Z3
Data Structures | Functions | Variables
z3py Namespace Reference

Data Structures

class  AlgebraicNumRef
 
class  ApplyResult
 
class  ArithRef
 
class  ArithSortRef
 Arithmetic. More...
 
class  ArrayRef
 
class  ArraySortRef
 Arrays. More...
 
class  AstMap
 
class  AstRef
 
class  AstVector
 
class  BitVecNumRef
 
class  BitVecRef
 
class  BitVecSortRef
 Bit-Vectors. More...
 
class  BoolRef
 
class  BoolSortRef
 Booleans. More...
 
class  CheckSatResult
 
class  Context
 
class  Datatype
 
class  DatatypeRef
 
class  DatatypeSortRef
 
class  ExprRef
 Expressions. More...
 
class  FiniteDomainNumRef
 
class  FiniteDomainRef
 
class  FiniteDomainSortRef
 
class  Fixedpoint
 Fixedpoint. More...
 
class  FPNumRef
 
class  FPRef
 
class  FPRMRef
 
class  FPRMSortRef
 
class  FPSortRef
 
class  FuncDeclRef
 Function Declarations. More...
 
class  FuncEntry
 
class  FuncInterp
 
class  Goal
 
class  IntNumRef
 
class  ModelRef
 
class  Optimize
 
class  OptimizeObjective
 Optimize. More...
 
class  ParamDescrsRef
 
class  ParamsRef
 Parameter Sets. More...
 
class  PatternRef
 Patterns. More...
 
class  Probe
 
class  PropClosures
 
class  QuantifierRef
 Quantifiers. More...
 
class  RatNumRef
 
class  ReRef
 
class  ReSortRef
 
class  ScopedConstructor
 
class  ScopedConstructorList
 
class  SeqRef
 
class  SeqSortRef
 Strings, Sequences and Regular expressions. More...
 
class  Solver
 
class  SortRef
 
class  Statistics
 Statistics. More...
 
class  Tactic
 
class  UserPropagateBase
 
class  Z3PPObject
 ASTs base class. More...
 

Functions

def z3_debug ()
 
def enable_trace (msg)
 
def disable_trace (msg)
 
def get_version_string ()
 
def get_version ()
 
def get_full_version ()
 
def open_log (fname)
 
def append_log (s)
 
def to_symbol (s, ctx=None)
 
def z3_error_handler (c, e)
 
def main_ctx ()
 
def get_ctx (ctx)
 
def set_param (*args, **kws)
 
def reset_params ()
 
def set_option (*args, **kws)
 
def get_param (name)
 
def is_ast (a)
 
def eq (a, b)
 
def is_sort (s)
 
def DeclareSort (name, ctx=None)
 
def is_func_decl (a)
 
def Function (name, *sig)
 
def FreshFunction (*sig)
 
def RecFunction (name, *sig)
 
def RecAddDefinition (f, args, body)
 
def is_expr (a)
 
def is_app (a)
 
def is_const (a)
 
def is_var (a)
 
def get_var_index (a)
 
def is_app_of (a, k)
 
def If (a, b, c, ctx=None)
 
def Distinct (*args)
 
def Const (name, sort)
 
def Consts (names, sort)
 
def FreshConst (sort, prefix="c")
 
def Var (idx, s)
 
def RealVar (idx, ctx=None)
 
def RealVarVector (n, ctx=None)
 
def is_bool (a)
 
def is_true (a)
 
def is_false (a)
 
def is_and (a)
 
def is_or (a)
 
def is_implies (a)
 
def is_not (a)
 
def is_eq (a)
 
def is_distinct (a)
 
def BoolSort (ctx=None)
 
def BoolVal (val, ctx=None)
 
def Bool (name, ctx=None)
 
def Bools (names, ctx=None)
 
def BoolVector (prefix, sz, ctx=None)
 
def FreshBool (prefix="b", ctx=None)
 
def Implies (a, b, ctx=None)
 
def Xor (a, b, ctx=None)
 
def Not (a, ctx=None)
 
def mk_not (a)
 
def And (*args)
 
def Or (*args)
 
def is_pattern (a)
 
def MultiPattern (*args)
 
def is_quantifier (a)
 
def ForAll (vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])
 
def Exists (vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])
 
def Lambda (vs, body)
 
def is_arith_sort (s)
 
def is_arith (a)
 
def is_int (a)
 
def is_real (a)
 
def is_int_value (a)
 
def is_rational_value (a)
 
def is_algebraic_value (a)
 
def is_add (a)
 
def is_mul (a)
 
def is_sub (a)
 
def is_div (a)
 
def is_idiv (a)
 
def is_mod (a)
 
def is_le (a)
 
def is_lt (a)
 
def is_ge (a)
 
def is_gt (a)
 
def is_is_int (a)
 
def is_to_real (a)
 
def is_to_int (a)
 
def IntSort (ctx=None)
 
def RealSort (ctx=None)
 
def IntVal (val, ctx=None)
 
def RealVal (val, ctx=None)
 
def RatVal (a, b, ctx=None)
 
def Q (a, b, ctx=None)
 
def Int (name, ctx=None)
 
def Ints (names, ctx=None)
 
def IntVector (prefix, sz, ctx=None)
 
def FreshInt (prefix="x", ctx=None)
 
def Real (name, ctx=None)
 
def Reals (names, ctx=None)
 
def RealVector (prefix, sz, ctx=None)
 
def FreshReal (prefix="b", ctx=None)
 
def ToReal (a)
 
def ToInt (a)
 
def IsInt (a)
 
def Sqrt (a, ctx=None)
 
def Cbrt (a, ctx=None)
 
def is_bv_sort (s)
 
def is_bv (a)
 
def is_bv_value (a)
 
def BV2Int (a, is_signed=False)
 
def Int2BV (a, num_bits)
 
def BitVecSort (sz, ctx=None)
 
def BitVecVal (val, bv, ctx=None)
 
def BitVec (name, bv, ctx=None)
 
def BitVecs (names, bv, ctx=None)
 
def Concat (*args)
 
def Extract (high, low, a)
 
def ULE (a, b)
 
def ULT (a, b)
 
def UGE (a, b)
 
def UGT (a, b)
 
def UDiv (a, b)
 
def URem (a, b)
 
def SRem (a, b)
 
def LShR (a, b)
 
def RotateLeft (a, b)
 
def RotateRight (a, b)
 
def SignExt (n, a)
 
def ZeroExt (n, a)
 
def RepeatBitVec (n, a)
 
def BVRedAnd (a)
 
def BVRedOr (a)
 
def BVAddNoOverflow (a, b, signed)
 
def BVAddNoUnderflow (a, b)
 
def BVSubNoOverflow (a, b)
 
def BVSubNoUnderflow (a, b, signed)
 
def BVSDivNoOverflow (a, b)
 
def BVSNegNoOverflow (a)
 
def BVMulNoOverflow (a, b, signed)
 
def BVMulNoUnderflow (a, b)
 
def is_array_sort (a)
 
def is_array (a)
 
def is_const_array (a)
 
def is_K (a)
 
def is_map (a)
 
def is_default (a)
 
def get_map_func (a)
 
def ArraySort (*sig)
 
def Array (name, dom, rng)
 
def Update (a, i, v)
 
def Default (a)
 
def Store (a, i, v)
 
def Select (a, i)
 
def Map (f, *args)
 
def K (dom, v)
 
def Ext (a, b)
 
def SetHasSize (a, k)
 
def is_select (a)
 
def is_store (a)
 
def SetSort (s)
 Sets. More...
 
def EmptySet (s)
 
def FullSet (s)
 
def SetUnion (*args)
 
def SetIntersect (*args)
 
def SetAdd (s, e)
 
def SetDel (s, e)
 
def SetComplement (s)
 
def SetDifference (a, b)
 
def IsMember (e, s)
 
def IsSubset (a, b)
 
def CreateDatatypes (*ds)
 
def TupleSort (name, sorts, ctx=None)
 
def DisjointSum (name, sorts, ctx=None)
 
def EnumSort (name, values, ctx=None)
 
def args2params (arguments, keywords, ctx=None)
 
def Model (ctx=None)
 
def is_as_array (n)
 
def get_as_array_func (n)
 
def SolverFor (logic, ctx=None, logFile=None)
 
def SimpleSolver (ctx=None, logFile=None)
 
def FiniteDomainSort (name, sz, ctx=None)
 
def is_finite_domain_sort (s)
 
def is_finite_domain (a)
 
def FiniteDomainVal (val, sort, ctx=None)
 
def is_finite_domain_value (a)
 
def AndThen (*ts, **ks)
 
def Then (*ts, **ks)
 
def OrElse (*ts, **ks)
 
def ParOr (*ts, **ks)
 
def ParThen (t1, t2, ctx=None)
 
def ParAndThen (t1, t2, ctx=None)
 
def With (t, *args, **keys)
 
def WithParams (t, p)
 
def Repeat (t, max=4294967295, ctx=None)
 
def TryFor (t, ms, ctx=None)
 
def tactics (ctx=None)
 
def tactic_description (name, ctx=None)
 
def describe_tactics ()
 
def is_probe (p)
 
def probes (ctx=None)
 
def probe_description (name, ctx=None)
 
def describe_probes ()
 
def FailIf (p, ctx=None)
 
def When (p, t, ctx=None)
 
def Cond (p, t1, t2, ctx=None)
 
def simplify (a, *arguments, **keywords)
 Utils. More...
 
def help_simplify ()
 
def simplify_param_descrs ()
 
def substitute (t, *m)
 
def substitute_vars (t, *m)
 
def Sum (*args)
 
def Product (*args)
 
def AtMost (*args)
 
def AtLeast (*args)
 
def PbLe (args, k)
 
def PbGe (args, k)
 
def PbEq (args, k, ctx=None)
 
def solve (*args, **keywords)
 
def solve_using (s, *args, **keywords)
 
def prove (claim, show=False, **keywords)
 
def parse_smt2_string (s, sorts={}, decls={}, ctx=None)
 
def parse_smt2_file (f, sorts={}, decls={}, ctx=None)
 
def get_default_rounding_mode (ctx=None)
 
def set_default_rounding_mode (rm, ctx=None)
 
def get_default_fp_sort (ctx=None)
 
def set_default_fp_sort (ebits, sbits, ctx=None)
 
def Float16 (ctx=None)
 
def FloatHalf (ctx=None)
 
def Float32 (ctx=None)
 
def FloatSingle (ctx=None)
 
def Float64 (ctx=None)
 
def FloatDouble (ctx=None)
 
def Float128 (ctx=None)
 
def FloatQuadruple (ctx=None)
 
def is_fp_sort (s)
 
def is_fprm_sort (s)
 
def RoundNearestTiesToEven (ctx=None)
 
def RNE (ctx=None)
 
def RoundNearestTiesToAway (ctx=None)
 
def RNA (ctx=None)
 
def RoundTowardPositive (ctx=None)
 
def RTP (ctx=None)
 
def RoundTowardNegative (ctx=None)
 
def RTN (ctx=None)
 
def RoundTowardZero (ctx=None)
 
def RTZ (ctx=None)
 
def is_fprm (a)
 
def is_fprm_value (a)
 
def is_fp (a)
 
def is_fp_value (a)
 
def FPSort (ebits, sbits, ctx=None)
 
def fpNaN (s)
 
def fpPlusInfinity (s)
 
def fpMinusInfinity (s)
 
def fpInfinity (s, negative)
 
def fpPlusZero (s)
 
def fpMinusZero (s)
 
def fpZero (s, negative)
 
def FPVal (sig, exp=None, fps=None, ctx=None)
 
def FP (name, fpsort, ctx=None)
 
def FPs (names, fpsort, ctx=None)
 
def fpAbs (a, ctx=None)
 
def fpNeg (a, ctx=None)
 
def fpAdd (rm, a, b, ctx=None)
 
def fpSub (rm, a, b, ctx=None)
 
def fpMul (rm, a, b, ctx=None)
 
def fpDiv (rm, a, b, ctx=None)
 
def fpRem (a, b, ctx=None)
 
def fpMin (a, b, ctx=None)
 
def fpMax (a, b, ctx=None)
 
def fpFMA (rm, a, b, c, ctx=None)
 
def fpSqrt (rm, a, ctx=None)
 
def fpRoundToIntegral (rm, a, ctx=None)
 
def fpIsNaN (a, ctx=None)
 
def fpIsInf (a, ctx=None)
 
def fpIsZero (a, ctx=None)
 
def fpIsNormal (a, ctx=None)
 
def fpIsSubnormal (a, ctx=None)
 
def fpIsNegative (a, ctx=None)
 
def fpIsPositive (a, ctx=None)
 
def fpLT (a, b, ctx=None)
 
def fpLEQ (a, b, ctx=None)
 
def fpGT (a, b, ctx=None)
 
def fpGEQ (a, b, ctx=None)
 
def fpEQ (a, b, ctx=None)
 
def fpNEQ (a, b, ctx=None)
 
def fpFP (sgn, exp, sig, ctx=None)
 
def fpToFP (a1, a2=None, a3=None, ctx=None)
 
def fpBVToFP (v, sort, ctx=None)
 
def fpFPToFP (rm, v, sort, ctx=None)
 
def fpRealToFP (rm, v, sort, ctx=None)
 
def fpSignedToFP (rm, v, sort, ctx=None)
 
def fpUnsignedToFP (rm, v, sort, ctx=None)
 
def fpToFPUnsigned (rm, x, s, ctx=None)
 
def fpToSBV (rm, x, s, ctx=None)
 
def fpToUBV (rm, x, s, ctx=None)
 
def fpToReal (x, ctx=None)
 
def fpToIEEEBV (x, ctx=None)
 
def StringSort (ctx=None)
 
def SeqSort (s)
 
def is_seq (a)
 
def is_string (a)
 
def is_string_value (a)
 
def StringVal (s, ctx=None)
 
def String (name, ctx=None)
 
def Strings (names, ctx=None)
 
def SubString (s, offset, length)
 
def SubSeq (s, offset, length)
 
def Empty (s)
 
def Full (s)
 
def Unit (a)
 
def PrefixOf (a, b)
 
def SuffixOf (a, b)
 
def Contains (a, b)
 
def Replace (s, src, dst)
 
def IndexOf (s, substr, offset=None)
 
def LastIndexOf (s, substr)
 
def Length (s)
 
def StrToInt (s)
 
def IntToStr (s)
 
def Re (s, ctx=None)
 
def ReSort (s)
 
def is_re (s)
 
def InRe (s, re)
 
def Union (*args)
 
def Intersect (*args)
 
def Plus (re)
 
def Option (re)
 
def Complement (re)
 
def Star (re)
 
def Loop (re, lo, hi=0)
 
def Range (lo, hi, ctx=None)
 
def PartialOrder (a, index)
 
def LinearOrder (a, index)
 
def TreeOrder (a, index)
 
def PiecewiseLinearOrder (a, index)
 
def TransitiveClosure (f)
 
def ensure_prop_closures ()
 
def user_prop_push (ctx)
 
def user_prop_pop (ctx, num_scopes)
 
def user_prop_fresh (id, ctx)
 
def user_prop_fixed (ctx, cb, id, value)
 
def user_prop_final (ctx, cb)
 
def user_prop_eq (ctx, cb, x, y)
 
def user_prop_diseq (ctx, cb, x, y)
 

Variables

 Z3_DEBUG = __debug__
 
 sat = CheckSatResult(Z3_L_TRUE)
 
 unsat = CheckSatResult(Z3_L_FALSE)
 
 unknown = CheckSatResult(Z3_L_UNDEF)
 

Function Documentation

◆ And()

def z3py.And ( args)
Create a Z3 and-expression or and-probe.

>>> p, q, r = Bools('p q r')
>>> And(p, q, r)
And(p, q, r)
>>> P = BoolVector('p', 5)
>>> And(P)
And(p__0, p__1, p__2, p__3, p__4)

Definition at line 1813 of file z3py.py.

1813def And(*args):
1814 """Create a Z3 and-expression or and-probe.
1815
1816 >>> p, q, r = Bools('p q r')
1817 >>> And(p, q, r)
1818 And(p, q, r)
1819 >>> P = BoolVector('p', 5)
1820 >>> And(P)
1821 And(p__0, p__1, p__2, p__3, p__4)
1822 """
1823 last_arg = None
1824 if len(args) > 0:
1825 last_arg = args[len(args) - 1]
1826 if isinstance(last_arg, Context):
1827 ctx = args[len(args) - 1]
1828 args = args[:len(args) - 1]
1829 elif len(args) == 1 and isinstance(args[0], AstVector):
1830 ctx = args[0].ctx
1831 args = [a for a in args[0]]
1832 else:
1833 ctx = None
1834 args = _get_args(args)
1835 ctx = _get_ctx(_ctx_from_ast_arg_list(args, ctx))
1836 if z3_debug():
1837 _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression or probe")
1838 if _has_probe(args):
1839 return _probe_and(args, ctx)
1840 else:
1841 args = _coerce_expr_list(args, ctx)
1842 _args, sz = _to_ast_array(args)
1843 return BoolRef(Z3_mk_and(ctx.ref(), sz, _args), ctx)
1844
1845
def z3_debug()
Definition: z3py.py:64
def BoolVector(prefix, sz, ctx=None)
Definition: z3py.py:1720
def Bools(names, ctx=None)
Definition: z3py.py:1704
def And(*args)
Definition: z3py.py:1813
Z3_ast Z3_API Z3_mk_and(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] and ... and args[num_args-1].

Referenced by Tactic.__call__(), Fixedpoint.add_rule(), And(), AndThen(), Tactic.apply(), Goal.as_expr(), ApplyResult.as_expr(), Bool(), Bools(), BoolVector(), Distinct(), is_and(), is_bool(), is_implies(), is_or(), Lambda(), ParThen(), prove(), Fixedpoint.query(), Fixedpoint.query_from_lvl(), Repeat(), simplify(), Then(), and Fixedpoint.update_rule().

◆ AndThen()

def z3py.AndThen ( ts,
**  ks 
)
Return a tactic that applies the tactics in `*ts` in sequence.

>>> x, y = Ints('x y')
>>> t = AndThen(Tactic('simplify'), Tactic('solve-eqs'))
>>> t(And(x == 0, y > x + 1))
[[Not(y <= 1)]]
>>> t(And(x == 0, y > x + 1)).as_expr()
Not(y <= 1)

Definition at line 8171 of file z3py.py.

8171def AndThen(*ts, **ks):
8172 """Return a tactic that applies the tactics in `*ts` in sequence.
8173
8174 >>> x, y = Ints('x y')
8175 >>> t = AndThen(Tactic('simplify'), Tactic('solve-eqs'))
8176 >>> t(And(x == 0, y > x + 1))
8177 [[Not(y <= 1)]]
8178 >>> t(And(x == 0, y > x + 1)).as_expr()
8179 Not(y <= 1)
8180 """
8181 if z3_debug():
8182 _z3_assert(len(ts) >= 2, "At least two arguments expected")
8183 ctx = ks.get("ctx", None)
8184 num = len(ts)
8185 r = ts[0]
8186 for i in range(num - 1):
8187 r = _and_then(r, ts[i + 1], ctx)
8188 return r
8189
8190
expr range(expr const &lo, expr const &hi)
Definition: z3++.h:3725
def Not(a, ctx=None)
Definition: z3py.py:1779
def AndThen(*ts, **ks)
Definition: z3py.py:8171
def Ints(names, ctx=None)
Definition: z3py.py:3223

Referenced by AndThen(), and Then().

◆ append_log()

def z3py.append_log (   s)
Append user-defined string to interaction log. 

Definition at line 124 of file z3py.py.

124def append_log(s):
125 """Append user-defined string to interaction log. """
127
128
def append_log(s)
Definition: z3py.py:124
void Z3_API Z3_append_log(Z3_string string)
Append user-defined string to interaction log.

◆ args2params()

def z3py.args2params (   arguments,
  keywords,
  ctx = None 
)
Convert python arguments into a Z3_params object.
A ':' is added to the keywords, and '_' is replaced with '-'

>>> args2params(['model', True, 'relevancy', 2], {'elim_and' : True})
(params model true relevancy 2 elim_and true)

Definition at line 5396 of file z3py.py.

5396def args2params(arguments, keywords, ctx=None):
5397 """Convert python arguments into a Z3_params object.
5398 A ':' is added to the keywords, and '_' is replaced with '-'
5399
5400 >>> args2params(['model', True, 'relevancy', 2], {'elim_and' : True})
5401 (params model true relevancy 2 elim_and true)
5402 """
5403 if z3_debug():
5404 _z3_assert(len(arguments) % 2 == 0, "Argument list must have an even number of elements.")
5405 prev = None
5406 r = ParamsRef(ctx)
5407 for a in arguments:
5408 if prev is None:
5409 prev = a
5410 else:
5411 r.set(prev, a)
5412 prev = None
5413 for k in keywords:
5414 v = keywords[k]
5415 r.set(k, v)
5416 return r
5417
5418
def args2params(arguments, keywords, ctx=None)
Definition: z3py.py:5396

Referenced by Tactic.apply(), args2params(), Solver.set(), Fixedpoint.set(), Optimize.set(), simplify(), and With().

◆ Array()

def z3py.Array (   name,
  dom,
  rng 
)
Return an array constant named `name` with the given domain and range sorts.

>>> a = Array('a', IntSort(), IntSort())
>>> a.sort()
Array(Int, Int)
>>> a[0]
a[0]

Definition at line 4678 of file z3py.py.

4678def Array(name, dom, rng):
4679 """Return an array constant named `name` with the given domain and range sorts.
4680
4681 >>> a = Array('a', IntSort(), IntSort())
4682 >>> a.sort()
4683 Array(Int, Int)
4684 >>> a[0]
4685 a[0]
4686 """
4687 s = ArraySort(dom, rng)
4688 ctx = s.ctx
4689 return ArrayRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), s.ast), ctx)
4690
4691
def IntSort(ctx=None)
Definition: z3py.py:3100
def ArraySort(*sig)
Definition: z3py.py:4645
def to_symbol(s, ctx=None)
Definition: z3py.py:129
def Array(name, dom, rng)
Definition: z3py.py:4678
Z3_ast Z3_API Z3_mk_const(Z3_context c, Z3_symbol s, Z3_sort ty)
Declare and create a constant.

