by
stratified sampling, where the partitioning of the integration region is aided by methods
from numerical optimization. A number of improvements have been added to this algo-
rithm, the most significant being the possibility to supply knowledge about the integrand.
Narrow peaks in particular are difficult to find without sampling very many points, espe-
cially in high dimensions. Often the exact or approximate location of such peaks is known
from analytic considerations, however, and with such hints the desired accuracy can be
reached with far fewer points.

Cuhre employs a cubature rule for subregion estimation in a globally adaptive subdi-
vision scheme. It is hence a deterministic, not a Monte Carlo method. In each iteration,
the subregion with the largest error is halved along the axis where the integrand has the
largest fourth difference. Cuhre is quite powerful in moderate dimensions, and is usually
the only viable method to obtain high precision, say relative accuracies much below 1073.

2 The Reduce package

The cuba package evaluates integrals only over hyper-rectangles'. As an example of what
can be done in REDUCE, say f is a function R® — R and we want to compute

bi rbo pbs
/ / f(x1, 22, x3) doy dag dxs
a1 Jas Jas

using the Vegas algorithm, one of the choices provided by CUBA. This is done by saying

load_package cuba;
on rounded;
cuba_int (f,{{al,b1},{a2,b2},{a3,b3}},Vegas);

Notes
e If you have on lower, then Vegas above has to be substituted by !Vegas.

e Although quite a bit of effort has gone into making the package work even when not
in rounded mode, it is probably best to have on rounded.

LCuBa itself evaluates all integrals over the unit hypercube, but the REDUCE interface provides a small
extension, allowing the user to integrate over an arbitrary hyper-rectangle.

The REDUCE function f defining the integrand is assumed to take a 3-element list = as
input and return the value f(z) of the integrand at the point = € R3. If so, the above call
to cuba_int (...) will return a list of the form

{value, error, probability, number of regions, number of evaluations,
status}

where value is the value of the integral, error is an indication of the probable error, and
status indicates whether the algorithm terminated successfully or not. Consult the CUBA
manual for the other quantities.

3 Installation

At present the REDUCE parts of this package can be built only using the CSL version
of REDUCE, but in that context get compiled automatically as part of the full standard
system. However the code for CUBA and the C-coded interface between it and REDUCE
have to be built by hand, and currently this works when all the REDUCE sources have been
installed and REDUCE is built from scratch.

In that case you should identify the directory packages/foreign/cuba in the REDUCE
source tree and select it as current. Ensure that the command wget is available on your
platform and then you can go make to fetch CUBA from its home site, compile it, and create
the dynamic library that forms a link between CUBA and REDUCE.

This should work on any sufficiently modern Unix-like system, including either the 32-
or 64-bit version of Cygwin. The term “modern” here refers to Linux systems using releases
no older then the very end of 2011: any such will probably provide a version of the gcc C
compiler (i.e. one from 4.6.x onwards) sufficient for CUBA. This corresponds to Ubuntu
from release 11.10 onwards or Fedora from about version 15.

To use the cuba package on Windows you must run a Cygwin version of CSL Reduce,
not a native Windows one. That means that if you want the benefit of a GUI you must
have an X server running and the environment variable DISPLAY set up for it. Passing
the command-line flag ——cygwin to the CSL version of REDUCE should cause a suitable
version of the system to be loaded, and this probably needs to be done from the command
line of a Cygwin terminal. This limitation is because the main CUBA library does not
support native Windows.

Anybody with either and older version of an operating system or one other than
(Free)BSD, OSX, Linux or Cygwin may need to identify a C compiler that can handle
CuBA (any that support enough of the features of the 2011 C standard should suffice) and
edit the Makefile to set the C compiler and any flags or options that it needs. Slightly
bigger alterations will be needed if the linking command that makes the dynamic interface
library needs changing.

4 The interface

Currently, the interface provides the functions listed in Table 1. The table gives minimal
explanations, consult the CUBA manual for details.

cuba_gen_par (name,value) Set the generally-applicable parameter
name (a string) to value
cuba_vegas_par (name,value) Set a Vegas-specific parameter
cuba_suave_par (name,value) Set a Suave-specific parameter
cuba_divonne par(name,value) | Set a Divonne-specific parameter
cuba_cuhre_par (name,value) Set a Cuhre-specific parameter
cuba_verbosity(v) For v = 0,1,2 cuba_int will provide
more informative output
cuba_set_flags bit (i) Set the ith bit of the global flags
cuba_clear flags bit(i) Clear the ¢th bit of the global flags
cuba_statefile(fname) file fname will be used for checkpointing
a long-running integration
cuba_int (f,{{a1,b1},...}},alg) | Integrate the REDUCE function f over
the hyper-rectangle {a1,b1} x --- X
{am, b} using algorithm alg

Table 1: Functionality of the REDUCE interface to the CUBA library.

There are some features of CUBA that are not handled by this version of the interface:
vector integrands, i.e. functions from R"™ — R™ with m > 1, integration routines that can
do more than 23? evaluations, and some of the parallelization features.

5 Implementation of the cuba package

5.1 Structure

This is not of interest to most users, but the package consists of the following files?:

cuba_main.red

alg_intf.red

cuba.tst

redcuba.c Builds libredcuba.so, a “glue” library between the
actual CUBA library libcuba.a and REDUCE/CSL

C_call CSL.h | The “procedural” interface from C to CSL, used in the
above

cuba.red The module defining the CUBA package

The REDUCE module (symbolic procedures) imple-
menting the interface

Utilities for interfacing between algebraic and symbolic
modes

A REDUCE test file.

5.2 Debugging

To debug the interface, there is a variable DEBUG in redcuba. c, normally set to 0. By setting
it to 1 or 2 and re-making libredcuba.so the package will produce various debugging

messages that should be useful.

Acknowledgments

Thanks to Arthur Norman for his invaluable support in navigating the intricacies of RE-

DUCE, algebraic and symbolic mode, RLISP, Standard Lisp, CSL, etc.

2If the list of files and comments is confusing, refer to the Acknowledgments.

	Introduction
	The Reduce package
	Installation
	The interface
	Implementation of the cuba package
	Structure
	Debugging