Referenced by ArrayRef.__getitem__(), Array(), ArraySort(), ArrayRef.domain(), get_map_func(), is_array(), is_const_array(), is_K(), is_map(), is_select(), is_store(), K(), Lambda(), Map(), ArrayRef.range(), Select(), ArrayRef.sort(), ExprRef.sort_kind(), Store(), and Update().

◆ ArraySort()

def z3py.ArraySort ( sig)
Return the Z3 array sort with the given domain and range sorts.

>>> A = ArraySort(IntSort(), BoolSort())
>>> A
Array(Int, Bool)
>>> A.domain()
Int
>>> A.range()
Bool
>>> AA = ArraySort(IntSort(), A)
>>> AA
Array(Int, Array(Int, Bool))

Definition at line 4645 of file z3py.py.

4645def ArraySort(*sig):
4646 """Return the Z3 array sort with the given domain and range sorts.
4647
4648 >>> A = ArraySort(IntSort(), BoolSort())
4649 >>> A
4650 Array(Int, Bool)
4651 >>> A.domain()
4652 Int
4653 >>> A.range()
4654 Bool
4655 >>> AA = ArraySort(IntSort(), A)
4656 >>> AA
4657 Array(Int, Array(Int, Bool))
4658 """
4659 sig = _get_args(sig)
4660 if z3_debug():
4661 _z3_assert(len(sig) > 1, "At least two arguments expected")
4662 arity = len(sig) - 1
4663 r = sig[arity]
4664 d = sig[0]
4665 if z3_debug():
4666 for s in sig:
4667 _z3_assert(is_sort(s), "Z3 sort expected")
4668 _z3_assert(s.ctx == r.ctx, "Context mismatch")
4669 ctx = d.ctx
4670 if len(sig) == 2:
4671 return ArraySortRef(Z3_mk_array_sort(ctx.ref(), d.ast, r.ast), ctx)
4672 dom = (Sort * arity)()
4673 for i in range(arity):
4674 dom[i] = sig[i].ast
4675 return ArraySortRef(Z3_mk_array_sort_n(ctx.ref(), arity, dom, r.ast), ctx)
4676
4677
def BoolSort(ctx=None)
Definition: z3py.py:1655
def is_sort(s)
Definition: z3py.py:646
Z3_sort Z3_API Z3_mk_array_sort_n(Z3_context c, unsigned n, Z3_sort const *domain, Z3_sort range)
Create an array type with N arguments.
Z3_sort Z3_API Z3_mk_array_sort(Z3_context c, Z3_sort domain, Z3_sort range)
Create an array type.

Referenced by Array(), ArraySort(), ArraySortRef.domain(), SortRef.kind(), Context.MkArraySort(), SortRef.name(), ArraySortRef.range(), and SetSort().

◆ AtLeast()

def z3py.AtLeast ( args)
Create an at-most Pseudo-Boolean k constraint.

>>> a, b, c = Bools('a b c')
>>> f = AtLeast(a, b, c, 2)

Definition at line 8800 of file z3py.py.

8800def AtLeast(*args):
8801 """Create an at-most Pseudo-Boolean k constraint.
8802
8803 >>> a, b, c = Bools('a b c')
8804 >>> f = AtLeast(a, b, c, 2)
8805 """
8806 args = _get_args(args)
8807 if z3_debug():
8808 _z3_assert(len(args) > 1, "Non empty list of arguments expected")
8809 ctx = _ctx_from_ast_arg_list(args)
8810 if z3_debug():
8811 _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
8812 args1 = _coerce_expr_list(args[:-1], ctx)
8813 k = args[-1]
8814 _args, sz = _to_ast_array(args1)
8815 return BoolRef(Z3_mk_atleast(ctx.ref(), sz, _args, k), ctx)
8816
8817
def AtLeast(*args)
Definition: z3py.py:8800
Z3_ast Z3_API Z3_mk_atleast(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.

Referenced by AtLeast().

◆ AtMost()

def z3py.AtMost ( args)
Create an at-most Pseudo-Boolean k constraint.

>>> a, b, c = Bools('a b c')
>>> f = AtMost(a, b, c, 2)

Definition at line 8782 of file z3py.py.

8782def AtMost(*args):
8783 """Create an at-most Pseudo-Boolean k constraint.
8784
8785 >>> a, b, c = Bools('a b c')
8786 >>> f = AtMost(a, b, c, 2)
8787 """
8788 args = _get_args(args)
8789 if z3_debug():
8790 _z3_assert(len(args) > 1, "Non empty list of arguments expected")
8791 ctx = _ctx_from_ast_arg_list(args)
8792 if z3_debug():
8793 _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
8794 args1 = _coerce_expr_list(args[:-1], ctx)
8795 k = args[-1]
8796 _args, sz = _to_ast_array(args1)
8797 return BoolRef(Z3_mk_atmost(ctx.ref(), sz, _args, k), ctx)
8798
8799
def AtMost(*args)
Definition: z3py.py:8782
Z3_ast Z3_API Z3_mk_atmost(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.

Referenced by AtMost().

◆ BitVec()

def z3py.BitVec (   name,
  bv,
  ctx = None 
)
Return a bit-vector constant named `name`. `bv` may be the number of bits of a bit-vector sort.
If `ctx=None`, then the global context is used.

>>> x  = BitVec('x', 16)
>>> is_bv(x)
True
>>> x.size()
16
>>> x.sort()
BitVec(16)
>>> word = BitVecSort(16)
>>> x2 = BitVec('x', word)
>>> eq(x, x2)
True

Definition at line 3999 of file z3py.py.

3999def BitVec(name, bv, ctx=None):
4000 """Return a bit-vector constant named `name`. `bv` may be the number of bits of a bit-vector sort.
4001 If `ctx=None`, then the global context is used.
4002
4003 >>> x = BitVec('x', 16)
4004 >>> is_bv(x)
4005 True
4006 >>> x.size()
4007 16
4008 >>> x.sort()
4009 BitVec(16)
4010 >>> word = BitVecSort(16)
4011 >>> x2 = BitVec('x', word)
4012 >>> eq(x, x2)
4013 True
4014 """
4015 if isinstance(bv, BitVecSortRef):
4016 ctx = bv.ctx
4017 else:
4018 ctx = _get_ctx(ctx)
4019 bv = BitVecSort(bv, ctx)
4020 return BitVecRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), bv.ast), ctx)
4021
4022
def BitVec(name, bv, ctx=None)
Definition: z3py.py:3999
def is_bv(a)
Definition: z3py.py:3906
def eq(a, b)
Definition: z3py.py:471
def BitVecSort(sz, ctx=None)
Definition: z3py.py:3967

Referenced by BitVecRef.__add__(), BitVecRef.__and__(), BitVecRef.__div__(), BitVecRef.__invert__(), BitVecRef.__mod__(), BitVecRef.__mul__(), BitVecRef.__neg__(), BitVecRef.__or__(), BitVecRef.__pos__(), BitVecRef.__radd__(), BitVecRef.__rand__(), BitVecRef.__rdiv__(), BitVecRef.__rlshift__(), BitVecRef.__rmod__(), BitVecRef.__rmul__(), BitVecRef.__ror__(), BitVecRef.__rrshift__(), BitVecRef.__rsub__(), BitVecRef.__rxor__(), BitVecRef.__sub__(), BitVecRef.__xor__(), BitVec(), BitVecs(), BitVecSort(), BV2Int(), Extract(), is_bv(), is_bv_value(), RepeatBitVec(), SignExt(), BitVecRef.size(), BitVecRef.sort(), SRem(), UDiv(), URem(), and ZeroExt().

◆ BitVecs()

def z3py.BitVecs (   names,
  bv,
  ctx = None 
)
Return a tuple of bit-vector constants of size bv.

>>> x, y, z = BitVecs('x y z', 16)
>>> x.size()
16
>>> x.sort()
BitVec(16)
>>> Sum(x, y, z)
0 + x + y + z
>>> Product(x, y, z)
1*x*y*z
>>> simplify(Product(x, y, z))
x*y*z

Definition at line 4023 of file z3py.py.

4023def BitVecs(names, bv, ctx=None):
4024 """Return a tuple of bit-vector constants of size bv.
4025
4026 >>> x, y, z = BitVecs('x y z', 16)
4027 >>> x.size()
4028 16
4029 >>> x.sort()
4030 BitVec(16)
4031 >>> Sum(x, y, z)
4032 0 + x + y + z
4033 >>> Product(x, y, z)
4034 1*x*y*z
4035 >>> simplify(Product(x, y, z))
4036 x*y*z
4037 """
4038 ctx = _get_ctx(ctx)
4039 if isinstance(names, str):
4040 names = names.split(" ")
4041 return [BitVec(name, bv, ctx) for name in names]
4042
4043
def simplify(a, *arguments, **keywords)
Utils.
Definition: z3py.py:8645
def BitVecs(names, bv, ctx=None)
Definition: z3py.py:4023
def Product(*args)
Definition: z3py.py:8756
def Sum(*args)
Definition: z3py.py:8730

Referenced by BitVecRef.__ge__(), BitVecRef.__gt__(), BitVecRef.__le__(), BitVecRef.__lshift__(), BitVecRef.__lt__(), BitVecRef.__rshift__(), BitVecs(), LShR(), RotateLeft(), RotateRight(), UGE(), UGT(), ULE(), and ULT().

◆ BitVecSort()

def z3py.BitVecSort (   sz,
  ctx = None 
)
Return a Z3 bit-vector sort of the given size. If `ctx=None`, then the global context is used.

>>> Byte = BitVecSort(8)
>>> Word = BitVecSort(16)
>>> Byte
BitVec(8)
>>> x = Const('x', Byte)
>>> eq(x, BitVec('x', 8))
True

Definition at line 3967 of file z3py.py.

3967def BitVecSort(sz, ctx=None):
3968 """Return a Z3 bit-vector sort of the given size. If `ctx=None`, then the global context is used.
3969
3970 >>> Byte = BitVecSort(8)
3971 >>> Word = BitVecSort(16)
3972 >>> Byte
3973 BitVec(8)
3974 >>> x = Const('x', Byte)
3975 >>> eq(x, BitVec('x', 8))
3976 True
3977 """
3978 ctx = _get_ctx(ctx)
3979 return BitVecSortRef(Z3_mk_bv_sort(ctx.ref(), sz), ctx)
3980
3981
def Const(name, sort)
Definition: z3py.py:1405
Z3_sort Z3_API Z3_mk_bv_sort(Z3_context c, unsigned sz)
Create a bit-vector type of the given size.

Referenced by BitVec(), BitVecSort(), BitVecVal(), BitVecSortRef.cast(), fpSignedToFP(), fpToFP(), fpToSBV(), fpToUBV(), fpUnsignedToFP(), is_bv_sort(), Context.mkBitVecSort(), Context.MkBitVecSort(), BitVecSortRef.size(), and BitVecRef.sort().

◆ BitVecVal()

def z3py.BitVecVal (   val,
  bv,
  ctx = None 
)
Return a bit-vector value with the given number of bits. If `ctx=None`, then the global context is used.

>>> v = BitVecVal(10, 32)
>>> v
10
>>> print("0x%.8x" % v.as_long())
0x0000000a

Definition at line 3982 of file z3py.py.

3982def BitVecVal(val, bv, ctx=None):
3983 """Return a bit-vector value with the given number of bits. If `ctx=None`, then the global context is used.
3984
3985 >>> v = BitVecVal(10, 32)
3986 >>> v
3987 10
3988 >>> print("0x%.8x" % v.as_long())
3989 0x0000000a
3990 """
3991 if is_bv_sort(bv):
3992 ctx = bv.ctx
3993 return BitVecNumRef(Z3_mk_numeral(ctx.ref(), _to_int_str(val), bv.ast), ctx)
3994 else:
3995 ctx = _get_ctx(ctx)
3996 return BitVecNumRef(Z3_mk_numeral(ctx.ref(), _to_int_str(val), BitVecSort(bv, ctx).ast), ctx)
3997
3998
def is_bv_sort(s)
Definition: z3py.py:3438
def BitVecVal(val, bv, ctx=None)
Definition: z3py.py:3982
Z3_ast Z3_API Z3_mk_numeral(Z3_context c, Z3_string numeral, Z3_sort ty)
Create a numeral of a given sort.

Referenced by BitVecRef.__lshift__(), BitVecRef.__rshift__(), BitVecNumRef.as_long(), BitVecNumRef.as_signed_long(), BitVecVal(), Concat(), fpBVToFP(), fpFP(), fpSignedToFP(), fpToFP(), fpUnsignedToFP(), is_bv_value(), LShR(), RepeatBitVec(), SignExt(), and ZeroExt().

◆ Bool()

def z3py.Bool (   name,
  ctx = None 
)
Return a Boolean constant named `name`. If `ctx=None`, then the global context is used.

>>> p = Bool('p')
>>> q = Bool('q')
>>> And(p, q)
And(p, q)

Definition at line 1692 of file z3py.py.

1692def Bool(name, ctx=None):
1693 """Return a Boolean constant named `name`. If `ctx=None`, then the global context is used.
1694
1695 >>> p = Bool('p')
1696 >>> q = Bool('q')
1697 >>> And(p, q)
1698 And(p, q)
1699 """
1700 ctx = _get_ctx(ctx)
1701 return BoolRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), BoolSort(ctx).ast), ctx)
1702
1703
def Bool(name, ctx=None)
Definition: z3py.py:1692

Referenced by SortRef.__eq__(), SortRef.__ne__(), Fixedpoint.add_rule(), Solver.assert_and_track(), Optimize.assert_and_track(), Bool(), Bools(), BoolVector(), is_bool(), is_false(), is_not(), is_true(), and Not().

◆ Bools()

def z3py.Bools (   names,
  ctx = None 
)
Return a tuple of Boolean constants.

`names` is a single string containing all names separated by blank spaces.
If `ctx=None`, then the global context is used.

>>> p, q, r = Bools('p q r')
>>> And(p, Or(q, r))
And(p, Or(q, r))

Definition at line 1704 of file z3py.py.

1704def Bools(names, ctx=None):
1705 """Return a tuple of Boolean constants.
1706
1707 `names` is a single string containing all names separated by blank spaces.
1708 If `ctx=None`, then the global context is used.
1709
1710 >>> p, q, r = Bools('p q r')
1711 >>> And(p, Or(q, r))
1712 And(p, Or(q, r))
1713 """
1714 ctx = _get_ctx(ctx)
1715 if isinstance(names, str):
1716 names = names.split(" ")
1717 return [Bool(name, ctx) for name in names]
1718
1719
def Or(*args)
Definition: z3py.py:1846

Referenced by And(), AtLeast(), AtMost(), Bools(), Solver.consequences(), Implies(), is_and(), is_implies(), is_or(), Or(), PbEq(), PbGe(), PbLe(), prove(), Solver.unsat_core(), and Xor().

◆ BoolSort()

def z3py.BoolSort (   ctx = None)
Return the Boolean Z3 sort. If `ctx=None`, then the global context is used.

>>> BoolSort()
Bool
>>> p = Const('p', BoolSort())
>>> is_bool(p)
True
>>> r = Function('r', IntSort(), IntSort(), BoolSort())
>>> r(0, 1)
r(0, 1)
>>> is_bool(r(0, 1))
True

Definition at line 1655 of file z3py.py.

1655def BoolSort(ctx=None):
1656 """Return the Boolean Z3 sort. If `ctx=None`, then the global context is used.
1657
1658 >>> BoolSort()
1659 Bool
1660 >>> p = Const('p', BoolSort())
1661 >>> is_bool(p)
1662 True
1663 >>> r = Function('r', IntSort(), IntSort(), BoolSort())
1664 >>> r(0, 1)
1665 r(0, 1)
1666 >>> is_bool(r(0, 1))
1667 True
1668 """
1669 ctx = _get_ctx(ctx)
1670 return BoolSortRef(Z3_mk_bool_sort(ctx.ref()), ctx)
1671
1672
def Function(name, *sig)
Definition: z3py.py:860
def is_bool(a)
Definition: z3py.py:1535
Z3_sort Z3_API Z3_mk_bool_sort(Z3_context c)
Create the Boolean type.

Referenced by FuncDeclRef.__call__(), SortRef.__eq__(), ArrayRef.__getitem__(), SortRef.__ne__(), FuncDeclRef.arity(), ArraySort(), Goal.assert_exprs(), Solver.assert_exprs(), Fixedpoint.assert_exprs(), Optimize.assert_exprs(), Bool(), BoolSort(), BoolSortRef.cast(), Solver.check(), ArraySortRef.domain(), ArrayRef.domain(), FuncDeclRef.domain(), FreshBool(), Context.getBoolSort(), If(), Implies(), IntSort(), is_arith_sort(), is_ast(), SortRef.kind(), Context.mkBoolSort(), SortRef.name(), Not(), FuncDeclRef.range(), ArraySortRef.range(), ArrayRef.range(), SetSort(), QuantifierRef.sort(), ArrayRef.sort(), Var(), and Xor().

◆ BoolVal()

def z3py.BoolVal (   val,
  ctx = None 
)
Return the Boolean value `True` or `False`. If `ctx=None`, then the global context is used.

>>> BoolVal(True)
True
>>> is_true(BoolVal(True))
True
>>> is_true(True)
False
>>> is_false(BoolVal(False))
True

Definition at line 1673 of file z3py.py.

1673def BoolVal(val, ctx=None):
1674 """Return the Boolean value `True` or `False`. If `ctx=None`, then the global context is used.
1675
1676 >>> BoolVal(True)
1677 True
1678 >>> is_true(BoolVal(True))
1679 True
1680 >>> is_true(True)
1681 False
1682 >>> is_false(BoolVal(False))
1683 True
1684 """
1685 ctx = _get_ctx(ctx)
1686 if val:
1687 return BoolRef(Z3_mk_true(ctx.ref()), ctx)
1688 else:
1689 return BoolRef(Z3_mk_false(ctx.ref()), ctx)
1690
1691
def is_false(a)
Definition: z3py.py:1571
def is_true(a)
Definition: z3py.py:1553
def BoolVal(val, ctx=None)
Definition: z3py.py:1673
Z3_ast Z3_API Z3_mk_true(Z3_context c)
Create an AST node representing true.
Z3_ast Z3_API Z3_mk_false(Z3_context c)
Create an AST node representing false.

Referenced by Goal.as_expr(), ApplyResult.as_expr(), BoolVal(), BoolSortRef.cast(), UserPropagateBase.conflict(), AlgebraicNumRef.index(), is_false(), is_quantifier(), Re(), and Solver.to_smt2().

◆ BoolVector()

def z3py.BoolVector (   prefix,
  sz,
  ctx = None 
)
Return a list of Boolean constants of size `sz`.

The constants are named using the given prefix.
If `ctx=None`, then the global context is used.

>>> P = BoolVector('p', 3)
>>> P
[p__0, p__1, p__2]
>>> And(P)
And(p__0, p__1, p__2)

Definition at line 1720 of file z3py.py.

1720def BoolVector(prefix, sz, ctx=None):
1721 """Return a list of Boolean constants of size `sz`.
1722
1723 The constants are named using the given prefix.
1724 If `ctx=None`, then the global context is used.
1725
1726 >>> P = BoolVector('p', 3)
1727 >>> P
1728 [p__0, p__1, p__2]
1729 >>> And(P)
1730 And(p__0, p__1, p__2)
1731 """
1732 return [Bool("%s__%s" % (prefix, i)) for i in range(sz)]
1733
1734

Referenced by And(), BoolVector(), and Or().

◆ BV2Int()

def z3py.BV2Int (   a,
  is_signed = False 
)
Return the Z3 expression BV2Int(a).

>>> b = BitVec('b', 3)
>>> BV2Int(b).sort()
Int
>>> x = Int('x')
>>> x > BV2Int(b)
x > BV2Int(b)
>>> x > BV2Int(b, is_signed=False)
x > BV2Int(b)
>>> x > BV2Int(b, is_signed=True)
x > If(b < 0, BV2Int(b) - 8, BV2Int(b))
>>> solve(x > BV2Int(b), b == 1, x < 3)
[x = 2, b = 1]

Definition at line 3935 of file z3py.py.

3935def BV2Int(a, is_signed=False):
3936 """Return the Z3 expression BV2Int(a).
3937
3938 >>> b = BitVec('b', 3)
3939 >>> BV2Int(b).sort()
3940 Int
3941 >>> x = Int('x')
3942 >>> x > BV2Int(b)
3943 x > BV2Int(b)
3944 >>> x > BV2Int(b, is_signed=False)
3945 x > BV2Int(b)
3946 >>> x > BV2Int(b, is_signed=True)
3947 x > If(b < 0, BV2Int(b) - 8, BV2Int(b))
3948 >>> solve(x > BV2Int(b), b == 1, x < 3)
3949 [x = 2, b = 1]
3950 """
3951 if z3_debug():
3952 _z3_assert(is_bv(a), "First argument must be a Z3 bit-vector expression")
3953 ctx = a.ctx
3954 # investigate problem with bv2int
3955 return ArithRef(Z3_mk_bv2int(ctx.ref(), a.as_ast(), is_signed), ctx)
3956
3957
def If(a, b, c, ctx=None)
Definition: z3py.py:1349
def BV2Int(a, is_signed=False)
Definition: z3py.py:3935
def solve(*args, **keywords)
Definition: z3py.py:8878
def Int(name, ctx=None)
Definition: z3py.py:3210
Z3_ast Z3_API Z3_mk_bv2int(Z3_context c, Z3_ast t1, bool is_signed)
Create an integer from the bit-vector argument t1. If is_signed is false, then the bit-vector t1 is t...

Referenced by BV2Int().

◆ BVAddNoOverflow()

def z3py.BVAddNoOverflow (   a,
  b,
  signed 
)
A predicate the determines that bit-vector addition does not overflow

Definition at line 4421 of file z3py.py.

4421def BVAddNoOverflow(a, b, signed):
4422 """A predicate the determines that bit-vector addition does not overflow"""
4423 _check_bv_args(a, b)
4424 a, b = _coerce_exprs(a, b)
4425 return BoolRef(Z3_mk_bvadd_no_overflow(a.ctx_ref(), a.as_ast(), b.as_ast(), signed), a.ctx)
4426
4427
def BVAddNoOverflow(a, b, signed)
Definition: z3py.py:4421
Z3_ast Z3_API Z3_mk_bvadd_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise addition of t1 and t2 does not overflow.

◆ BVAddNoUnderflow()

def z3py.BVAddNoUnderflow (   a,
  b 
)
A predicate the determines that signed bit-vector addition does not underflow

Definition at line 4428 of file z3py.py.

4428def BVAddNoUnderflow(a, b):
4429 """A predicate the determines that signed bit-vector addition does not underflow"""
4430 _check_bv_args(a, b)
4431 a, b = _coerce_exprs(a, b)
4432 return BoolRef(Z3_mk_bvadd_no_underflow(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4433
4434
def BVAddNoUnderflow(a, b)
Definition: z3py.py:4428
Z3_ast Z3_API Z3_mk_bvadd_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed addition of t1 and t2 does not underflow.

◆ BVMulNoOverflow()

def z3py.BVMulNoOverflow (   a,
  b,
  signed 
)
A predicate the determines that bit-vector multiplication does not overflow

Definition at line 4463 of file z3py.py.

4463def BVMulNoOverflow(a, b, signed):
4464 """A predicate the determines that bit-vector multiplication does not overflow"""
4465 _check_bv_args(a, b)
4466 a, b = _coerce_exprs(a, b)
4467 return BoolRef(Z3_mk_bvmul_no_overflow(a.ctx_ref(), a.as_ast(), b.as_ast(), signed), a.ctx)
4468
4469
def BVMulNoOverflow(a, b, signed)
Definition: z3py.py:4463
Z3_ast Z3_API Z3_mk_bvmul_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise multiplication of t1 and t2 does not overflow.

◆ BVMulNoUnderflow()

def z3py.BVMulNoUnderflow (   a,
  b 
)
A predicate the determines that bit-vector signed multiplication does not underflow

Definition at line 4470 of file z3py.py.

4470def BVMulNoUnderflow(a, b):
4471 """A predicate the determines that bit-vector signed multiplication does not underflow"""
4472 _check_bv_args(a, b)
4473 a, b = _coerce_exprs(a, b)
4474 return BoolRef(Z3_mk_bvmul_no_underflow(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4475
4476
def BVMulNoUnderflow(a, b)
Definition: z3py.py:4470
Z3_ast Z3_API Z3_mk_bvmul_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed multiplication of t1 and t2 does not underflo...

◆ BVRedAnd()

def z3py.BVRedAnd (   a)
Return the reduction-and expression of `a`.

Definition at line 4407 of file z3py.py.

4407def BVRedAnd(a):
4408 """Return the reduction-and expression of `a`."""
4409 if z3_debug():
4410 _z3_assert(is_bv(a), "First argument must be a Z3 bit-vector expression")
4411 return BitVecRef(Z3_mk_bvredand(a.ctx_ref(), a.as_ast()), a.ctx)
4412
4413
def BVRedAnd(a)
Definition: z3py.py:4407
Z3_ast Z3_API Z3_mk_bvredand(Z3_context c, Z3_ast t1)
Take conjunction of bits in vector, return vector of length 1.

◆ BVRedOr()

def z3py.BVRedOr (   a)
Return the reduction-or expression of `a`.

Definition at line 4414 of file z3py.py.

4414def BVRedOr(a):
4415 """Return the reduction-or expression of `a`."""
4416 if z3_debug():
4417 _z3_assert(is_bv(a), "First argument must be a Z3 bit-vector expression")
4418 return BitVecRef(Z3_mk_bvredor(a.ctx_ref(), a.as_ast()), a.ctx)
4419
4420
def BVRedOr(a)
Definition: z3py.py:4414
Z3_ast Z3_API Z3_mk_bvredor(Z3_context c, Z3_ast t1)
Take disjunction of bits in vector, return vector of length 1.

◆ BVSDivNoOverflow()

def z3py.BVSDivNoOverflow (   a,
  b 
)
A predicate the determines that bit-vector signed division does not overflow

Definition at line 4449 of file z3py.py.

4449def BVSDivNoOverflow(a, b):
4450 """A predicate the determines that bit-vector signed division does not overflow"""
4451 _check_bv_args(a, b)
4452 a, b = _coerce_exprs(a, b)
4453 return BoolRef(Z3_mk_bvsdiv_no_overflow(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4454
4455
def BVSDivNoOverflow(a, b)
Definition: z3py.py:4449
Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed division of t1 and t2 does not overflow.

◆ BVSNegNoOverflow()

def z3py.BVSNegNoOverflow (   a)
A predicate the determines that bit-vector unary negation does not overflow

Definition at line 4456 of file z3py.py.

4456def BVSNegNoOverflow(a):
4457 """A predicate the determines that bit-vector unary negation does not overflow"""
4458 if z3_debug():
4459 _z3_assert(is_bv(a), "First argument must be a Z3 bit-vector expression")
4460 return BoolRef(Z3_mk_bvneg_no_overflow(a.ctx_ref(), a.as_ast()), a.ctx)
4461
4462
def BVSNegNoOverflow(a)
Definition: z3py.py:4456
Z3_ast Z3_API Z3_mk_bvneg_no_overflow(Z3_context c, Z3_ast t1)
Check that bit-wise negation does not overflow when t1 is interpreted as a signed bit-vector.

◆ BVSubNoOverflow()

def z3py.BVSubNoOverflow (   a,
  b 
)
A predicate the determines that bit-vector subtraction does not overflow

Definition at line 4435 of file z3py.py.

4435def BVSubNoOverflow(a, b):
4436 """A predicate the determines that bit-vector subtraction does not overflow"""
4437 _check_bv_args(a, b)
4438 a, b = _coerce_exprs(a, b)
4439 return BoolRef(Z3_mk_bvsub_no_overflow(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4440
4441
def BVSubNoOverflow(a, b)
Definition: z3py.py:4435
Z3_ast Z3_API Z3_mk_bvsub_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed subtraction of t1 and t2 does not overflow.

◆ BVSubNoUnderflow()

def z3py.BVSubNoUnderflow (   a,
  b,
  signed 
)
A predicate the determines that bit-vector subtraction does not underflow

Definition at line 4442 of file z3py.py.

4442def BVSubNoUnderflow(a, b, signed):
4443 """A predicate the determines that bit-vector subtraction does not underflow"""
4444 _check_bv_args(a, b)
4445 a, b = _coerce_exprs(a, b)
4446 return BoolRef(Z3_mk_bvsub_no_underflow(a.ctx_ref(), a.as_ast(), b.as_ast(), signed), a.ctx)
4447
4448
def BVSubNoUnderflow(a, b, signed)
Definition: z3py.py:4442
Z3_ast Z3_API Z3_mk_bvsub_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise subtraction of t1 and t2 does not underflow.

◆ Cbrt()

def z3py.Cbrt (   a,
  ctx = None 
)
 Return a Z3 expression which represents the cubic root of a.

>>> x = Real('x')
>>> Cbrt(x)
x**(1/3)

Definition at line 3386 of file z3py.py.

3386def Cbrt(a, ctx=None):
3387 """ Return a Z3 expression which represents the cubic root of a.
3388
3389 >>> x = Real('x')
3390 >>> Cbrt(x)
3391 x**(1/3)
3392 """
3393 if not is_expr(a):
3394 ctx = _get_ctx(ctx)
3395 a = RealVal(a, ctx)
3396 return a ** "1/3"
3397
def is_expr(a)
Definition: z3py.py:1210
def Cbrt(a, ctx=None)
Definition: z3py.py:3386
def RealVal(val, ctx=None)
Definition: z3py.py:3162
def Real(name, ctx=None)
Definition: z3py.py:3263

Referenced by Cbrt().

◆ Complement()

def z3py.Complement (   re)
Create the complement regular expression.

Definition at line 11002 of file z3py.py.

11002def Complement(re):
11003 """Create the complement regular expression."""
11004 return ReRef(Z3_mk_re_complement(re.ctx_ref(), re.as_ast()), re.ctx)
11005
11006
def Complement(re)
Definition: z3py.py:11002
Z3_ast Z3_API Z3_mk_re_complement(Z3_context c, Z3_ast re)
Create the complement of the regular language re.

◆ Concat()

def z3py.Concat ( args)
Create a Z3 bit-vector concatenation expression.

>>> v = BitVecVal(1, 4)
>>> Concat(v, v+1, v)
Concat(Concat(1, 1 + 1), 1)
>>> simplify(Concat(v, v+1, v))
289
>>> print("%.3x" % simplify(Concat(v, v+1, v)).as_long())
121

Definition at line 4044 of file z3py.py.

4044def Concat(*args):
4045 """Create a Z3 bit-vector concatenation expression.
4046
4047 >>> v = BitVecVal(1, 4)
4048 >>> Concat(v, v+1, v)
4049 Concat(Concat(1, 1 + 1), 1)
4050 >>> simplify(Concat(v, v+1, v))
4051 289
4052 >>> print("%.3x" % simplify(Concat(v, v+1, v)).as_long())
4053 121
4054 """
4055 args = _get_args(args)
4056 sz = len(args)
4057 if z3_debug():
4058 _z3_assert(sz >= 2, "At least two arguments expected.")
4059
4060 ctx = None
4061 for a in args:
4062 if is_expr(a):
4063 ctx = a.ctx
4064 break
4065 if is_seq(args[0]) or isinstance(args[0], str):
4066 args = [_coerce_seq(s, ctx) for s in args]
4067 if z3_debug():
4068 _z3_assert(all([is_seq(a) for a in args]), "All arguments must be sequence expressions.")
4069 v = (Ast * sz)()
4070 for i in range(sz):
4071 v[i] = args[i].as_ast()
4072 return SeqRef(Z3_mk_seq_concat(ctx.ref(), sz, v), ctx)
4073
4074 if is_re(args[0]):
4075 if z3_debug():
4076 _z3_assert(all([is_re(a) for a in args]), "All arguments must be regular expressions.")
4077 v = (Ast * sz)()
4078 for i in range(sz):
4079 v[i] = args[i].as_ast()
4080 return ReRef(Z3_mk_re_concat(ctx.ref(), sz, v), ctx)
4081
4082 if z3_debug():
4083 _z3_assert(all([is_bv(a) for a in args]), "All arguments must be Z3 bit-vector expressions.")
4084 r = args[0]
4085 for i in range(sz - 1):
4086 r = BitVecRef(Z3_mk_concat(ctx.ref(), r.as_ast(), args[i + 1].as_ast()), ctx)
4087 return r
4088
4089
def Concat(*args)
Definition: z3py.py:4044
def is_seq(a)
Definition: z3py.py:10658
def is_re(s)
Definition: z3py.py:10920
Z3_ast Z3_API Z3_mk_seq_concat(Z3_context c, unsigned n, Z3_ast const args[])
Concatenate sequences.
Z3_ast Z3_API Z3_mk_re_concat(Z3_context c, unsigned n, Z3_ast const args[])
Create the concatenation of the regular languages.
Z3_ast Z3_API Z3_mk_concat(Z3_context c, Z3_ast t1, Z3_ast t2)
Concatenate the given bit-vectors.

Referenced by SeqRef.__add__(), SeqRef.__radd__(), Concat(), Contains(), and BitVecRef.size().

◆ Cond()

def z3py.Cond (   p,
  t1,
  t2,
  ctx = None 
)
Return a tactic that applies tactic `t1` to a goal if probe `p` evaluates to true, and `t2` otherwise.

>>> t = Cond(Probe('is-qfnra'), Tactic('qfnra'), Tactic('smt'))

Definition at line 8628 of file z3py.py.

8628def Cond(p, t1, t2, ctx=None):
8629 """Return a tactic that applies tactic `t1` to a goal if probe `p` evaluates to true, and `t2` otherwise.
8630
8631 >>> t = Cond(Probe('is-qfnra'), Tactic('qfnra'), Tactic('smt'))
8632 """
8633 p = _to_probe(p, ctx)
8634 t1 = _to_tactic(t1, ctx)
8635 t2 = _to_tactic(t2, ctx)
8636 return Tactic(Z3_tactic_cond(t1.ctx.ref(), p.probe, t1.tactic, t2.tactic), t1.ctx)
8637
def Cond(p, t1, t2, ctx=None)
Definition: z3py.py:8628
Z3_tactic Z3_API Z3_tactic_cond(Z3_context c, Z3_probe p, Z3_tactic t1, Z3_tactic t2)
Return a tactic that applies t1 to a given goal if the probe p evaluates to true, and t2 if p evaluat...

Referenced by Cond(), and If().

◆ Const()

def z3py.Const (   name,
  sort 
)
Create a constant of the given sort.

>>> Const('x', IntSort())
x

Definition at line 1405 of file z3py.py.

1405def Const(name, sort):
1406 """Create a constant of the given sort.
1407
1408 >>> Const('x', IntSort())
1409 x
1410 """
1411 if z3_debug():
1412 _z3_assert(isinstance(sort, SortRef), "Z3 sort expected")
1413 ctx = sort.ctx
1414 return _to_expr_ref(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), sort.ast), ctx)
1415
1416

Referenced by BitVecSort(), BoolSort(), Const(), Consts(), DeclareSort(), FPSort(), IntSort(), is_finite_domain(), is_finite_domain_value(), IsMember(), IsSubset(), RealSort(), DatatypeSortRef.recognizer(), SetAdd(), SetComplement(), SetDel(), SetDifference(), SetIntersect(), and SetUnion().

◆ Consts()

def z3py.Consts (   names,
  sort 
)
Create several constants of the given sort.

`names` is a string containing the names of all constants to be created.
Blank spaces separate the names of different constants.

>>> x, y, z = Consts('x y z', IntSort())
>>> x + y + z
x + y + z

Definition at line 1417 of file z3py.py.

1417def Consts(names, sort):
1418 """Create several constants of the given sort.
1419
1420 `names` is a string containing the names of all constants to be created.
1421 Blank spaces separate the names of different constants.
1422
1423 >>> x, y, z = Consts('x y z', IntSort())
1424 >>> x + y + z
1425 x + y + z
1426 """
1427 if isinstance(names, str):
1428 names = names.split(" ")
1429 return [Const(name, sort) for name in names]
1430
1431
def Consts(names, sort)
Definition: z3py.py:1417

Referenced by Consts(), Ext(), ModelRef.get_sort(), ModelRef.get_universe(), ModelRef.num_sorts(), and ModelRef.sorts().

◆ Contains()

def z3py.Contains (   a,
  b 
)
Check if 'a' contains 'b'
>>> s1 = Contains("abc", "ab")
>>> simplify(s1)
True
>>> s2 = Contains("abc", "bc")
>>> simplify(s2)
True
>>> x, y, z = Strings('x y z')
>>> s3 = Contains(Concat(x,y,z), y)
>>> simplify(s3)
True

Definition at line 10789 of file z3py.py.

10789def Contains(a, b):
10790 """Check if 'a' contains 'b'
10791 >>> s1 = Contains("abc", "ab")
10792 >>> simplify(s1)
10793 True
10794 >>> s2 = Contains("abc", "bc")
10795 >>> simplify(s2)
10796 True
10797 >>> x, y, z = Strings('x y z')
10798 >>> s3 = Contains(Concat(x,y,z), y)
10799 >>> simplify(s3)
10800 True
10801 """
10802 ctx = _get_ctx2(a, b)
10803 a = _coerce_seq(a, ctx)
10804 b = _coerce_seq(b, ctx)
10805 return BoolRef(Z3_mk_seq_contains(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
10806
10807
def Strings(names, ctx=None)
Definition: z3py.py:10702
def Contains(a, b)
Definition: z3py.py:10789
Z3_ast Z3_API Z3_mk_seq_contains(Z3_context c, Z3_ast container, Z3_ast containee)
Check if container contains containee.

Referenced by Contains().

◆ CreateDatatypes()

def z3py.CreateDatatypes ( ds)
Create mutually recursive Z3 datatypes using 1 or more Datatype helper objects.

In the following example we define a Tree-List using two mutually recursive datatypes.

>>> TreeList = Datatype('TreeList')
>>> Tree     = Datatype('Tree')
>>> # Tree has two constructors: leaf and node
>>> Tree.declare('leaf', ('val', IntSort()))
>>> # a node contains a list of trees
>>> Tree.declare('node', ('children', TreeList))
>>> TreeList.declare('nil')
>>> TreeList.declare('cons', ('car', Tree), ('cdr', TreeList))
>>> Tree, TreeList = CreateDatatypes(Tree, TreeList)
>>> Tree.val(Tree.leaf(10))
val(leaf(10))
>>> simplify(Tree.val(Tree.leaf(10)))
10
>>> n1 = Tree.node(TreeList.cons(Tree.leaf(10), TreeList.cons(Tree.leaf(20), TreeList.nil)))
>>> n1
node(cons(leaf(10), cons(leaf(20), nil)))
>>> n2 = Tree.node(TreeList.cons(n1, TreeList.nil))
>>> simplify(n2 == n1)
False
>>> simplify(TreeList.car(Tree.children(n2)) == n1)
True

Definition at line 5092 of file z3py.py.

5092def CreateDatatypes(*ds):
5093 """Create mutually recursive Z3 datatypes using 1 or more Datatype helper objects.
5094
5095 In the following example we define a Tree-List using two mutually recursive datatypes.
5096
5097 >>> TreeList = Datatype('TreeList')
5098 >>> Tree = Datatype('Tree')
5099 >>> # Tree has two constructors: leaf and node
5100 >>> Tree.declare('leaf', ('val', IntSort()))
5101 >>> # a node contains a list of trees
5102 >>> Tree.declare('node', ('children', TreeList))
5103 >>> TreeList.declare('nil')
5104 >>> TreeList.declare('cons', ('car', Tree), ('cdr', TreeList))
5105 >>> Tree, TreeList = CreateDatatypes(Tree, TreeList)
5106 >>> Tree.val(Tree.leaf(10))
5107 val(leaf(10))
5108 >>> simplify(Tree.val(Tree.leaf(10)))
5109 10
5110 >>> n1 = Tree.node(TreeList.cons(Tree.leaf(10), TreeList.cons(Tree.leaf(20), TreeList.nil)))
5111 >>> n1
5112 node(cons(leaf(10), cons(leaf(20), nil)))
5113 >>> n2 = Tree.node(TreeList.cons(n1, TreeList.nil))
5114 >>> simplify(n2 == n1)
5115 False
5116 >>> simplify(TreeList.car(Tree.children(n2)) == n1)
5117 True
5118 """
5119 ds = _get_args(ds)
5120 if z3_debug():
5121 _z3_assert(len(ds) > 0, "At least one Datatype must be specified")
5122 _z3_assert(all([isinstance(d, Datatype) for d in ds]), "Arguments must be Datatypes")
5123 _z3_assert(all([d.ctx == ds[0].ctx for d in ds]), "Context mismatch")
5124 _z3_assert(all([d.constructors != [] for d in ds]), "Non-empty Datatypes expected")
5125 ctx = ds[0].ctx
5126 num = len(ds)
5127 names = (Symbol * num)()
5128 out = (Sort * num)()
5129 clists = (ConstructorList * num)()
5130 to_delete = []
5131 for i in range(num):
5132 d = ds[i]
5133 names[i] = to_symbol(d.name, ctx)
5134 num_cs = len(d.constructors)
5135 cs = (Constructor * num_cs)()
5136 for j in range(num_cs):
5137 c = d.constructors[j]
5138 cname = to_symbol(c[0], ctx)
5139 rname = to_symbol(c[1], ctx)
5140 fs = c[2]
5141 num_fs = len(fs)
5142 fnames = (Symbol * num_fs)()
5143 sorts = (Sort * num_fs)()
5144 refs = (ctypes.c_uint * num_fs)()
5145 for k in range(num_fs):
5146 fname = fs[k][0]
5147 ftype = fs[k][1]
5148 fnames[k] = to_symbol(fname, ctx)
5149 if isinstance(ftype, Datatype):
5150 if z3_debug():
5151 _z3_assert(
5152 ds.count(ftype) == 1,
5153 "One and only one occurrence of each datatype is expected",
5154 )
5155 sorts[k] = None
5156 refs[k] = ds.index(ftype)
5157 else:
5158 if z3_debug():
5159 _z3_assert(is_sort(ftype), "Z3 sort expected")
5160 sorts[k] = ftype.ast
5161 refs[k] = 0
5162 cs[j] = Z3_mk_constructor(ctx.ref(), cname, rname, num_fs, fnames, sorts, refs)
5163 to_delete.append(ScopedConstructor(cs[j], ctx))
5164 clists[i] = Z3_mk_constructor_list(ctx.ref(), num_cs, cs)
5165 to_delete.append(ScopedConstructorList(clists[i], ctx))
5166 Z3_mk_datatypes(ctx.ref(), num, names, out, clists)
5167 result = []
5168 # Create a field for every constructor, recognizer and accessor
5169 for i in range(num):
5170 dref = DatatypeSortRef(out[i], ctx)
5171 num_cs = dref.num_constructors()
5172 for j in range(num_cs):
5173 cref = dref.constructor(j)
5174 cref_name = cref.name()
5175 cref_arity = cref.arity()
5176 if cref.arity() == 0:
5177 cref = cref()
5178 setattr(dref, cref_name, cref)
5179 rref = dref.recognizer(j)
5180 setattr(dref, "is_" + cref_name, rref)
5181 for k in range(cref_arity):
5182 aref = dref.accessor(j, k)
5183 setattr(dref, aref.name(), aref)
5184 result.append(dref)
5185 return tuple(result)
5186
5187
def CreateDatatypes(*ds)
Definition: z3py.py:5092
Z3_constructor Z3_API Z3_mk_constructor(Z3_context c, Z3_symbol name, Z3_symbol recognizer, unsigned num_fields, Z3_symbol const field_names[], Z3_sort_opt const sorts[], unsigned sort_refs[])
Create a constructor.
void Z3_API Z3_mk_datatypes(Z3_context c, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort sorts[], Z3_constructor_list constructor_lists[])
Create mutually recursive datatypes.
Z3_constructor_list Z3_API Z3_mk_constructor_list(Z3_context c, unsigned num_constructors, Z3_constructor const constructors[])
Create list of constructors.

Referenced by Datatype.create(), and CreateDatatypes().

◆ DeclareSort()

def z3py.DeclareSort (   name,
  ctx = None 
)
Create a new uninterpreted sort named `name`.

If `ctx=None`, then the new sort is declared in the global Z3Py context.

>>> A = DeclareSort('A')
>>> a = Const('a', A)
>>> b = Const('b', A)
>>> a.sort() == A
True
>>> b.sort() == A
True
>>> a == b
a == b

Definition at line 690 of file z3py.py.

690def DeclareSort(name, ctx=None):
691 """Create a new uninterpreted sort named `name`.
692
693 If `ctx=None`, then the new sort is declared in the global Z3Py context.
694
695 >>> A = DeclareSort('A')
696 >>> a = Const('a', A)
697 >>> b = Const('b', A)
698 >>> a.sort() == A
699 True
700 >>> b.sort() == A
701 True
702 >>> a == b
703 a == b
704 """
705 ctx = _get_ctx(ctx)
706 return SortRef(Z3_mk_uninterpreted_sort(ctx.ref(), to_symbol(name, ctx)), ctx)
707
def DeclareSort(name, ctx=None)
Definition: z3py.py:690
Z3_sort Z3_API Z3_mk_uninterpreted_sort(Z3_context c, Z3_symbol s)
Create a free (uninterpreted) type using the given name (symbol).

Referenced by DeclareSort(), ModelRef.get_sort(), ModelRef.get_universe(), ModelRef.num_sorts(), and ModelRef.sorts().

◆ Default()

def z3py.Default (   a)
 Return a default value for array expression.
>>> b = K(IntSort(), 1)
>>> prove(Default(b) == 1)
proved

Definition at line 4714 of file z3py.py.

4714def Default(a):
4715 """ Return a default value for array expression.
4716 >>> b = K(IntSort(), 1)
4717 >>> prove(Default(b) == 1)
4718 proved
4719 """
4720 if z3_debug():
4721 _z3_assert(is_array_sort(a), "First argument must be a Z3 array expression")
4722 return a.default()
4723
4724
def is_array_sort(a)
Definition: z3py.py:4552
def K(dom, v)
Definition: z3py.py:4780
def Default(a)
Definition: z3py.py:4714
def prove(claim, show=False, **keywords)
Definition: z3py.py:8939

Referenced by Default(), and is_default().

◆ describe_probes()

def z3py.describe_probes ( )
Display a (tabular) description of all available probes in Z3.

Definition at line 8549 of file z3py.py.

8549def describe_probes():
8550 """Display a (tabular) description of all available probes in Z3."""
8551 if in_html_mode():
8552 even = True
8553 print('<table border="1" cellpadding="2" cellspacing="0">')
8554 for p in probes():
8555 if even:
8556 print('<tr style="background-color:#CFCFCF">')
8557 even = False
8558 else:
8559 print("<tr>")
8560 even = True
8561 print("<td>%s</td><td>%s</td></tr>" % (p, insert_line_breaks(probe_description(p), 40)))
8562 print("</table>")
8563 else:
8564 for p in probes():
8565 print("%s : %s" % (p, probe_description(p)))
8566
8567
def probe_description(name, ctx=None)
Definition: z3py.py:8540
def describe_probes()
Definition: z3py.py:8549
def probes(ctx=None)
Definition: z3py.py:8529

◆ describe_tactics()

def z3py.describe_tactics ( )
Display a (tabular) description of all available tactics in Z3.

Definition at line 8343 of file z3py.py.

8343def describe_tactics():
8344 """Display a (tabular) description of all available tactics in Z3."""
8345 if in_html_mode():
8346 even = True
8347 print('<table border="1" cellpadding="2" cellspacing="0">')
8348 for t in tactics():
8349 if even:
8350 print('<tr style="background-color:#CFCFCF">')
8351 even = False
8352 else:
8353 print("<tr>")
8354 even = True
8355 print("<td>%s</td><td>%s</td></tr>" % (t, insert_line_breaks(tactic_description(t), 40)))
8356 print("</table>")
8357 else:
8358 for t in tactics():
8359 print("%s : %s" % (t, tactic_description(t)))
8360
8361
def tactics(ctx=None)
Definition: z3py.py:8323
def tactic_description(name, ctx=None)
Definition: z3py.py:8334
def describe_tactics()
Definition: z3py.py:8343

◆ disable_trace()

def z3py.disable_trace (   msg)

Definition at line 81 of file z3py.py.

81def disable_trace(msg):
83
84
def disable_trace(msg)
Definition: z3py.py:81
void Z3_API Z3_disable_trace(Z3_string tag)
Disable tracing messages tagged as tag when Z3 is compiled in debug mode. It is a NOOP otherwise.

◆ DisjointSum()

def z3py.DisjointSum (   name,
  sorts,
  ctx = None 
)
Create a named tagged union sort base on a set of underlying sorts
Example:
    >>> sum, ((inject0, extract0), (inject1, extract1)) = DisjointSum("+", [IntSort(), StringSort()])

Definition at line 5305 of file z3py.py.

5305def DisjointSum(name, sorts, ctx=None):
5306 """Create a named tagged union sort base on a set of underlying sorts
5307 Example:
5308 >>> sum, ((inject0, extract0), (inject1, extract1)) = DisjointSum("+", [IntSort(), StringSort()])
5309 """
5310 sum = Datatype(name, ctx)
5311 for i in range(len(sorts)):
5312 sum.declare("inject%d" % i, ("project%d" % i, sorts[i]))
5313 sum = sum.create()
5314 return sum, [(sum.constructor(i), sum.accessor(i, 0)) for i in range(len(sorts))]
5315
5316
def StringSort(ctx=None)
Definition: z3py.py:10569
def DisjointSum(name, sorts, ctx=None)
Definition: z3py.py:5305

Referenced by DisjointSum().

◆ Distinct()

def z3py.Distinct ( args)
Create a Z3 distinct expression.

>>> x = Int('x')
>>> y = Int('y')
>>> Distinct(x, y)
x != y
>>> z = Int('z')
>>> Distinct(x, y, z)
Distinct(x, y, z)
>>> simplify(Distinct(x, y, z))
Distinct(x, y, z)
>>> simplify(Distinct(x, y, z), blast_distinct=True)
And(Not(x == y), Not(x == z), Not(y == z))

Definition at line 1372 of file z3py.py.

1372def Distinct(*args):
1373 """Create a Z3 distinct expression.
1374
1375 >>> x = Int('x')
1376 >>> y = Int('y')
1377 >>> Distinct(x, y)
1378 x != y
1379 >>> z = Int('z')
1380 >>> Distinct(x, y, z)
1381 Distinct(x, y, z)
1382 >>> simplify(Distinct(x, y, z))
1383 Distinct(x, y, z)
1384 >>> simplify(Distinct(x, y, z), blast_distinct=True)
1385 And(Not(x == y), Not(x == z), Not(y == z))
1386 """
1387 args = _get_args(args)
1388 ctx = _ctx_from_ast_arg_list(args)
1389 if z3_debug():
1390 _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression")
1391 args = _coerce_expr_list(args, ctx)
1392 _args, sz = _to_ast_array(args)
1393 return BoolRef(Z3_mk_distinct(ctx.ref(), sz, _args), ctx)
1394
1395
def Distinct(*args)
Definition: z3py.py:1372
Z3_ast Z3_API Z3_mk_distinct(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing distinct(args[0], ..., args[num_args-1]).

Referenced by Distinct(), is_distinct(), and simplify().

◆ Empty()

def z3py.Empty (   s)
Create the empty sequence of the given sort
>>> e = Empty(StringSort())
>>> e2 = StringVal("")
>>> print(e.eq(e2))
True
>>> e3 = Empty(SeqSort(IntSort()))
>>> print(e3)
Empty(Seq(Int))
>>> e4 = Empty(ReSort(SeqSort(IntSort())))
>>> print(e4)
Empty(ReSort(Seq(Int)))

Definition at line 10720 of file z3py.py.

10720def Empty(s):
10721 """Create the empty sequence of the given sort
10722 >>> e = Empty(StringSort())
10723 >>> e2 = StringVal("")
10724 >>> print(e.eq(e2))
10725 True
10726 >>> e3 = Empty(SeqSort(IntSort()))
10727 >>> print(e3)
10728 Empty(Seq(Int))
10729 >>> e4 = Empty(ReSort(SeqSort(IntSort())))
10730 >>> print(e4)
10731 Empty(ReSort(Seq(Int)))
10732 """
10733 if isinstance(s, SeqSortRef):
10734 return SeqRef(Z3_mk_seq_empty(s.ctx_ref(), s.ast), s.ctx)
10735 if isinstance(s, ReSortRef):
10736 return ReRef(Z3_mk_re_empty(s.ctx_ref(), s.ast), s.ctx)
10737 raise Z3Exception("Non-sequence, non-regular expression sort passed to Empty")
10738
10739
def Empty(s)
Definition: z3py.py:10720
def SeqSort(s)
Definition: z3py.py:10579
def ReSort(s)
Definition: z3py.py:10904
def StringVal(s, ctx=None)
Definition: z3py.py:10686
Z3_ast Z3_API Z3_mk_seq_empty(Z3_context c, Z3_sort seq)
Create an empty sequence of the sequence sort seq.
Z3_ast Z3_API Z3_mk_re_empty(Z3_context c, Z3_sort re)
Create an empty regular expression of sort re.

Referenced by Empty().

◆ EmptySet()

def z3py.EmptySet (   s)
Create the empty set
>>> EmptySet(IntSort())
K(Int, False)

Definition at line 4856 of file z3py.py.

4856def EmptySet(s):
4857 """Create the empty set
4858 >>> EmptySet(IntSort())
4859 K(Int, False)
4860 """
4861 ctx = s.ctx
4862 return ArrayRef(Z3_mk_empty_set(ctx.ref(), s.ast), ctx)
4863
4864
def EmptySet(s)
Definition: z3py.py:4856
Z3_ast Z3_API Z3_mk_empty_set(Z3_context c, Z3_sort domain)
Create the empty set.

Referenced by EmptySet().

◆ enable_trace()

def z3py.enable_trace (   msg)

Definition at line 77 of file z3py.py.

77def enable_trace(msg):
79
80
def enable_trace(msg)
Definition: z3py.py:77
void Z3_API Z3_enable_trace(Z3_string tag)
Enable tracing messages tagged as tag when Z3 is compiled in debug mode. It is a NOOP otherwise.

◆ ensure_prop_closures()

def z3py.ensure_prop_closures ( )

Definition at line 11110 of file z3py.py.

11111 global _prop_closures
11112 if _prop_closures is None:
11113 _prop_closures = PropClosures()
11114
11115
def ensure_prop_closures()
Definition: z3py.py:11110

Referenced by UserPropagateBase.__init__().

◆ EnumSort()

def z3py.EnumSort (   name,
  values,
  ctx = None 
)
Return a new enumeration sort named `name` containing the given values.

The result is a pair (sort, list of constants).
Example:
    >>> Color, (red, green, blue) = EnumSort('Color', ['red', 'green', 'blue'])

Definition at line 5317 of file z3py.py.

5317def EnumSort(name, values, ctx=None):
5318 """Return a new enumeration sort named `name` containing the given values.
5319
5320 The result is a pair (sort, list of constants).
5321 Example:
5322 >>> Color, (red, green, blue) = EnumSort('Color', ['red', 'green', 'blue'])
5323 """
5324 if z3_debug():
5325 _z3_assert(isinstance(name, str), "Name must be a string")
5326 _z3_assert(all([isinstance(v, str) for v in values]), "Eumeration sort values must be strings")
5327 _z3_assert(len(values) > 0, "At least one value expected")
5328 ctx = _get_ctx(ctx)
5329 num = len(values)
5330 _val_names = (Symbol * num)()
5331 for i in range(num):
5332 _val_names[i] = to_symbol(values[i])
5333 _values = (FuncDecl * num)()
5334 _testers = (FuncDecl * num)()
5335 name = to_symbol(name)
5336 S = DatatypeSortRef(Z3_mk_enumeration_sort(ctx.ref(), name, num, _val_names, _values, _testers), ctx)
5337 V = []
5338 for i in range(num):
5339 V.append(FuncDeclRef(_values[i], ctx))
5340 V = [a() for a in V]
5341 return S, V
5342
def EnumSort(name, values, ctx=None)
Definition: z3py.py:5317
Z3_sort Z3_API Z3_mk_enumeration_sort(Z3_context c, Z3_symbol name, unsigned n, Z3_symbol const enum_names[], Z3_func_decl enum_consts[], Z3_func_decl enum_testers[])
Create a enumeration sort.

Referenced by EnumSort(), and Context.MkEnumSort().

◆ eq()

def z3py.eq (   a,
  b 
)
Return `True` if `a` and `b` are structurally identical AST nodes.

>>> x = Int('x')
>>> y = Int('y')
>>> eq(x, y)
False
>>> eq(x + 1, x + 1)
True
>>> eq(x + 1, 1 + x)
False
>>> eq(simplify(x + 1), simplify(1 + x))
True

Definition at line 471 of file z3py.py.

471def eq(a, b):
472 """Return `True` if `a` and `b` are structurally identical AST nodes.
473
474 >>> x = Int('x')
475 >>> y = Int('y')
476 >>> eq(x, y)
477 False
478 >>> eq(x + 1, x + 1)
479 True
480 >>> eq(x + 1, 1 + x)
481 False
482 >>> eq(simplify(x + 1), simplify(1 + x))
483 True
484 """
485 if z3_debug():
486 _z3_assert(is_ast(a) and is_ast(b), "Z3 ASTs expected")
487 return a.eq(b)
488
489
def is_ast(a)
Definition: z3py.py:450

Referenced by BitVec(), BitVecSort(), eq(), FP(), FPSort(), FreshBool(), FreshInt(), FreshReal(), get_map_func(), main_ctx(), Select(), substitute(), and Var().

◆ Exists()

def z3py.Exists (   vs,
  body,
  weight = 1,
  qid = "",
  skid = "",
  patterns = [],
  no_patterns = [] 
)
Create a Z3 exists formula.

The parameters `weight`, `qif`, `skid`, `patterns` and `no_patterns` are optional annotations.


>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> x = Int('x')
>>> y = Int('y')
>>> q = Exists([x, y], f(x, y) >= x, skid="foo")
>>> q
Exists([x, y], f(x, y) >= x)
>>> is_quantifier(q)
True
>>> r = Tactic('nnf')(q).as_expr()
>>> is_quantifier(r)
False

Definition at line 2205 of file z3py.py.

2205def Exists(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):
2206 """Create a Z3 exists formula.
2207
2208 The parameters `weight`, `qif`, `skid`, `patterns` and `no_patterns` are optional annotations.
2209
2210
2211 >>> f = Function('f', IntSort(), IntSort(), IntSort())
2212 >>> x = Int('x')
2213 >>> y = Int('y')
2214 >>> q = Exists([x, y], f(x, y) >= x, skid="foo")
2215 >>> q
2216 Exists([x, y], f(x, y) >= x)
2217 >>> is_quantifier(q)
2218 True
2219 >>> r = Tactic('nnf')(q).as_expr()
2220 >>> is_quantifier(r)
2221 False
2222 """
2223 return _mk_quantifier(False, vs, body, weight, qid, skid, patterns, no_patterns)
2224
2225
def Exists(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])
Definition: z3py.py:2205
def is_quantifier(a)
Definition: z3py.py:2138

Referenced by Fixedpoint.abstract(), Exists(), QuantifierRef.is_exists(), QuantifierRef.is_forall(), and QuantifierRef.is_lambda().

◆ Ext()

def z3py.Ext (   a,
  b 
)
Return extensionality index for one-dimensional arrays.
>> a, b = Consts('a b', SetSort(IntSort()))
>> Ext(a, b)
Ext(a, b)

Definition at line 4802 of file z3py.py.

4802def Ext(a, b):
4803 """Return extensionality index for one-dimensional arrays.
4804 >> a, b = Consts('a b', SetSort(IntSort()))
4805 >> Ext(a, b)
4806 Ext(a, b)
4807 """
4808 ctx = a.ctx
4809 if z3_debug():
4810 _z3_assert(is_array_sort(a) and is_array(b), "arguments must be arrays")
4811 return _to_expr_ref(Z3_mk_array_ext(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
4812
4813
def is_array(a)
Definition: z3py.py:4556
def Ext(a, b)
Definition: z3py.py:4802
def SetSort(s)
Sets.
Definition: z3py.py:4851
Z3_ast Z3_API Z3_mk_array_ext(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create array extensionality index given two arrays with the same sort. The meaning is given by the ax...

Referenced by Ext().

◆ Extract()

def z3py.Extract (   high,
  low,
  a 
)
Create a Z3 bit-vector extraction expression.
Extract is overloaded to also work on sequence extraction.
The functions SubString and SubSeq are redirected to Extract.
For this case, the arguments are reinterpreted as:
    high - is a sequence (string)
    low  - is an offset
    a    - is the length to be extracted

>>> x = BitVec('x', 8)
>>> Extract(6, 2, x)
Extract(6, 2, x)
>>> Extract(6, 2, x).sort()
BitVec(5)
>>> simplify(Extract(StringVal("abcd"),2,1))
"c"

Definition at line 4090 of file z3py.py.

4090def Extract(high, low, a):
4091 """Create a Z3 bit-vector extraction expression.
4092 Extract is overloaded to also work on sequence extraction.
4093 The functions SubString and SubSeq are redirected to Extract.
4094 For this case, the arguments are reinterpreted as:
4095 high - is a sequence (string)
4096 low - is an offset
4097 a - is the length to be extracted
4098
4099 >>> x = BitVec('x', 8)
4100 >>> Extract(6, 2, x)
4101 Extract(6, 2, x)
4102 >>> Extract(6, 2, x).sort()
4103 BitVec(5)
4104 >>> simplify(Extract(StringVal("abcd"),2,1))
4105 "c"
4106 """
4107 if isinstance(high, str):
4108 high = StringVal(high)
4109 if is_seq(high):
4110 s = high
4111 offset, length = _coerce_exprs(low, a, s.ctx)
4112 return SeqRef(Z3_mk_seq_extract(s.ctx_ref(), s.as_ast(), offset.as_ast(), length.as_ast()), s.ctx)
4113 if z3_debug():
4114 _z3_assert(low <= high, "First argument must be greater than or equal to second argument")
4115 _z3_assert(_is_int(high) and high >= 0 and _is_int(low) and low >= 0,
4116 "First and second arguments must be non negative integers")
4117 _z3_assert(is_bv(a), "Third argument must be a Z3 bit-vector expression")
4118 return BitVecRef(Z3_mk_extract(a.ctx_ref(), high, low, a.as_ast()), a.ctx)
4119
4120
def Extract(high, low, a)
Definition: z3py.py:4090
Z3_ast Z3_API Z3_mk_extract(Z3_context c, unsigned high, unsigned low, Z3_ast t1)
Extract the bits high down to low from a bit-vector of size m to yield a new bit-vector of size n,...
Z3_ast Z3_API Z3_mk_seq_extract(Z3_context c, Z3_ast s, Z3_ast offset, Z3_ast length)
Extract subsequence starting at offset of length.

Referenced by Extract(), SubSeq(), and SubString().

◆ FailIf()

def z3py.FailIf (   p,
  ctx = None 
)
Return a tactic that fails if the probe `p` evaluates to true.
Otherwise, it returns the input goal unmodified.

In the following example, the tactic applies 'simplify' if and only if there are
more than 2 constraints in the goal.

>>> t = OrElse(FailIf(Probe('size') > 2), Tactic('simplify'))
>>> x, y = Ints('x y')
>>> g = Goal()
>>> g.add(x > 0)
>>> g.add(y > 0)
>>> t(g)
[[x > 0, y > 0]]
>>> g.add(x == y + 1)
>>> t(g)
[[Not(x <= 0), Not(y <= 0), x == 1 + y]]

Definition at line 8586 of file z3py.py.

8586def FailIf(p, ctx=None):
8587 """Return a tactic that fails if the probe `p` evaluates to true.
8588 Otherwise, it returns the input goal unmodified.
8589
8590 In the following example, the tactic applies 'simplify' if and only if there are
8591 more than 2 constraints in the goal.
8592
8593 >>> t = OrElse(FailIf(Probe('size') > 2), Tactic('simplify'))
8594 >>> x, y = Ints('x y')
8595 >>> g = Goal()
8596 >>> g.add(x > 0)
8597 >>> g.add(y > 0)
8598 >>> t(g)
8599 [[x > 0, y > 0]]
8600 >>> g.add(x == y + 1)
8601 >>> t(g)
8602 [[Not(x <= 0), Not(y <= 0), x == 1 + y]]
8603 """
8604 p = _to_probe(p, ctx)
8605 return Tactic(Z3_tactic_fail_if(p.ctx.ref(), p.probe), p.ctx)
8606
8607
def OrElse(*ts, **ks)
Definition: z3py.py:8204
def FailIf(p, ctx=None)
Definition: z3py.py:8586
Z3_tactic Z3_API Z3_tactic_fail_if(Z3_context c, Z3_probe p)
Return a tactic that fails if the probe p evaluates to false.

Referenced by FailIf().

◆ FiniteDomainSort()

def z3py.FiniteDomainSort (   name,
  sz,
  ctx = None 
)
Create a named finite domain sort of a given size sz

Definition at line 7590 of file z3py.py.

7590def FiniteDomainSort(name, sz, ctx=None):
7591 """Create a named finite domain sort of a given size sz"""
7592 if not isinstance(name, Symbol):
7593 name = to_symbol(name)
7594 ctx = _get_ctx(ctx)
7595 return FiniteDomainSortRef(Z3_mk_finite_domain_sort(ctx.ref(), name, sz), ctx)
7596
7597
def FiniteDomainSort(name, sz, ctx=None)
Definition: z3py.py:7590
Z3_sort Z3_API Z3_mk_finite_domain_sort(Z3_context c, Z3_symbol name, uint64_t size)
Create a named finite domain sort.

Referenced by FiniteDomainNumRef.as_long(), FiniteDomainNumRef.as_string(), FiniteDomainVal(), is_finite_domain(), is_finite_domain_sort(), is_finite_domain_value(), and Context.MkFiniteDomainSort().

◆ FiniteDomainVal()

def z3py.FiniteDomainVal (   val,
  sort,
  ctx = None 
)
Return a Z3 finite-domain value. If `ctx=None`, then the global context is used.

>>> s = FiniteDomainSort('S', 256)
>>> FiniteDomainVal(255, s)
255
>>> FiniteDomainVal('100', s)
100

Definition at line 7660 of file z3py.py.

7660def FiniteDomainVal(val, sort, ctx=None):
7661 """Return a Z3 finite-domain value. If `ctx=None`, then the global context is used.
7662
7663 >>> s = FiniteDomainSort('S', 256)
7664 >>> FiniteDomainVal(255, s)
7665 255
7666 >>> FiniteDomainVal('100', s)
7667 100
7668 """
7669 if z3_debug():
7670 _z3_assert(is_finite_domain_sort(sort), "Expected finite-domain sort")
7671 ctx = sort.ctx
7672 return FiniteDomainNumRef(Z3_mk_numeral(ctx.ref(), _to_int_str(val), sort.ast), ctx)
7673
7674
def FiniteDomainVal(val, sort, ctx=None)
Definition: z3py.py:7660
def is_finite_domain_sort(s)
Definition: z3py.py:7598

Referenced by FiniteDomainNumRef.as_long(), FiniteDomainNumRef.as_string(), FiniteDomainVal(), and is_finite_domain_value().

◆ Float128()

def z3py.Float128 (   ctx = None)
Floating-point 128-bit (quadruple) sort.

Definition at line 9266 of file z3py.py.

9266def Float128(ctx=None):
9267 """Floating-point 128-bit (quadruple) sort."""
9268 ctx = _get_ctx(ctx)
9269 return FPSortRef(Z3_mk_fpa_sort_128(ctx.ref()), ctx)
9270
9271
def Float128(ctx=None)
Definition: z3py.py:9266
Z3_sort Z3_API Z3_mk_fpa_sort_128(Z3_context c)
Create the quadruple-precision (128-bit) FloatingPoint sort.

◆ Float16()

def z3py.Float16 (   ctx = None)
Floating-point 16-bit (half) sort.

Definition at line 9230 of file z3py.py.

9230def Float16(ctx=None):
9231 """Floating-point 16-bit (half) sort."""
9232 ctx = _get_ctx(ctx)
9233 return FPSortRef(Z3_mk_fpa_sort_16(ctx.ref()), ctx)
9234
9235
def Float16(ctx=None)
Definition: z3py.py:9230
Z3_sort Z3_API Z3_mk_fpa_sort_16(Z3_context c)
Create the half-precision (16-bit) FloatingPoint sort.

◆ Float32()

def z3py.Float32 (   ctx = None)
Floating-point 32-bit (single) sort.

Definition at line 9242 of file z3py.py.

9242def Float32(ctx=None):
9243 """Floating-point 32-bit (single) sort."""
9244 ctx = _get_ctx(ctx)
9245 return FPSortRef(Z3_mk_fpa_sort_32(ctx.ref()), ctx)
9246
9247
def Float32(ctx=None)
Definition: z3py.py:9242
Z3_sort Z3_API Z3_mk_fpa_sort_32(Z3_context c)
Create the single-precision (32-bit) FloatingPoint sort.

Referenced by FPRef.__neg__(), fpBVToFP(), fpFPToFP(), fpRealToFP(), fpSignedToFP(), fpToFP(), and fpUnsignedToFP().

◆ Float64()

def z3py.Float64 (   ctx = None)
Floating-point 64-bit (double) sort.

Definition at line 9254 of file z3py.py.

9254def Float64(ctx=None):
9255 """Floating-point 64-bit (double) sort."""
9256 ctx = _get_ctx(ctx)
9257 return FPSortRef(Z3_mk_fpa_sort_64(ctx.ref()), ctx)
9258
9259
def Float64(ctx=None)
Definition: z3py.py:9254
Z3_sort Z3_API Z3_mk_fpa_sort_64(Z3_context c)
Create the double-precision (64-bit) FloatingPoint sort.

Referenced by fpFPToFP(), and fpToFP().

◆ FloatDouble()

def z3py.FloatDouble (   ctx = None)
Floating-point 64-bit (double) sort.

Definition at line 9260 of file z3py.py.

9260def FloatDouble(ctx=None):
9261 """Floating-point 64-bit (double) sort."""
9262 ctx = _get_ctx(ctx)
9263 return FPSortRef(Z3_mk_fpa_sort_double(ctx.ref()), ctx)
9264
9265
def FloatDouble(ctx=None)
Definition: z3py.py:9260
Z3_sort Z3_API Z3_mk_fpa_sort_double(Z3_context c)
Create the double-precision (64-bit) FloatingPoint sort.

◆ FloatHalf()

def z3py.FloatHalf (   ctx = None)
Floating-point 16-bit (half) sort.

Definition at line 9236 of file z3py.py.

9236def FloatHalf(ctx=None):
9237 """Floating-point 16-bit (half) sort."""
9238 ctx = _get_ctx(ctx)
9239 return FPSortRef(Z3_mk_fpa_sort_half(ctx.ref()), ctx)
9240
9241
def FloatHalf(ctx=None)
Definition: z3py.py:9236
Z3_sort Z3_API Z3_mk_fpa_sort_half(Z3_context c)
Create the half-precision (16-bit) FloatingPoint sort.

◆ FloatQuadruple()

def z3py.FloatQuadruple (   ctx = None)
Floating-point 128-bit (quadruple) sort.

Definition at line 9272 of file z3py.py.

9272def FloatQuadruple(ctx=None):
9273 """Floating-point 128-bit (quadruple) sort."""
9274 ctx = _get_ctx(ctx)
9275 return FPSortRef(Z3_mk_fpa_sort_quadruple(ctx.ref()), ctx)
9276
9277
def FloatQuadruple(ctx=None)
Definition: z3py.py:9272
Z3_sort Z3_API Z3_mk_fpa_sort_quadruple(Z3_context c)
Create the quadruple-precision (128-bit) FloatingPoint sort.

◆ FloatSingle()

def z3py.FloatSingle (   ctx = None)
Floating-point 32-bit (single) sort.

Definition at line 9248 of file z3py.py.

9248def FloatSingle(ctx=None):
9249 """Floating-point 32-bit (single) sort."""
9250 ctx = _get_ctx(ctx)
9251 return FPSortRef(Z3_mk_fpa_sort_single(ctx.ref()), ctx)
9252
9253
def FloatSingle(ctx=None)
Definition: z3py.py:9248
Z3_sort Z3_API Z3_mk_fpa_sort_single(Z3_context c)
Create the single-precision (32-bit) FloatingPoint sort.

◆ ForAll()

def z3py.ForAll (   vs,
  body,
  weight = 1,
  qid = "",
  skid = "",
  patterns = [],
  no_patterns = [] 
)
Create a Z3 forall formula.

The parameters `weight`, `qid`, `skid`, `patterns` and `no_patterns` are optional annotations.

>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> x = Int('x')
>>> y = Int('y')
>>> ForAll([x, y], f(x, y) >= x)
ForAll([x, y], f(x, y) >= x)
>>> ForAll([x, y], f(x, y) >= x, patterns=[ f(x, y) ])
ForAll([x, y], f(x, y) >= x)
>>> ForAll([x, y], f(x, y) >= x, weight=10)
ForAll([x, y], f(x, y) >= x)

Definition at line 2187 of file z3py.py.

2187def ForAll(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[]):
2188 """Create a Z3 forall formula.
2189
2190 The parameters `weight`, `qid`, `skid`, `patterns` and `no_patterns` are optional annotations.
2191
2192 >>> f = Function('f', IntSort(), IntSort(), IntSort())
2193 >>> x = Int('x')
2194 >>> y = Int('y')
2195 >>> ForAll([x, y], f(x, y) >= x)
2196 ForAll([x, y], f(x, y) >= x)
2197 >>> ForAll([x, y], f(x, y) >= x, patterns=[ f(x, y) ])
2198 ForAll([x, y], f(x, y) >= x)
2199 >>> ForAll([x, y], f(x, y) >= x, weight=10)
2200 ForAll([x, y], f(x, y) >= x)
2201 """
2202 return _mk_quantifier(True, vs, body, weight, qid, skid, patterns, no_patterns)
2203
2204
def ForAll(vs, body, weight=1, qid="", skid="", patterns=[], no_patterns=[])
Definition: z3py.py:2187

Referenced by Fixedpoint.abstract(), QuantifierRef.body(), QuantifierRef.children(), ForAll(), get_var_index(), is_app(), is_const(), QuantifierRef.is_exists(), is_expr(), QuantifierRef.is_forall(), is_pattern(), is_quantifier(), is_var(), MultiPattern(), QuantifierRef.num_patterns(), QuantifierRef.num_vars(), QuantifierRef.pattern(), QuantifierRef.var_name(), QuantifierRef.var_sort(), and QuantifierRef.weight().

◆ FP()

def z3py.FP (   name,
  fpsort,
  ctx = None 
)
Return a floating-point constant named `name`.
`fpsort` is the floating-point sort.
If `ctx=None`, then the global context is used.

>>> x  = FP('x', FPSort(8, 24))
>>> is_fp(x)
True
>>> x.ebits()
8
>>> x.sort()
FPSort(8, 24)
>>> word = FPSort(8, 24)
>>> x2 = FP('x', word)
>>> eq(x, x2)
True

Definition at line 9898 of file z3py.py.

9898def FP(name, fpsort, ctx=None):
9899 """Return a floating-point constant named `name`.
9900 `fpsort` is the floating-point sort.
9901 If `ctx=None`, then the global context is used.
9902
9903 >>> x = FP('x', FPSort(8, 24))
9904 >>> is_fp(x)
9905 True
9906 >>> x.ebits()
9907 8
9908 >>> x.sort()
9909 FPSort(8, 24)
9910 >>> word = FPSort(8, 24)
9911 >>> x2 = FP('x', word)
9912 >>> eq(x, x2)
9913 True
9914 """
9915 if isinstance(fpsort, FPSortRef) and ctx is None:
9916 ctx = fpsort.ctx
9917 else:
9918 ctx = _get_ctx(ctx)
9919 return FPRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), fpsort.ast), ctx)
9920
9921
def is_fp(a)
Definition: z3py.py:9698
def FP(name, fpsort, ctx=None)
Definition: z3py.py:9898
def FPSort(ebits, sbits, ctx=None)
Definition: z3py.py:9727

Referenced by FPRef.__add__(), FPRef.__div__(), FPRef.__mul__(), FPRef.__neg__(), FPRef.__radd__(), FPRef.__rdiv__(), FPRef.__rmul__(), FPRef.__rsub__(), FPRef.__sub__(), FP(), fpAdd(), fpDiv(), fpIsInf(), fpIsNaN(), fpMax(), fpMin(), fpMul(), fpNeg(), fpRem(), FPs(), FPSort(), fpSub(), fpToIEEEBV(), fpToReal(), fpToSBV(), fpToUBV(), is_fp(), is_fp_value(), and FPRef.sort().

◆ fpAbs()

def z3py.fpAbs (   a,
  ctx = None 
)
Create a Z3 floating-point absolute value expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FPVal(1.0, s)
>>> fpAbs(x)
fpAbs(1)
>>> y = FPVal(-20.0, s)
>>> y
-1.25*(2**4)
>>> fpAbs(y)
fpAbs(-1.25*(2**4))
>>> fpAbs(-1.25*(2**4))
fpAbs(-1.25*(2**4))
>>> fpAbs(x).sort()
FPSort(8, 24)

Definition at line 9941 of file z3py.py.

9941def fpAbs(a, ctx=None):
9942 """Create a Z3 floating-point absolute value expression.
9943
9944 >>> s = FPSort(8, 24)
9945 >>> rm = RNE()
9946 >>> x = FPVal(1.0, s)
9947 >>> fpAbs(x)
9948 fpAbs(1)
9949 >>> y = FPVal(-20.0, s)
9950 >>> y
9951 -1.25*(2**4)
9952 >>> fpAbs(y)
9953 fpAbs(-1.25*(2**4))
9954 >>> fpAbs(-1.25*(2**4))
9955 fpAbs(-1.25*(2**4))
9956 >>> fpAbs(x).sort()
9957 FPSort(8, 24)
9958 """
9959 ctx = _get_ctx(ctx)
9960 [a] = _coerce_fp_expr_list([a], ctx)
9961 return FPRef(Z3_mk_fpa_abs(ctx.ref(), a.as_ast()), ctx)
9962
9963
def fpAbs(a, ctx=None)
Definition: z3py.py:9941
def RNE(ctx=None)
Definition: z3py.py:9497
def FPVal(sig, exp=None, fps=None, ctx=None)
Definition: z3py.py:9852
Z3_ast Z3_API Z3_mk_fpa_abs(Z3_context c, Z3_ast t)
Floating-point absolute value.

Referenced by fpAbs().

◆ fpAdd()

def z3py.fpAdd (   rm,
  a,
  b,
  ctx = None 
)
Create a Z3 floating-point addition expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpAdd(rm, x, y)
fpAdd(RNE(), x, y)
>>> fpAdd(RTZ(), x, y) # default rounding mode is RTZ
x + y
>>> fpAdd(rm, x, y).sort()
FPSort(8, 24)

Definition at line 10032 of file z3py.py.

10032def fpAdd(rm, a, b, ctx=None):
10033 """Create a Z3 floating-point addition expression.
10034
10035 >>> s = FPSort(8, 24)
10036 >>> rm = RNE()
10037 >>> x = FP('x', s)
10038 >>> y = FP('y', s)
10039 >>> fpAdd(rm, x, y)
10040 fpAdd(RNE(), x, y)
10041 >>> fpAdd(RTZ(), x, y) # default rounding mode is RTZ
10042 x + y
10043 >>> fpAdd(rm, x, y).sort()
10044 FPSort(8, 24)
10045 """
10046 return _mk_fp_bin(Z3_mk_fpa_add, rm, a, b, ctx)
10047
10048
def fpAdd(rm, a, b, ctx=None)
Definition: z3py.py:10032
def RTZ(ctx=None)
Definition: z3py.py:9537

Referenced by FPRef.__add__(), FPRef.__radd__(), fpAdd(), and FPs().

◆ fpBVToFP()

def z3py.fpBVToFP (   v,
  sort,
  ctx = None 
)
Create a Z3 floating-point conversion expression that represents the
conversion from a bit-vector term to a floating-point term.

>>> x_bv = BitVecVal(0x3F800000, 32)
>>> x_fp = fpBVToFP(x_bv, Float32())
>>> x_fp
fpToFP(1065353216)
>>> simplify(x_fp)
1

Definition at line 10354 of file z3py.py.

10354def fpBVToFP(v, sort, ctx=None):
10355 """Create a Z3 floating-point conversion expression that represents the
10356 conversion from a bit-vector term to a floating-point term.
10357
10358 >>> x_bv = BitVecVal(0x3F800000, 32)
10359 >>> x_fp = fpBVToFP(x_bv, Float32())
10360 >>> x_fp
10361 fpToFP(1065353216)
10362 >>> simplify(x_fp)
10363 1
10364 """
10365 _z3_assert(is_bv(v), "First argument must be a Z3 bit-vector expression")
10366 _z3_assert(is_fp_sort(sort), "Second argument must be a Z3 floating-point sort.")
10367 ctx = _get_ctx(ctx)
10368 return FPRef(Z3_mk_fpa_to_fp_bv(ctx.ref(), v.ast, sort.ast), ctx)
10369
10370
def fpToFP(a1, a2=None, a3=None, ctx=None)
Definition: z3py.py:10315
def is_fp_sort(s)
Definition: z3py.py:9282
def fpBVToFP(v, sort, ctx=None)
Definition: z3py.py:10354
Z3_ast Z3_API Z3_mk_fpa_to_fp_bv(Z3_context c, Z3_ast bv, Z3_sort s)
Conversion of a single IEEE 754-2008 bit-vector into a floating-point number.

Referenced by fpBVToFP().

◆ fpDiv()

def z3py.fpDiv (   rm,
  a,
  b,
  ctx = None 
)
Create a Z3 floating-point division expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpDiv(rm, x, y)
fpDiv(RNE(), x, y)
>>> fpDiv(rm, x, y).sort()
FPSort(8, 24)

Definition at line 10079 of file z3py.py.

10079def fpDiv(rm, a, b, ctx=None):
10080 """Create a Z3 floating-point division expression.
10081
10082 >>> s = FPSort(8, 24)
10083 >>> rm = RNE()
10084 >>> x = FP('x', s)
10085 >>> y = FP('y', s)
10086 >>> fpDiv(rm, x, y)
10087 fpDiv(RNE(), x, y)
10088 >>> fpDiv(rm, x, y).sort()
10089 FPSort(8, 24)
10090 """
10091 return _mk_fp_bin(Z3_mk_fpa_div, rm, a, b, ctx)
10092
10093
def fpDiv(rm, a, b, ctx=None)
Definition: z3py.py:10079

Referenced by FPRef.__div__(), FPRef.__rdiv__(), and fpDiv().

◆ fpEQ()

def z3py.fpEQ (   a,
  b,
  ctx = None 
)
Create the Z3 floating-point expression `fpEQ(other, self)`.

>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpEQ(x, y)
fpEQ(x, y)
>>> fpEQ(x, y).sexpr()
'(fp.eq x y)'

Definition at line 10262 of file z3py.py.

10262def fpEQ(a, b, ctx=None):
10263 """Create the Z3 floating-point expression `fpEQ(other, self)`.
10264
10265 >>> x, y = FPs('x y', FPSort(8, 24))
10266 >>> fpEQ(x, y)
10267 fpEQ(x, y)
10268 >>> fpEQ(x, y).sexpr()
10269 '(fp.eq x y)'
10270 """
10271 return _mk_fp_bin_pred(Z3_mk_fpa_eq, a, b, ctx)
10272
10273
def fpEQ(a, b, ctx=None)
Definition: z3py.py:10262
def FPs(names, fpsort, ctx=None)
Definition: z3py.py:9922

Referenced by fpEQ(), fpFP(), and fpNEQ().

◆ fpFMA()

def z3py.fpFMA (   rm,
  a,
  b,
  c,
  ctx = None 
)
Create a Z3 floating-point fused multiply-add expression.

Definition at line 10138 of file z3py.py.

10138def fpFMA(rm, a, b, c, ctx=None):
10139 """Create a Z3 floating-point fused multiply-add expression.
10140 """
10141 return _mk_fp_tern(Z3_mk_fpa_fma, rm, a, b, c, ctx)
10142
10143
def fpFMA(rm, a, b, c, ctx=None)
Definition: z3py.py:10138

◆ fpFP()

def z3py.fpFP (   sgn,
  exp,
  sig,
  ctx = None 
)
Create the Z3 floating-point value `fpFP(sgn, sig, exp)` from the three bit-vectors sgn, sig, and exp.

>>> s = FPSort(8, 24)
>>> x = fpFP(BitVecVal(1, 1), BitVecVal(2**7-1, 8), BitVecVal(2**22, 23))
>>> print(x)
fpFP(1, 127, 4194304)
>>> xv = FPVal(-1.5, s)
>>> print(xv)
-1.5
>>> slvr = Solver()
>>> slvr.add(fpEQ(x, xv))
>>> slvr.check()
sat
>>> xv = FPVal(+1.5, s)
>>> print(xv)
1.5
>>> slvr = Solver()
>>> slvr.add(fpEQ(x, xv))
>>> slvr.check()
unsat

Definition at line 10286 of file z3py.py.

10286def fpFP(sgn, exp, sig, ctx=None):
10287 """Create the Z3 floating-point value `fpFP(sgn, sig, exp)` from the three bit-vectors sgn, sig, and exp.
10288
10289 >>> s = FPSort(8, 24)
10290 >>> x = fpFP(BitVecVal(1, 1), BitVecVal(2**7-1, 8), BitVecVal(2**22, 23))
10291 >>> print(x)
10292 fpFP(1, 127, 4194304)
10293 >>> xv = FPVal(-1.5, s)
10294 >>> print(xv)
10295 -1.5
10296 >>> slvr = Solver()
10297 >>> slvr.add(fpEQ(x, xv))
10298 >>> slvr.check()
10299 sat
10300 >>> xv = FPVal(+1.5, s)
10301 >>> print(xv)
10302 1.5
10303 >>> slvr = Solver()
10304 >>> slvr.add(fpEQ(x, xv))
10305 >>> slvr.check()
10306 unsat
10307 """
10308 _z3_assert(is_bv(sgn) and is_bv(exp) and is_bv(sig), "sort mismatch")
10309 _z3_assert(sgn.sort().size() == 1, "sort mismatch")
10310 ctx = _get_ctx(ctx)
10311 _z3_assert(ctx == sgn.ctx == exp.ctx == sig.ctx, "context mismatch")
10312 return FPRef(Z3_mk_fpa_fp(ctx.ref(), sgn.ast, exp.ast, sig.ast), ctx)
10313
10314
def fpFP(sgn, exp, sig, ctx=None)
Definition: z3py.py:10286
Z3_ast Z3_API Z3_mk_fpa_fp(Z3_context c, Z3_ast sgn, Z3_ast exp, Z3_ast sig)
Create an expression of FloatingPoint sort from three bit-vector expressions.

Referenced by fpFP().

◆ fpFPToFP()

def z3py.fpFPToFP (   rm,
  v,
  sort,
  ctx = None 
)
Create a Z3 floating-point conversion expression that represents the
conversion from a floating-point term to a floating-point term of different precision.

>>> x_sgl = FPVal(1.0, Float32())
>>> x_dbl = fpFPToFP(RNE(), x_sgl, Float64())
>>> x_dbl
fpToFP(RNE(), 1)
>>> simplify(x_dbl)
1
>>> x_dbl.sort()
FPSort(11, 53)

Definition at line 10371 of file z3py.py.

10371def fpFPToFP(rm, v, sort, ctx=None):
10372 """Create a Z3 floating-point conversion expression that represents the
10373 conversion from a floating-point term to a floating-point term of different precision.
10374
10375 >>> x_sgl = FPVal(1.0, Float32())
10376 >>> x_dbl = fpFPToFP(RNE(), x_sgl, Float64())
10377 >>> x_dbl
10378 fpToFP(RNE(), 1)
10379 >>> simplify(x_dbl)
10380 1
10381 >>> x_dbl.sort()
10382 FPSort(11, 53)
10383 """
10384 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10385 _z3_assert(is_fp(v), "Second argument must be a Z3 floating-point expression.")
10386 _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10387 ctx = _get_ctx(ctx)
10388 return FPRef(Z3_mk_fpa_to_fp_float(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10389
10390
def fpFPToFP(rm, v, sort, ctx=None)
Definition: z3py.py:10371
def is_fprm(a)
Definition: z3py.py:9542
Z3_ast Z3_API Z3_mk_fpa_to_fp_float(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a FloatingPoint term into another term of different FloatingPoint sort.

Referenced by fpFPToFP().

◆ fpGEQ()

def z3py.fpGEQ (   a,
  b,
  ctx = None 
)
Create the Z3 floating-point expression `other >= self`.

>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpGEQ(x, y)
x >= y
>>> (x >= y).sexpr()
'(fp.geq x y)'

Definition at line 10250 of file z3py.py.

10250def fpGEQ(a, b, ctx=None):
10251 """Create the Z3 floating-point expression `other >= self`.
10252
10253 >>> x, y = FPs('x y', FPSort(8, 24))
10254 >>> fpGEQ(x, y)
10255 x >= y
10256 >>> (x >= y).sexpr()
10257 '(fp.geq x y)'
10258 """
10259 return _mk_fp_bin_pred(Z3_mk_fpa_geq, a, b, ctx)
10260
10261
def fpGEQ(a, b, ctx=None)
Definition: z3py.py:10250

Referenced by FPRef.__ge__(), and fpGEQ().

◆ fpGT()

def z3py.fpGT (   a,
  b,
  ctx = None 
)
Create the Z3 floating-point expression `other > self`.

>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpGT(x, y)
x > y
>>> (x > y).sexpr()
'(fp.gt x y)'

Definition at line 10238 of file z3py.py.

10238def fpGT(a, b, ctx=None):
10239 """Create the Z3 floating-point expression `other > self`.
10240
10241 >>> x, y = FPs('x y', FPSort(8, 24))
10242 >>> fpGT(x, y)
10243 x > y
10244 >>> (x > y).sexpr()
10245 '(fp.gt x y)'
10246 """
10247 return _mk_fp_bin_pred(Z3_mk_fpa_gt, a, b, ctx)
10248
10249
def fpGT(a, b, ctx=None)
Definition: z3py.py:10238

Referenced by FPRef.__gt__(), and fpGT().

◆ fpInfinity()

def z3py.fpInfinity (   s,
  negative 
)
Create a Z3 floating-point +oo or -oo term.

Definition at line 9826 of file z3py.py.

9826def fpInfinity(s, negative):
9827 """Create a Z3 floating-point +oo or -oo term."""
9828 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
9829 _z3_assert(isinstance(negative, bool), "expected Boolean flag")
9830 return FPNumRef(Z3_mk_fpa_inf(s.ctx_ref(), s.ast, negative), s.ctx)
9831
9832
def fpInfinity(s, negative)
Definition: z3py.py:9826
Z3_ast Z3_API Z3_mk_fpa_inf(Z3_context c, Z3_sort s, bool negative)
Create a floating-point infinity of sort s.

◆ fpIsInf()

def z3py.fpIsInf (   a,
  ctx = None 
)
Create a Z3 floating-point isInfinite expression.

>>> s = FPSort(8, 24)
>>> x = FP('x', s)
>>> fpIsInf(x)
fpIsInf(x)

Definition at line 10168 of file z3py.py.

10168def fpIsInf(a, ctx=None):
10169 """Create a Z3 floating-point isInfinite expression.
10170
10171 >>> s = FPSort(8, 24)
10172 >>> x = FP('x', s)
10173 >>> fpIsInf(x)
10174 fpIsInf(x)
10175 """
10176 return _mk_fp_unary_pred(Z3_mk_fpa_is_infinite, a, ctx)
10177
10178
def fpIsInf(a, ctx=None)
Definition: z3py.py:10168

Referenced by fpIsInf().

◆ fpIsNaN()

def z3py.fpIsNaN (   a,
  ctx = None 
)
Create a Z3 floating-point isNaN expression.

>>> s = FPSort(8, 24)
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpIsNaN(x)
fpIsNaN(x)

Definition at line 10156 of file z3py.py.

10156def fpIsNaN(a, ctx=None):
10157 """Create a Z3 floating-point isNaN expression.
10158
10159 >>> s = FPSort(8, 24)
10160 >>> x = FP('x', s)
10161 >>> y = FP('y', s)
10162 >>> fpIsNaN(x)
10163 fpIsNaN(x)
10164 """
10165 return _mk_fp_unary_pred(Z3_mk_fpa_is_nan, a, ctx)
10166
10167
def fpIsNaN(a, ctx=None)
Definition: z3py.py:10156

Referenced by fpIsNaN().

◆ fpIsNegative()

def z3py.fpIsNegative (   a,
  ctx = None 
)
Create a Z3 floating-point isNegative expression.

Definition at line 10197 of file z3py.py.

10197def fpIsNegative(a, ctx=None):
10198 """Create a Z3 floating-point isNegative expression.
10199 """
10200 return _mk_fp_unary_pred(Z3_mk_fpa_is_negative, a, ctx)
10201
10202
def fpIsNegative(a, ctx=None)
Definition: z3py.py:10197

◆ fpIsNormal()

def z3py.fpIsNormal (   a,
  ctx = None 
)
Create a Z3 floating-point isNormal expression.

Definition at line 10185 of file z3py.py.

10185def fpIsNormal(a, ctx=None):
10186 """Create a Z3 floating-point isNormal expression.
10187 """
10188 return _mk_fp_unary_pred(Z3_mk_fpa_is_normal, a, ctx)
10189
10190
def fpIsNormal(a, ctx=None)
Definition: z3py.py:10185

◆ fpIsPositive()

def z3py.fpIsPositive (   a,
  ctx = None 
)
Create a Z3 floating-point isPositive expression.

Definition at line 10203 of file z3py.py.

10203def fpIsPositive(a, ctx=None):
10204 """Create a Z3 floating-point isPositive expression.
10205 """
10206 return _mk_fp_unary_pred(Z3_mk_fpa_is_positive, a, ctx)
10207
10208
def fpIsPositive(a, ctx=None)
Definition: z3py.py:10203

◆ fpIsSubnormal()

def z3py.fpIsSubnormal (   a,
  ctx = None 
)
Create a Z3 floating-point isSubnormal expression.

Definition at line 10191 of file z3py.py.

10191def fpIsSubnormal(a, ctx=None):
10192 """Create a Z3 floating-point isSubnormal expression.
10193 """
10194 return _mk_fp_unary_pred(Z3_mk_fpa_is_subnormal, a, ctx)
10195
10196
def fpIsSubnormal(a, ctx=None)
Definition: z3py.py:10191

◆ fpIsZero()

def z3py.fpIsZero (   a,
  ctx = None 
)
Create a Z3 floating-point isZero expression.

Definition at line 10179 of file z3py.py.

10179def fpIsZero(a, ctx=None):
10180 """Create a Z3 floating-point isZero expression.
10181 """
10182 return _mk_fp_unary_pred(Z3_mk_fpa_is_zero, a, ctx)
10183
10184
def fpIsZero(a, ctx=None)
Definition: z3py.py:10179

◆ fpLEQ()

def z3py.fpLEQ (   a,
  b,
  ctx = None 
)
Create the Z3 floating-point expression `other <= self`.

>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpLEQ(x, y)
x <= y
>>> (x <= y).sexpr()
'(fp.leq x y)'

Definition at line 10226 of file z3py.py.

10226def fpLEQ(a, b, ctx=None):
10227 """Create the Z3 floating-point expression `other <= self`.
10228
10229 >>> x, y = FPs('x y', FPSort(8, 24))
10230 >>> fpLEQ(x, y)
10231 x <= y
10232 >>> (x <= y).sexpr()
10233 '(fp.leq x y)'
10234 """
10235 return _mk_fp_bin_pred(Z3_mk_fpa_leq, a, b, ctx)
10236
10237
def fpLEQ(a, b, ctx=None)
Definition: z3py.py:10226

Referenced by FPRef.__le__(), and fpLEQ().

◆ fpLT()

def z3py.fpLT (   a,
  b,
  ctx = None 
)
Create the Z3 floating-point expression `other < self`.

>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpLT(x, y)
x < y
>>> (x < y).sexpr()
'(fp.lt x y)'

Definition at line 10214 of file z3py.py.

10214def fpLT(a, b, ctx=None):
10215 """Create the Z3 floating-point expression `other < self`.
10216
10217 >>> x, y = FPs('x y', FPSort(8, 24))
10218 >>> fpLT(x, y)
10219 x < y
10220 >>> (x < y).sexpr()
10221 '(fp.lt x y)'
10222 """
10223 return _mk_fp_bin_pred(Z3_mk_fpa_lt, a, b, ctx)
10224
10225
def fpLT(a, b, ctx=None)
Definition: z3py.py:10214

Referenced by FPRef.__lt__(), and fpLT().

◆ fpMax()

def z3py.fpMax (   a,
  b,
  ctx = None 
)
Create a Z3 floating-point maximum expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpMax(x, y)
fpMax(x, y)
>>> fpMax(x, y).sort()
FPSort(8, 24)

Definition at line 10123 of file z3py.py.

10123def fpMax(a, b, ctx=None):
10124 """Create a Z3 floating-point maximum expression.
10125
10126 >>> s = FPSort(8, 24)
10127 >>> rm = RNE()
10128 >>> x = FP('x', s)
10129 >>> y = FP('y', s)
10130 >>> fpMax(x, y)
10131 fpMax(x, y)
10132 >>> fpMax(x, y).sort()
10133 FPSort(8, 24)
10134 """
10135 return _mk_fp_bin_norm(Z3_mk_fpa_max, a, b, ctx)
10136
10137
def fpMax(a, b, ctx=None)
Definition: z3py.py:10123

Referenced by fpMax().

◆ fpMin()

def z3py.fpMin (   a,
  b,
  ctx = None 
)
Create a Z3 floating-point minimum expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpMin(x, y)
fpMin(x, y)
>>> fpMin(x, y).sort()
FPSort(8, 24)

Definition at line 10108 of file z3py.py.

10108def fpMin(a, b, ctx=None):
10109 """Create a Z3 floating-point minimum expression.
10110
10111 >>> s = FPSort(8, 24)
10112 >>> rm = RNE()
10113 >>> x = FP('x', s)
10114 >>> y = FP('y', s)
10115 >>> fpMin(x, y)
10116 fpMin(x, y)
10117 >>> fpMin(x, y).sort()
10118 FPSort(8, 24)
10119 """
10120 return _mk_fp_bin_norm(Z3_mk_fpa_min, a, b, ctx)
10121
10122
def fpMin(a, b, ctx=None)
Definition: z3py.py:10108

Referenced by fpMin().

◆ fpMinusInfinity()

def z3py.fpMinusInfinity (   s)
Create a Z3 floating-point -oo term.

Definition at line 9820 of file z3py.py.

9820def fpMinusInfinity(s):
9821 """Create a Z3 floating-point -oo term."""
9822 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
9823 return FPNumRef(Z3_mk_fpa_inf(s.ctx_ref(), s.ast, True), s.ctx)
9824
9825
def fpMinusInfinity(s)
Definition: z3py.py:9820

Referenced by FPVal().

◆ fpMinusZero()

def z3py.fpMinusZero (   s)
Create a Z3 floating-point -0.0 term.

Definition at line 9839 of file z3py.py.

9839def fpMinusZero(s):
9840 """Create a Z3 floating-point -0.0 term."""
9841 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
9842 return FPNumRef(Z3_mk_fpa_zero(s.ctx_ref(), s.ast, True), s.ctx)
9843
9844
def fpMinusZero(s)
Definition: z3py.py:9839
Z3_ast Z3_API Z3_mk_fpa_zero(Z3_context c, Z3_sort s, bool negative)
Create a floating-point zero of sort s.

Referenced by FPVal().

◆ fpMul()

def z3py.fpMul (   rm,
  a,
  b,
  ctx = None 
)
Create a Z3 floating-point multiplication expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpMul(rm, x, y)
fpMul(RNE(), x, y)
>>> fpMul(rm, x, y).sort()
FPSort(8, 24)

Definition at line 10064 of file z3py.py.

10064def fpMul(rm, a, b, ctx=None):
10065 """Create a Z3 floating-point multiplication expression.
10066
10067 >>> s = FPSort(8, 24)
10068 >>> rm = RNE()
10069 >>> x = FP('x', s)
10070 >>> y = FP('y', s)
10071 >>> fpMul(rm, x, y)
10072 fpMul(RNE(), x, y)
10073 >>> fpMul(rm, x, y).sort()
10074 FPSort(8, 24)
10075 """
10076 return _mk_fp_bin(Z3_mk_fpa_mul, rm, a, b, ctx)
10077
10078
def fpMul(rm, a, b, ctx=None)
Definition: z3py.py:10064

Referenced by FPRef.__mul__(), FPRef.__rmul__(), fpMul(), and FPs().

◆ fpNaN()

def z3py.fpNaN (   s)
Create a Z3 floating-point NaN term.

>>> s = FPSort(8, 24)
>>> set_fpa_pretty(True)
>>> fpNaN(s)
NaN
>>> pb = get_fpa_pretty()
>>> set_fpa_pretty(False)
>>> fpNaN(s)
fpNaN(FPSort(8, 24))
>>> set_fpa_pretty(pb)

Definition at line 9786 of file z3py.py.

9786def fpNaN(s):
9787 """Create a Z3 floating-point NaN term.
9788
9789 >>> s = FPSort(8, 24)
9790 >>> set_fpa_pretty(True)
9791 >>> fpNaN(s)
9792 NaN
9793 >>> pb = get_fpa_pretty()
9794 >>> set_fpa_pretty(False)
9795 >>> fpNaN(s)
9796 fpNaN(FPSort(8, 24))
9797 >>> set_fpa_pretty(pb)
9798 """
9799 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
9800 return FPNumRef(Z3_mk_fpa_nan(s.ctx_ref(), s.ast), s.ctx)
9801
9802
def fpNaN(s)
Definition: z3py.py:9786
Z3_ast Z3_API Z3_mk_fpa_nan(Z3_context c, Z3_sort s)
Create a floating-point NaN of sort s.

Referenced by fpNaN(), and FPVal().

◆ fpNeg()

def z3py.fpNeg (   a,
  ctx = None 
)
Create a Z3 floating-point addition expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> fpNeg(x)
-x
>>> fpNeg(x).sort()
FPSort(8, 24)

Definition at line 9964 of file z3py.py.

9964def fpNeg(a, ctx=None):
9965 """Create a Z3 floating-point addition expression.
9966
9967 >>> s = FPSort(8, 24)
9968 >>> rm = RNE()
9969 >>> x = FP('x', s)
9970 >>> fpNeg(x)
9971 -x
9972 >>> fpNeg(x).sort()
9973 FPSort(8, 24)
9974 """
9975 ctx = _get_ctx(ctx)
9976 [a] = _coerce_fp_expr_list([a], ctx)
9977 return FPRef(Z3_mk_fpa_neg(ctx.ref(), a.as_ast()), ctx)
9978
9979
def fpNeg(a, ctx=None)
Definition: z3py.py:9964
Z3_ast Z3_API Z3_mk_fpa_neg(Z3_context c, Z3_ast t)
Floating-point negation.

Referenced by FPRef.__neg__(), and fpNeg().

◆ fpNEQ()

def z3py.fpNEQ (   a,
  b,
  ctx = None 
)
Create the Z3 floating-point expression `Not(fpEQ(other, self))`.

>>> x, y = FPs('x y', FPSort(8, 24))
>>> fpNEQ(x, y)
Not(fpEQ(x, y))
>>> (x != y).sexpr()
'(distinct x y)'

Definition at line 10274 of file z3py.py.

10274def fpNEQ(a, b, ctx=None):
10275 """Create the Z3 floating-point expression `Not(fpEQ(other, self))`.
10276
10277 >>> x, y = FPs('x y', FPSort(8, 24))
10278 >>> fpNEQ(x, y)
10279 Not(fpEQ(x, y))
10280 >>> (x != y).sexpr()
10281 '(distinct x y)'
10282 """
10283 return Not(fpEQ(a, b, ctx))
10284
10285
def fpNEQ(a, b, ctx=None)
Definition: z3py.py:10274

Referenced by fpNEQ().

◆ fpPlusInfinity()

def z3py.fpPlusInfinity (   s)
Create a Z3 floating-point +oo term.

>>> s = FPSort(8, 24)
>>> pb = get_fpa_pretty()
>>> set_fpa_pretty(True)
>>> fpPlusInfinity(s)
+oo
>>> set_fpa_pretty(False)
>>> fpPlusInfinity(s)
fpPlusInfinity(FPSort(8, 24))
>>> set_fpa_pretty(pb)

Definition at line 9803 of file z3py.py.

9803def fpPlusInfinity(s):
9804 """Create a Z3 floating-point +oo term.
9805
9806 >>> s = FPSort(8, 24)
9807 >>> pb = get_fpa_pretty()
9808 >>> set_fpa_pretty(True)
9809 >>> fpPlusInfinity(s)
9810 +oo
9811 >>> set_fpa_pretty(False)
9812 >>> fpPlusInfinity(s)
9813 fpPlusInfinity(FPSort(8, 24))
9814 >>> set_fpa_pretty(pb)
9815 """
9816 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
9817 return FPNumRef(Z3_mk_fpa_inf(s.ctx_ref(), s.ast, False), s.ctx)
9818
9819
def fpPlusInfinity(s)
Definition: z3py.py:9803

Referenced by fpPlusInfinity(), and FPVal().

◆ fpPlusZero()

def z3py.fpPlusZero (   s)
Create a Z3 floating-point +0.0 term.

Definition at line 9833 of file z3py.py.

9833def fpPlusZero(s):
9834 """Create a Z3 floating-point +0.0 term."""
9835 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
9836 return FPNumRef(Z3_mk_fpa_zero(s.ctx_ref(), s.ast, False), s.ctx)
9837
9838
def fpPlusZero(s)
Definition: z3py.py:9833

Referenced by FPVal().

◆ fpRealToFP()

def z3py.fpRealToFP (   rm,
  v,
  sort,
  ctx = None 
)
Create a Z3 floating-point conversion expression that represents the
conversion from a real term to a floating-point term.

>>> x_r = RealVal(1.5)
>>> x_fp = fpRealToFP(RNE(), x_r, Float32())
>>> x_fp
fpToFP(RNE(), 3/2)
>>> simplify(x_fp)
1.5

Definition at line 10391 of file z3py.py.

10391def fpRealToFP(rm, v, sort, ctx=None):
10392 """Create a Z3 floating-point conversion expression that represents the
10393 conversion from a real term to a floating-point term.
10394
10395 >>> x_r = RealVal(1.5)
10396 >>> x_fp = fpRealToFP(RNE(), x_r, Float32())
10397 >>> x_fp
10398 fpToFP(RNE(), 3/2)
10399 >>> simplify(x_fp)
10400 1.5
10401 """
10402 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10403 _z3_assert(is_real(v), "Second argument must be a Z3 expression or real sort.")
10404 _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10405 ctx = _get_ctx(ctx)
10406 return FPRef(Z3_mk_fpa_to_fp_real(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10407
10408
def fpRealToFP(rm, v, sort, ctx=None)
Definition: z3py.py:10391
def is_real(a)
Definition: z3py.py:2667
Z3_ast Z3_API Z3_mk_fpa_to_fp_real(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a term of real sort into a term of FloatingPoint sort.

Referenced by fpRealToFP().

◆ fpRem()

def z3py.fpRem (   a,
  b,
  ctx = None 
)
Create a Z3 floating-point remainder expression.

>>> s = FPSort(8, 24)
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpRem(x, y)
fpRem(x, y)
>>> fpRem(x, y).sort()
FPSort(8, 24)

Definition at line 10094 of file z3py.py.

10094def fpRem(a, b, ctx=None):
10095 """Create a Z3 floating-point remainder expression.
10096
10097 >>> s = FPSort(8, 24)
10098 >>> x = FP('x', s)
10099 >>> y = FP('y', s)
10100 >>> fpRem(x, y)
10101 fpRem(x, y)
10102 >>> fpRem(x, y).sort()
10103 FPSort(8, 24)
10104 """
10105 return _mk_fp_bin_norm(Z3_mk_fpa_rem, a, b, ctx)
10106
10107
def fpRem(a, b, ctx=None)
Definition: z3py.py:10094

Referenced by FPRef.__mod__(), FPRef.__rmod__(), and fpRem().

◆ fpRoundToIntegral()

def z3py.fpRoundToIntegral (   rm,
  a,
  ctx = None 
)
Create a Z3 floating-point roundToIntegral expression.

Definition at line 10150 of file z3py.py.

10150def fpRoundToIntegral(rm, a, ctx=None):
10151 """Create a Z3 floating-point roundToIntegral expression.
10152 """
10153 return _mk_fp_unary(Z3_mk_fpa_round_to_integral, rm, a, ctx)
10154
10155
def fpRoundToIntegral(rm, a, ctx=None)
Definition: z3py.py:10150

◆ FPs()

def z3py.FPs (   names,
  fpsort,
  ctx = None 
)
Return an array of floating-point constants.

>>> x, y, z = FPs('x y z', FPSort(8, 24))
>>> x.sort()
FPSort(8, 24)
>>> x.sbits()
24
>>> x.ebits()
8
>>> fpMul(RNE(), fpAdd(RNE(), x, y), z)
fpMul(RNE(), fpAdd(RNE(), x, y), z)

Definition at line 9922 of file z3py.py.

9922def FPs(names, fpsort, ctx=None):
9923 """Return an array of floating-point constants.
9924
9925 >>> x, y, z = FPs('x y z', FPSort(8, 24))
9926 >>> x.sort()
9927 FPSort(8, 24)
9928 >>> x.sbits()
9929 24
9930 >>> x.ebits()
9931 8
9932 >>> fpMul(RNE(), fpAdd(RNE(), x, y), z)
9933 fpMul(RNE(), fpAdd(RNE(), x, y), z)
9934 """
9935 ctx = _get_ctx(ctx)
9936 if isinstance(names, str):
9937 names = names.split(" ")
9938 return [FP(name, fpsort, ctx) for name in names]
9939
9940

Referenced by fpEQ(), fpGEQ(), fpGT(), fpLEQ(), fpLT(), fpNEQ(), and FPs().

◆ fpSignedToFP()

def z3py.fpSignedToFP (   rm,
  v,
  sort,
  ctx = None 
)
Create a Z3 floating-point conversion expression that represents the
conversion from a signed bit-vector term (encoding an integer) to a floating-point term.

>>> x_signed = BitVecVal(-5, BitVecSort(32))
>>> x_fp = fpSignedToFP(RNE(), x_signed, Float32())
>>> x_fp
fpToFP(RNE(), 4294967291)
>>> simplify(x_fp)
-1.25*(2**2)

Definition at line 10409 of file z3py.py.

10409def fpSignedToFP(rm, v, sort, ctx=None):
10410 """Create a Z3 floating-point conversion expression that represents the
10411 conversion from a signed bit-vector term (encoding an integer) to a floating-point term.
10412
10413 >>> x_signed = BitVecVal(-5, BitVecSort(32))
10414 >>> x_fp = fpSignedToFP(RNE(), x_signed, Float32())
10415 >>> x_fp
10416 fpToFP(RNE(), 4294967291)
10417 >>> simplify(x_fp)
10418 -1.25*(2**2)
10419 """
10420 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10421 _z3_assert(is_bv(v), "Second argument must be a Z3 bit-vector expression")
10422 _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10423 ctx = _get_ctx(ctx)
10424 return FPRef(Z3_mk_fpa_to_fp_signed(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10425
10426
def fpSignedToFP(rm, v, sort, ctx=None)
Definition: z3py.py:10409
Z3_ast Z3_API Z3_mk_fpa_to_fp_signed(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a 2's complement signed bit-vector term into a term of FloatingPoint sort.

Referenced by fpSignedToFP().

◆ FPSort()

def z3py.FPSort (   ebits,
  sbits,
  ctx = None 
)
Return a Z3 floating-point sort of the given sizes. If `ctx=None`, then the global context is used.

>>> Single = FPSort(8, 24)
>>> Double = FPSort(11, 53)
>>> Single
FPSort(8, 24)
>>> x = Const('x', Single)
>>> eq(x, FP('x', FPSort(8, 24)))
True

Definition at line 9727 of file z3py.py.

9727def FPSort(ebits, sbits, ctx=None):
9728 """Return a Z3 floating-point sort of the given sizes. If `ctx=None`, then the global context is used.
9729
9730 >>> Single = FPSort(8, 24)
9731 >>> Double = FPSort(11, 53)
9732 >>> Single
9733 FPSort(8, 24)
9734 >>> x = Const('x', Single)
9735 >>> eq(x, FP('x', FPSort(8, 24)))
9736 True
9737 """
9738 ctx = _get_ctx(ctx)
9739 return FPSortRef(Z3_mk_fpa_sort(ctx.ref(), ebits, sbits), ctx)
9740
9741
Z3_sort Z3_API Z3_mk_fpa_sort(Z3_context c, unsigned ebits, unsigned sbits)
Create a FloatingPoint sort.

Referenced by FPRef.__add__(), FPRef.__div__(), FPRef.__mul__(), FPRef.__radd__(), FPRef.__rdiv__(), FPRef.__rmul__(), FPRef.__rsub__(), FPRef.__sub__(), FPSortRef.cast(), FPSortRef.ebits(), FPRef.ebits(), FPNumRef.exponent(), FP(), fpAbs(), fpAdd(), fpDiv(), fpEQ(), fpFP(), fpFPToFP(), fpGEQ(), fpGT(), fpIsInf(), fpIsNaN(), fpLEQ(), fpLT(), fpMax(), fpMin(), fpMul(), fpNaN(), fpNeg(), fpNEQ(), fpPlusInfinity(), fpRem(), FPs(), FPSort(), fpSub(), fpToFP(), fpToIEEEBV(), fpToReal(), fpToSBV(), fpToUBV(), FPVal(), get_default_fp_sort(), is_fp(), is_fp_value(), is_fprm_sort(), FPNumRef.isNegative(), Context.mkFPSort(), Context.MkFPSort(), Context.MkFPSort128(), Context.mkFPSort128(), Context.MkFPSort16(), Context.mkFPSort16(), Context.MkFPSort32(), Context.mkFPSort32(), Context.MkFPSort64(), Context.mkFPSort64(), Context.MkFPSortDouble(), Context.mkFPSortDouble(), Context.MkFPSortHalf(), Context.mkFPSortHalf(), Context.MkFPSortQuadruple(), Context.mkFPSortQuadruple(), Context.MkFPSortSingle(), Context.mkFPSortSingle(), FPSortRef.sbits(), FPRef.sbits(), FPNumRef.sign_as_bv(), FPNumRef.significand(), FPNumRef.significand_as_bv(), and FPRef.sort().

◆ fpSqrt()

def z3py.fpSqrt (   rm,
  a,
  ctx = None 
)
Create a Z3 floating-point square root expression.

Definition at line 10144 of file z3py.py.

10144def fpSqrt(rm, a, ctx=None):
10145 """Create a Z3 floating-point square root expression.
10146 """
10147 return _mk_fp_unary(Z3_mk_fpa_sqrt, rm, a, ctx)
10148
10149
def fpSqrt(rm, a, ctx=None)
Definition: z3py.py:10144

◆ fpSub()

def z3py.fpSub (   rm,
  a,
  b,
  ctx = None 
)
Create a Z3 floating-point subtraction expression.

>>> s = FPSort(8, 24)
>>> rm = RNE()
>>> x = FP('x', s)
>>> y = FP('y', s)
>>> fpSub(rm, x, y)
fpSub(RNE(), x, y)
>>> fpSub(rm, x, y).sort()
FPSort(8, 24)

Definition at line 10049 of file z3py.py.

10049def fpSub(rm, a, b, ctx=None):
10050 """Create a Z3 floating-point subtraction expression.
10051
10052 >>> s = FPSort(8, 24)
10053 >>> rm = RNE()
10054 >>> x = FP('x', s)
10055 >>> y = FP('y', s)
10056 >>> fpSub(rm, x, y)
10057 fpSub(RNE(), x, y)
10058 >>> fpSub(rm, x, y).sort()
10059 FPSort(8, 24)
10060 """
10061 return _mk_fp_bin(Z3_mk_fpa_sub, rm, a, b, ctx)
10062
10063
def fpSub(rm, a, b, ctx=None)
Definition: z3py.py:10049

Referenced by FPRef.__rsub__(), FPRef.__sub__(), and fpSub().

◆ fpToFP()

def z3py.fpToFP (   a1,
  a2 = None,
  a3 = None,
  ctx = None 
)
Create a Z3 floating-point conversion expression from other term sorts
to floating-point.

From a bit-vector term in IEEE 754-2008 format:
>>> x = FPVal(1.0, Float32())
>>> x_bv = fpToIEEEBV(x)
>>> simplify(fpToFP(x_bv, Float32()))
1

From a floating-point term with different precision:
>>> x = FPVal(1.0, Float32())
>>> x_db = fpToFP(RNE(), x, Float64())
>>> x_db.sort()
FPSort(11, 53)

From a real term:
>>> x_r = RealVal(1.5)
>>> simplify(fpToFP(RNE(), x_r, Float32()))
1.5

From a signed bit-vector term:
>>> x_signed = BitVecVal(-5, BitVecSort(32))
>>> simplify(fpToFP(RNE(), x_signed, Float32()))
-1.25*(2**2)

Definition at line 10315 of file z3py.py.

10315def fpToFP(a1, a2=None, a3=None, ctx=None):
10316 """Create a Z3 floating-point conversion expression from other term sorts
10317 to floating-point.
10318
10319 From a bit-vector term in IEEE 754-2008 format:
10320 >>> x = FPVal(1.0, Float32())
10321 >>> x_bv = fpToIEEEBV(x)
10322 >>> simplify(fpToFP(x_bv, Float32()))
10323 1
10324
10325 From a floating-point term with different precision:
10326 >>> x = FPVal(1.0, Float32())
10327 >>> x_db = fpToFP(RNE(), x, Float64())
10328 >>> x_db.sort()
10329 FPSort(11, 53)
10330
10331 From a real term:
10332 >>> x_r = RealVal(1.5)
10333 >>> simplify(fpToFP(RNE(), x_r, Float32()))
10334 1.5
10335
10336 From a signed bit-vector term:
10337 >>> x_signed = BitVecVal(-5, BitVecSort(32))
10338 >>> simplify(fpToFP(RNE(), x_signed, Float32()))
10339 -1.25*(2**2)
10340 """
10341 ctx = _get_ctx(ctx)
10342 if is_bv(a1) and is_fp_sort(a2):
10343 return FPRef(Z3_mk_fpa_to_fp_bv(ctx.ref(), a1.ast, a2.ast), ctx)
10344 elif is_fprm(a1) and is_fp(a2) and is_fp_sort(a3):
10345 return FPRef(Z3_mk_fpa_to_fp_float(ctx.ref(), a1.ast, a2.ast, a3.ast), ctx)
10346 elif is_fprm(a1) and is_real(a2) and is_fp_sort(a3):
10347 return FPRef(Z3_mk_fpa_to_fp_real(ctx.ref(), a1.ast, a2.ast, a3.ast), ctx)
10348 elif is_fprm(a1) and is_bv(a2) and is_fp_sort(a3):
10349 return FPRef(Z3_mk_fpa_to_fp_signed(ctx.ref(), a1.ast, a2.ast, a3.ast), ctx)
10350 else:
10351 raise Z3Exception("Unsupported combination of arguments for conversion to floating-point term.")
10352
10353
def fpToIEEEBV(x, ctx=None)
Definition: z3py.py:10519

Referenced by fpBVToFP(), fpFPToFP(), fpRealToFP(), fpSignedToFP(), and fpToFP().

◆ fpToFPUnsigned()

def z3py.fpToFPUnsigned (   rm,
  x,
  s,
  ctx = None 
)
Create a Z3 floating-point conversion expression, from unsigned bit-vector to floating-point expression.

Definition at line 10445 of file z3py.py.

10445def fpToFPUnsigned(rm, x, s, ctx=None):
10446 """Create a Z3 floating-point conversion expression, from unsigned bit-vector to floating-point expression."""
10447 if z3_debug():
10448 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10449 _z3_assert(is_bv(x), "Second argument must be a Z3 bit-vector expression")
10450 _z3_assert(is_fp_sort(s), "Third argument must be Z3 floating-point sort")
10451 ctx = _get_ctx(ctx)
10452 return FPRef(Z3_mk_fpa_to_fp_unsigned(ctx.ref(), rm.ast, x.ast, s.ast), ctx)
10453
10454
def fpToFPUnsigned(rm, x, s, ctx=None)
Definition: z3py.py:10445
Z3_ast Z3_API Z3_mk_fpa_to_fp_unsigned(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a 2's complement unsigned bit-vector term into a term of FloatingPoint sort.

Referenced by fpUnsignedToFP().

◆ fpToIEEEBV()

def z3py.fpToIEEEBV (   x,
  ctx = None 
)
\brief Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.

The size of the resulting bit-vector is automatically determined.

Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion
knows only one NaN and it will always produce the same bit-vector representation of
that NaN.

>>> x = FP('x', FPSort(8, 24))
>>> y = fpToIEEEBV(x)
>>> print(is_fp(x))
True
>>> print(is_bv(y))
True
>>> print(is_fp(y))
False
>>> print(is_bv(x))
False

Definition at line 10519 of file z3py.py.

10519def fpToIEEEBV(x, ctx=None):
10520 """\brief Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.
10521
10522 The size of the resulting bit-vector is automatically determined.
10523
10524 Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion
10525 knows only one NaN and it will always produce the same bit-vector representation of
10526 that NaN.
10527
10528 >>> x = FP('x', FPSort(8, 24))
10529 >>> y = fpToIEEEBV(x)
10530 >>> print(is_fp(x))
10531 True
10532 >>> print(is_bv(y))
10533 True
10534 >>> print(is_fp(y))
10535 False
10536 >>> print(is_bv(x))
10537 False
10538 """
10539 if z3_debug():
10540 _z3_assert(is_fp(x), "First argument must be a Z3 floating-point expression")
10541 ctx = _get_ctx(ctx)
10542 return BitVecRef(Z3_mk_fpa_to_ieee_bv(ctx.ref(), x.ast), ctx)
10543
10544
Z3_ast Z3_API Z3_mk_fpa_to_ieee_bv(Z3_context c, Z3_ast t)
Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.

Referenced by fpToFP(), and fpToIEEEBV().

◆ fpToReal()

def z3py.fpToReal (   x,
  ctx = None 
)
Create a Z3 floating-point conversion expression, from floating-point expression to real.

>>> x = FP('x', FPSort(8, 24))
>>> y = fpToReal(x)
>>> print(is_fp(x))
True
>>> print(is_real(y))
True
>>> print(is_fp(y))
False
>>> print(is_real(x))
False

Definition at line 10499 of file z3py.py.

10499def fpToReal(x, ctx=None):
10500 """Create a Z3 floating-point conversion expression, from floating-point expression to real.
10501
10502 >>> x = FP('x', FPSort(8, 24))
10503 >>> y = fpToReal(x)
10504 >>> print(is_fp(x))
10505 True
10506 >>> print(is_real(y))
10507 True
10508 >>> print(is_fp(y))
10509 False
10510 >>> print(is_real(x))
10511 False
10512 """
10513 if z3_debug():
10514 _z3_assert(is_fp(x), "First argument must be a Z3 floating-point expression")
10515 ctx = _get_ctx(ctx)
10516 return ArithRef(Z3_mk_fpa_to_real(ctx.ref(), x.ast), ctx)
10517
10518
def fpToReal(x, ctx=None)
Definition: z3py.py:10499
Z3_ast Z3_API Z3_mk_fpa_to_real(Z3_context c, Z3_ast t)
Conversion of a floating-point term into a real-numbered term.

Referenced by fpToReal().

◆ fpToSBV()

def z3py.fpToSBV (   rm,
  x,
  s,
  ctx = None 
)
Create a Z3 floating-point conversion expression, from floating-point expression to signed bit-vector.

>>> x = FP('x', FPSort(8, 24))
>>> y = fpToSBV(RTZ(), x, BitVecSort(32))
>>> print(is_fp(x))
True
>>> print(is_bv(y))
True
>>> print(is_fp(y))
False
>>> print(is_bv(x))
False

Definition at line 10455 of file z3py.py.

10455def fpToSBV(rm, x, s, ctx=None):
10456 """Create a Z3 floating-point conversion expression, from floating-point expression to signed bit-vector.
10457
10458 >>> x = FP('x', FPSort(8, 24))
10459 >>> y = fpToSBV(RTZ(), x, BitVecSort(32))
10460 >>> print(is_fp(x))
10461 True
10462 >>> print(is_bv(y))
10463 True
10464 >>> print(is_fp(y))
10465 False
10466 >>> print(is_bv(x))
10467 False
10468 """
10469 if z3_debug():
10470 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10471 _z3_assert(is_fp(x), "Second argument must be a Z3 floating-point expression")
10472 _z3_assert(is_bv_sort(s), "Third argument must be Z3 bit-vector sort")
10473 ctx = _get_ctx(ctx)
10474 return BitVecRef(Z3_mk_fpa_to_sbv(ctx.ref(), rm.ast, x.ast, s.size()), ctx)
10475
10476
def fpToSBV(rm, x, s, ctx=None)
Definition: z3py.py:10455
Z3_ast Z3_API Z3_mk_fpa_to_sbv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
Conversion of a floating-point term into a signed bit-vector.

Referenced by fpToSBV().

◆ fpToUBV()

def z3py.fpToUBV (   rm,
  x,
  s,
  ctx = None 
)
Create a Z3 floating-point conversion expression, from floating-point expression to unsigned bit-vector.

>>> x = FP('x', FPSort(8, 24))
>>> y = fpToUBV(RTZ(), x, BitVecSort(32))
>>> print(is_fp(x))
True
>>> print(is_bv(y))
True
>>> print(is_fp(y))
False
>>> print(is_bv(x))
False

Definition at line 10477 of file z3py.py.

10477def fpToUBV(rm, x, s, ctx=None):
10478 """Create a Z3 floating-point conversion expression, from floating-point expression to unsigned bit-vector.
10479
10480 >>> x = FP('x', FPSort(8, 24))
10481 >>> y = fpToUBV(RTZ(), x, BitVecSort(32))
10482 >>> print(is_fp(x))
10483 True
10484 >>> print(is_bv(y))
10485 True
10486 >>> print(is_fp(y))
10487 False
10488 >>> print(is_bv(x))
10489 False
10490 """
10491 if z3_debug():
10492 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression")
10493 _z3_assert(is_fp(x), "Second argument must be a Z3 floating-point expression")
10494 _z3_assert(is_bv_sort(s), "Third argument must be Z3 bit-vector sort")
10495 ctx = _get_ctx(ctx)
10496 return BitVecRef(Z3_mk_fpa_to_ubv(ctx.ref(), rm.ast, x.ast, s.size()), ctx)
10497
10498
def fpToUBV(rm, x, s, ctx=None)
Definition: z3py.py:10477
Z3_ast Z3_API Z3_mk_fpa_to_ubv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
Conversion of a floating-point term into an unsigned bit-vector.

Referenced by fpToUBV().

◆ fpUnsignedToFP()

def z3py.fpUnsignedToFP (   rm,
  v,
  sort,
  ctx = None 
)
Create a Z3 floating-point conversion expression that represents the
conversion from an unsigned bit-vector term (encoding an integer) to a floating-point term.

>>> x_signed = BitVecVal(-5, BitVecSort(32))
>>> x_fp = fpUnsignedToFP(RNE(), x_signed, Float32())
>>> x_fp
fpToFPUnsigned(RNE(), 4294967291)
>>> simplify(x_fp)
1*(2**32)

Definition at line 10427 of file z3py.py.

10427def fpUnsignedToFP(rm, v, sort, ctx=None):
10428 """Create a Z3 floating-point conversion expression that represents the
10429 conversion from an unsigned bit-vector term (encoding an integer) to a floating-point term.
10430
10431 >>> x_signed = BitVecVal(-5, BitVecSort(32))
10432 >>> x_fp = fpUnsignedToFP(RNE(), x_signed, Float32())
10433 >>> x_fp
10434 fpToFPUnsigned(RNE(), 4294967291)
10435 >>> simplify(x_fp)
10436 1*(2**32)
10437 """
10438 _z3_assert(is_fprm(rm), "First argument must be a Z3 floating-point rounding mode expression.")
10439 _z3_assert(is_bv(v), "Second argument must be a Z3 bit-vector expression")
10440 _z3_assert(is_fp_sort(sort), "Third argument must be a Z3 floating-point sort.")
10441 ctx = _get_ctx(ctx)
10442 return FPRef(Z3_mk_fpa_to_fp_unsigned(ctx.ref(), rm.ast, v.ast, sort.ast), ctx)
10443
10444
def fpUnsignedToFP(rm, v, sort, ctx=None)
Definition: z3py.py:10427

Referenced by fpUnsignedToFP().

◆ FPVal()

def z3py.FPVal (   sig,
  exp = None,
  fps = None,
  ctx = None 
)
Return a floating-point value of value `val` and sort `fps`.
If `ctx=None`, then the global context is used.

>>> v = FPVal(20.0, FPSort(8, 24))
>>> v
1.25*(2**4)
>>> print("0x%.8x" % v.exponent_as_long(False))
0x00000004
>>> v = FPVal(2.25, FPSort(8, 24))
>>> v
1.125*(2**1)
>>> v = FPVal(-2.25, FPSort(8, 24))
>>> v
-1.125*(2**1)
>>> FPVal(-0.0, FPSort(8, 24))
-0.0
>>> FPVal(0.0, FPSort(8, 24))
+0.0
>>> FPVal(+0.0, FPSort(8, 24))
+0.0

Definition at line 9852 of file z3py.py.

9852def FPVal(sig, exp=None, fps=None, ctx=None):
9853 """Return a floating-point value of value `val` and sort `fps`.
9854 If `ctx=None`, then the global context is used.
9855
9856 >>> v = FPVal(20.0, FPSort(8, 24))
9857 >>> v
9858 1.25*(2**4)
9859 >>> print("0x%.8x" % v.exponent_as_long(False))
9860 0x00000004
9861 >>> v = FPVal(2.25, FPSort(8, 24))
9862 >>> v
9863 1.125*(2**1)
9864 >>> v = FPVal(-2.25, FPSort(8, 24))
9865 >>> v
9866 -1.125*(2**1)
9867 >>> FPVal(-0.0, FPSort(8, 24))
9868 -0.0
9869 >>> FPVal(0.0, FPSort(8, 24))
9870 +0.0
9871 >>> FPVal(+0.0, FPSort(8, 24))
9872 +0.0
9873 """
9874 ctx = _get_ctx(ctx)
9875 if is_fp_sort(exp):
9876 fps = exp
9877 exp = None
9878 elif fps is None:
9879 fps = _dflt_fps(ctx)
9880 _z3_assert(is_fp_sort(fps), "sort mismatch")
9881 if exp is None:
9882 exp = 0
9883 val = _to_float_str(sig)
9884 if val == "NaN" or val == "nan":
9885 return fpNaN(fps)
9886 elif val == "-0.0":
9887 return fpMinusZero(fps)
9888 elif val == "0.0" or val == "+0.0":
9889 return fpPlusZero(fps)
9890 elif val == "+oo" or val == "+inf" or val == "+Inf":
9891 return fpPlusInfinity(fps)
9892 elif val == "-oo" or val == "-inf" or val == "-Inf":
9893 return fpMinusInfinity(fps)
9894 else:
9895 return FPNumRef(Z3_mk_numeral(ctx.ref(), val, fps.ast), ctx)
9896
9897

Referenced by FPNumRef.exponent(), fpAbs(), fpFP(), fpFPToFP(), fpToFP(), FPVal(), is_expr(), is_fp_value(), FPNumRef.isNegative(), set_default_fp_sort(), FPNumRef.sign_as_bv(), FPNumRef.significand(), and FPNumRef.significand_as_bv().

◆ fpZero()

def z3py.fpZero (   s,
  negative 
)
Create a Z3 floating-point +0.0 or -0.0 term.

Definition at line 9845 of file z3py.py.

9845def fpZero(s, negative):
9846 """Create a Z3 floating-point +0.0 or -0.0 term."""
9847 _z3_assert(isinstance(s, FPSortRef), "sort mismatch")
9848 _z3_assert(isinstance(negative, bool), "expected Boolean flag")
9849 return FPNumRef(Z3_mk_fpa_zero(s.ctx_ref(), s.ast, negative), s.ctx)
9850
9851
def fpZero(s, negative)
Definition: z3py.py:9845

◆ FreshBool()

def z3py.FreshBool (   prefix = "b",
  ctx = None 
)
Return a fresh Boolean constant in the given context using the given prefix.

If `ctx=None`, then the global context is used.

>>> b1 = FreshBool()
>>> b2 = FreshBool()
>>> eq(b1, b2)
False

Definition at line 1735 of file z3py.py.

1735def FreshBool(prefix="b", ctx=None):
1736 """Return a fresh Boolean constant in the given context using the given prefix.
1737
1738 If `ctx=None`, then the global context is used.
1739
1740 >>> b1 = FreshBool()
1741 >>> b2 = FreshBool()
1742 >>> eq(b1, b2)
1743 False
1744 """
1745 ctx = _get_ctx(ctx)
1746 return BoolRef(Z3_mk_fresh_const(ctx.ref(), prefix, BoolSort(ctx).ast), ctx)
1747
1748
def FreshBool(prefix="b", ctx=None)
Definition: z3py.py:1735
Z3_ast Z3_API Z3_mk_fresh_const(Z3_context c, Z3_string prefix, Z3_sort ty)
Declare and create a fresh constant.

Referenced by FreshBool().

◆ FreshConst()

def z3py.FreshConst (   sort,
  prefix = "c" 
)
Create a fresh constant of a specified sort

Definition at line 1432 of file z3py.py.

1432def FreshConst(sort, prefix="c"):
1433 """Create a fresh constant of a specified sort"""
1434 ctx = _get_ctx(sort.ctx)
1435 return _to_expr_ref(Z3_mk_fresh_const(ctx.ref(), prefix, sort.ast), ctx)
1436
1437
def FreshConst(sort, prefix="c")
Definition: z3py.py:1432

◆ FreshFunction()

def z3py.FreshFunction ( sig)
Create a new fresh Z3 uninterpreted function with the given sorts.

Definition at line 883 of file z3py.py.

883def FreshFunction(*sig):
884 """Create a new fresh Z3 uninterpreted function with the given sorts.
885 """
886 sig = _get_args(sig)
887 if z3_debug():
888 _z3_assert(len(sig) > 0, "At least two arguments expected")
889 arity = len(sig) - 1
890 rng = sig[arity]
891 if z3_debug():
892 _z3_assert(is_sort(rng), "Z3 sort expected")
893 dom = (z3.Sort * arity)()
894 for i in range(arity):
895 if z3_debug():
896 _z3_assert(is_sort(sig[i]), "Z3 sort expected")
897 dom[i] = sig[i].ast
898 ctx = rng.ctx
899 return FuncDeclRef(Z3_mk_fresh_func_decl(ctx.ref(), "f", arity, dom, rng.ast), ctx)
900
901
def FreshFunction(*sig)
Definition: z3py.py:883
Z3_func_decl Z3_API Z3_mk_fresh_func_decl(Z3_context c, Z3_string prefix, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
Declare a fresh constant or function.

◆ FreshInt()

def z3py.FreshInt (   prefix = "x",
  ctx = None 
)
Return a fresh integer constant in the given context using the given prefix.

>>> x = FreshInt()
>>> y = FreshInt()
>>> eq(x, y)
False
>>> x.sort()
Int

Definition at line 3249 of file z3py.py.

3249def FreshInt(prefix="x", ctx=None):
3250 """Return a fresh integer constant in the given context using the given prefix.
3251
3252 >>> x = FreshInt()
3253 >>> y = FreshInt()
3254 >>> eq(x, y)
3255 False
3256 >>> x.sort()
3257 Int
3258 """
3259 ctx = _get_ctx(ctx)
3260 return ArithRef(Z3_mk_fresh_const(ctx.ref(), prefix, IntSort(ctx).ast), ctx)
3261
3262
def FreshInt(prefix="x", ctx=None)
Definition: z3py.py:3249

Referenced by FreshInt().

◆ FreshReal()

def z3py.FreshReal (   prefix = "b",
  ctx = None 
)
Return a fresh real constant in the given context using the given prefix.

>>> x = FreshReal()
>>> y = FreshReal()
>>> eq(x, y)
False
>>> x.sort()
Real

Definition at line 3306 of file z3py.py.

3306def FreshReal(prefix="b", ctx=None):
3307 """Return a fresh real constant in the given context using the given prefix.
3308
3309 >>> x = FreshReal()
3310 >>> y = FreshReal()
3311 >>> eq(x, y)
3312 False
3313 >>> x.sort()
3314 Real
3315 """
3316 ctx = _get_ctx(ctx)
3317 return ArithRef(Z3_mk_fresh_const(ctx.ref(), prefix, RealSort(ctx).ast), ctx)
3318
3319
def RealSort(ctx=None)
Definition: z3py.py:3117
def FreshReal(prefix="b", ctx=None)
Definition: z3py.py:3306

Referenced by FreshReal().

◆ Full()

def z3py.Full (   s)
Create the regular expression that accepts the universal language
>>> e = Full(ReSort(SeqSort(IntSort())))
>>> print(e)
Full(ReSort(Seq(Int)))
>>> e1 = Full(ReSort(StringSort()))
>>> print(e1)
Full(ReSort(String))

Definition at line 10740 of file z3py.py.

10740def Full(s):
10741 """Create the regular expression that accepts the universal language
10742 >>> e = Full(ReSort(SeqSort(IntSort())))
10743 >>> print(e)
10744 Full(ReSort(Seq(Int)))
10745 >>> e1 = Full(ReSort(StringSort()))
10746 >>> print(e1)
10747 Full(ReSort(String))
10748 """
10749 if isinstance(s, ReSortRef):
10750 return ReRef(Z3_mk_re_full(s.ctx_ref(), s.ast), s.ctx)
10751 raise Z3Exception("Non-sequence, non-regular expression sort passed to Full")
10752
10753
def Full(s)
Definition: z3py.py:10740
Z3_ast Z3_API Z3_mk_re_full(Z3_context c, Z3_sort re)
Create an universal regular expression of sort re.

Referenced by Full().

◆ FullSet()

def z3py.FullSet (   s)
Create the full set
>>> FullSet(IntSort())
K(Int, True)

Definition at line 4865 of file z3py.py.

4865def FullSet(s):
4866 """Create the full set
4867 >>> FullSet(IntSort())
4868 K(Int, True)
4869 """
4870 ctx = s.ctx
4871 return ArrayRef(Z3_mk_full_set(ctx.ref(), s.ast), ctx)
4872
4873
def FullSet(s)
Definition: z3py.py:4865
Z3_ast Z3_API Z3_mk_full_set(Z3_context c, Z3_sort domain)
Create the full set.

Referenced by FullSet().

◆ Function()

def z3py.Function (   name,
sig 
)
Create a new Z3 uninterpreted function with the given sorts.

>>> f = Function('f', IntSort(), IntSort())
>>> f(f(0))
f(f(0))

Definition at line 860 of file z3py.py.

860def Function(name, *sig):
861 """Create a new Z3 uninterpreted function with the given sorts.
862
863 >>> f = Function('f', IntSort(), IntSort())
864 >>> f(f(0))
865 f(f(0))
866 """
867 sig = _get_args(sig)
868 if z3_debug():
869 _z3_assert(len(sig) > 0, "At least two arguments expected")
870 arity = len(sig) - 1
871 rng = sig[arity]
872 if z3_debug():
873 _z3_assert(is_sort(rng), "Z3 sort expected")
874 dom = (Sort * arity)()
875 for i in range(arity):
876 if z3_debug():
877 _z3_assert(is_sort(sig[i]), "Z3 sort expected")
878 dom[i] = sig[i].ast
879 ctx = rng.ctx
880 return FuncDeclRef(Z3_mk_func_decl(ctx.ref(), to_symbol(name, ctx), arity, dom, rng.ast), ctx)
881
882
Z3_func_decl Z3_API Z3_mk_func_decl(Z3_context c, Z3_symbol s, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
Declare a constant or function.

Referenced by FuncDeclRef.__call__(), ModelRef.__getitem__(), ModelRef.__len__(), ExprRef.arg(), FuncEntry.arg_value(), FuncDeclRef.arity(), FuncInterp.arity(), FuncEntry.as_list(), FuncInterp.as_list(), QuantifierRef.body(), BoolSort(), ExprRef.children(), QuantifierRef.children(), ExprRef.decl(), ModelRef.decls(), FuncDeclRef.domain(), FuncInterp.else_value(), FuncInterp.entry(), Exists(), ForAll(), Function(), ModelRef.get_interp(), get_map_func(), get_var_index(), is_ast(), QuantifierRef.is_exists(), QuantifierRef.is_forall(), is_func_decl(), QuantifierRef.is_lambda(), is_map(), is_pattern(), is_quantifier(), is_var(), Lambda(), Map(), MultiPattern(), FuncDeclRef.name(), ExprRef.num_args(), FuncEntry.num_args(), FuncInterp.num_entries(), QuantifierRef.num_patterns(), QuantifierRef.num_vars(), parse_smt2_string(), QuantifierRef.pattern(), FuncDeclRef.range(), substitute(), substitute_vars(), FuncEntry.value(), QuantifierRef.var_name(), QuantifierRef.var_sort(), and QuantifierRef.weight().

◆ get_as_array_func()

def z3py.get_as_array_func (   n)
Return the function declaration f associated with a Z3 expression of the form (_ as-array f).

Definition at line 6589 of file z3py.py.

6589def get_as_array_func(n):
6590 """Return the function declaration f associated with a Z3 expression of the form (_ as-array f)."""
6591 if z3_debug():
6592 _z3_assert(is_as_array(n), "as-array Z3 expression expected.")
6593 return FuncDeclRef(Z3_get_as_array_func_decl(n.ctx.ref(), n.as_ast()), n.ctx)
6594
def is_as_array(n)
Definition: z3py.py:6584
def get_as_array_func(n)
Definition: z3py.py:6589
Z3_func_decl Z3_API Z3_get_as_array_func_decl(Z3_context c, Z3_ast a)
Return the function declaration f associated with a (_ as_array f) node.

Referenced by ModelRef.get_interp().

◆ get_ctx()

def z3py.get_ctx (   ctx)

Definition at line 266 of file z3py.py.

266def get_ctx(ctx):
267 return _get_ctx(ctx)
268
269
def get_ctx(ctx)
Definition: z3py.py:266

◆ get_default_fp_sort()

def z3py.get_default_fp_sort (   ctx = None)

Definition at line 9149 of file z3py.py.

9149def get_default_fp_sort(ctx=None):
9150 return FPSort(_dflt_fpsort_ebits, _dflt_fpsort_sbits, ctx)
9151
9152
def get_default_fp_sort(ctx=None)
Definition: z3py.py:9149

Referenced by set_default_fp_sort().

◆ get_default_rounding_mode()

def z3py.get_default_rounding_mode (   ctx = None)
Retrieves the global default rounding mode.

Definition at line 9116 of file z3py.py.

9116def get_default_rounding_mode(ctx=None):
9117 """Retrieves the global default rounding mode."""
9118 global _dflt_rounding_mode
9119 if _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_ZERO:
9120 return RTZ(ctx)
9121 elif _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_NEGATIVE:
9122 return RTN(ctx)
9123 elif _dflt_rounding_mode == Z3_OP_FPA_RM_TOWARD_POSITIVE:
9124 return RTP(ctx)
9125 elif _dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN:
9126 return RNE(ctx)
9127 elif _dflt_rounding_mode == Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY:
9128 return RNA(ctx)
9129
9130
def get_default_rounding_mode(ctx=None)
Definition: z3py.py:9116
def RTN(ctx=None)
Definition: z3py.py:9527
def RTP(ctx=None)
Definition: z3py.py:9517
def RNA(ctx=None)
Definition: z3py.py:9507

Referenced by set_default_fp_sort().

◆ get_full_version()

def z3py.get_full_version ( )

Definition at line 103 of file z3py.py.

103def get_full_version():
104 return Z3_get_full_version()
105
106# We use _z3_assert instead of the assert command because we want to
107# produce nice error messages in Z3Py at rise4fun.com
108
109
def get_full_version()
Definition: z3py.py:103
Z3_string Z3_API Z3_get_full_version(void)
Return a string that fully describes the version of Z3 in use.

◆ get_map_func()

def z3py.get_map_func (   a)
Return the function declaration associated with a Z3 map array expression.

>>> f = Function('f', IntSort(), IntSort())
>>> b = Array('b', IntSort(), IntSort())
>>> a  = Map(f, b)
>>> eq(f, get_map_func(a))
True
>>> get_map_func(a)
f
>>> get_map_func(a)(0)
f(0)

Definition at line 4621 of file z3py.py.

4621def get_map_func(a):
4622 """Return the function declaration associated with a Z3 map array expression.
4623
4624 >>> f = Function('f', IntSort(), IntSort())
4625 >>> b = Array('b', IntSort(), IntSort())
4626 >>> a = Map(f, b)
4627 >>> eq(f, get_map_func(a))
4628 True
4629 >>> get_map_func(a)
4630 f
4631 >>> get_map_func(a)(0)
4632 f(0)
4633 """
4634 if z3_debug():
4635 _z3_assert(is_map(a), "Z3 array map expression expected.")
4636 return FuncDeclRef(
4638 a.ctx_ref(),
4639 Z3_get_decl_ast_parameter(a.ctx_ref(), a.decl().ast, 0),
4640 ),
4641 ctx=a.ctx,
4642 )
4643
4644
def is_map(a)
Definition: z3py.py:4596
def Map(f, *args)
Definition: z3py.py:4757
def get_map_func(a)
Definition: z3py.py:4621
Z3_func_decl Z3_API Z3_to_func_decl(Z3_context c, Z3_ast a)
Convert an AST into a FUNC_DECL_AST. This is just type casting.
Z3_ast Z3_API Z3_get_decl_ast_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the expression value associated with an expression parameter.

Referenced by get_map_func().

◆ get_param()

def z3py.get_param (   name)
Return the value of a Z3 global (or module) parameter

>>> get_param('nlsat.reorder')
'true'

Definition at line 306 of file z3py.py.

306def get_param(name):
307 """Return the value of a Z3 global (or module) parameter
308
309 >>> get_param('nlsat.reorder')
310 'true'
311 """
312 ptr = (ctypes.c_char_p * 1)()
313 if Z3_global_param_get(str(name), ptr):
314 r = z3core._to_pystr(ptr[0])
315 return r
316 raise Z3Exception("failed to retrieve value for '%s'" % name)
317
def get_param(name)
Definition: z3py.py:306
Z3_bool Z3_API Z3_global_param_get(Z3_string param_id, Z3_string_ptr param_value)
Get a global (or module) parameter.

Referenced by get_param().

◆ get_var_index()

def z3py.get_var_index (   a)
Return the de-Bruijn index of the Z3 bounded variable `a`.

>>> x = Int('x')
>>> y = Int('y')
>>> is_var(x)
False
>>> is_const(x)
True
>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> # Z3 replaces x and y with bound variables when ForAll is executed.
>>> q = ForAll([x, y], f(x, y) == x + y)
>>> q.body()
f(Var(1), Var(0)) == Var(1) + Var(0)
>>> b = q.body()
>>> b.arg(0)
f(Var(1), Var(0))
>>> v1 = b.arg(0).arg(0)
>>> v2 = b.arg(0).arg(1)
>>> v1
Var(1)
>>> v2
Var(0)
>>> get_var_index(v1)
1
>>> get_var_index(v2)
0

Definition at line 1303 of file z3py.py.

1303def get_var_index(a):
1304 """Return the de-Bruijn index of the Z3 bounded variable `a`.
1305
1306 >>> x = Int('x')
1307 >>> y = Int('y')
1308 >>> is_var(x)
1309 False
1310 >>> is_const(x)
1311 True
1312 >>> f = Function('f', IntSort(), IntSort(), IntSort())
1313 >>> # Z3 replaces x and y with bound variables when ForAll is executed.
1314 >>> q = ForAll([x, y], f(x, y) == x + y)
1315 >>> q.body()
1316 f(Var(1), Var(0)) == Var(1) + Var(0)
1317 >>> b = q.body()
1318 >>> b.arg(0)
1319 f(Var(1), Var(0))
1320 >>> v1 = b.arg(0).arg(0)
1321 >>> v2 = b.arg(0).arg(1)
1322 >>> v1
1323 Var(1)
1324 >>> v2
1325 Var(0)
1326 >>> get_var_index(v1)
1327 1
1328 >>> get_var_index(v2)
1329 0
1330 """
1331 if z3_debug():
1332 _z3_assert(is_var(a), "Z3 bound variable expected")
1333 return int(Z3_get_index_value(a.ctx.ref(), a.as_ast()))
1334
1335
def is_var(a)
Definition: z3py.py:1278
def get_var_index(a)
Definition: z3py.py:1303
def Var(idx, s)
Definition: z3py.py:1438
def is_const(a)
Definition: z3py.py:1259
unsigned Z3_API Z3_get_index_value(Z3_context c, Z3_ast a)
Return index of de-Bruijn bound variable.

Referenced by get_var_index().

◆ get_version()

def z3py.get_version ( )

Definition at line 94 of file z3py.py.

94def get_version():
95 major = ctypes.c_uint(0)
96 minor = ctypes.c_uint(0)
97 build = ctypes.c_uint(0)
98 rev = ctypes.c_uint(0)
99 Z3_get_version(major, minor, build, rev)
100 return (major.value, minor.value, build.value, rev.value)
101
102
def get_version()
Definition: z3py.py:94
void Z3_API Z3_get_version(unsigned *major, unsigned *minor, unsigned *build_number, unsigned *revision_number)
Return Z3 version number information.

◆ get_version_string()

def z3py.get_version_string ( )

Definition at line 85 of file z3py.py.

86 major = ctypes.c_uint(0)
87 minor = ctypes.c_uint(0)
88 build = ctypes.c_uint(0)
89 rev = ctypes.c_uint(0)
90 Z3_get_version(major, minor, build, rev)
91 return "%s.%s.%s" % (major.value, minor.value, build.value)
92
93
def get_version_string()
Definition: z3py.py:85

◆ help_simplify()

def z3py.help_simplify ( )
Return a string describing all options available for Z3 `simplify` procedure.

Definition at line 8670 of file z3py.py.

8670def help_simplify():
8671 """Return a string describing all options available for Z3 `simplify` procedure."""
8672 print(Z3_simplify_get_help(main_ctx().ref()))
8673
8674
def help_simplify()
Definition: z3py.py:8670
def main_ctx()
Definition: z3py.py:238
Z3_string Z3_API Z3_simplify_get_help(Z3_context c)
Return a string describing all available parameters.

◆ If()

def z3py.If (   a,
  b,
  c,
  ctx = None 
)
Create a Z3 if-then-else expression.

>>> x = Int('x')
>>> y = Int('y')
>>> max = If(x > y, x, y)
>>> max
If(x > y, x, y)
>>> simplify(max)
If(x <= y, y, x)

Definition at line 1349 of file z3py.py.

1349def If(a, b, c, ctx=None):
1350 """Create a Z3 if-then-else expression.
1351
1352 >>> x = Int('x')
1353 >>> y = Int('y')
1354 >>> max = If(x > y, x, y)
1355 >>> max
1356 If(x > y, x, y)
1357 >>> simplify(max)
1358 If(x <= y, y, x)
1359 """
1360 if isinstance(a, Probe) or isinstance(b, Tactic) or isinstance(c, Tactic):
1361 return Cond(a, b, c, ctx)
1362 else:
1363 ctx = _get_ctx(_ctx_from_ast_arg_list([a, b, c], ctx))
1364 s = BoolSort(ctx)
1365 a = s.cast(a)
1366 b, c = _coerce_exprs(b, c, ctx)
1367 if z3_debug():
1368 _z3_assert(a.ctx == b.ctx, "Context mismatch")
1369 return _to_expr_ref(Z3_mk_ite(ctx.ref(), a.as_ast(), b.as_ast(), c.as_ast()), ctx)
1370
1371
Z3_ast Z3_API Z3_mk_ite(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3)
Create an AST node representing an if-then-else: ite(t1, t2, t3).

Referenced by BoolRef.__mul__(), ArithRef.__mul__(), BV2Int(), If(), Lambda(), and RecAddDefinition().

◆ Implies()

def z3py.Implies (   a,
  b,
  ctx = None 
)
Create a Z3 implies expression.

>>> p, q = Bools('p q')
>>> Implies(p, q)
Implies(p, q)

Definition at line 1749 of file z3py.py.

1749def Implies(a, b, ctx=None):
1750 """Create a Z3 implies expression.
1751
1752 >>> p, q = Bools('p q')
1753 >>> Implies(p, q)
1754 Implies(p, q)
1755 """
1756 ctx = _get_ctx(_ctx_from_ast_arg_list([a, b], ctx))
1757 s = BoolSort(ctx)
1758 a = s.cast(a)
1759 b = s.cast(b)
1760 return BoolRef(Z3_mk_implies(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
1761
1762
def Implies(a, b, ctx=None)
Definition: z3py.py:1749
Z3_ast Z3_API Z3_mk_implies(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 implies t2.

Referenced by Fixedpoint.add_rule(), Solver.consequences(), Implies(), is_implies(), Store(), Solver.unsat_core(), Update(), and Fixedpoint.update_rule().

◆ IndexOf()

def z3py.IndexOf (   s,
  substr,
  offset = None 
)
Retrieve the index of substring within a string starting at a specified offset.
>>> simplify(IndexOf("abcabc", "bc", 0))
1
>>> simplify(IndexOf("abcabc", "bc", 2))
4

Definition at line 10823 of file z3py.py.

10823def IndexOf(s, substr, offset=None):
10824 """Retrieve the index of substring within a string starting at a specified offset.
10825 >>> simplify(IndexOf("abcabc", "bc", 0))
10826 1
10827 >>> simplify(IndexOf("abcabc", "bc", 2))
10828 4
10829 """
10830 if offset is None:
10831 offset = IntVal(0)
10832 ctx = None
10833 if is_expr(offset):
10834 ctx = offset.ctx
10835 ctx = _get_ctx2(s, substr, ctx)
10836 s = _coerce_seq(s, ctx)
10837 substr = _coerce_seq(substr, ctx)
10838 if _is_int(offset):
10839 offset = IntVal(offset, ctx)
10840 return ArithRef(Z3_mk_seq_index(s.ctx_ref(), s.as_ast(), substr.as_ast(), offset.as_ast()), s.ctx)
10841
10842
def IndexOf(s, substr, offset=None)
Definition: z3py.py:10823
def IntVal(val, ctx=None)
Definition: z3py.py:3150
Z3_ast Z3_API Z3_mk_seq_index(Z3_context c, Z3_ast s, Z3_ast substr, Z3_ast offset)
Return index of first occurrence of substr in s starting from offset offset. If s does not contain su...

Referenced by IndexOf().

◆ InRe()

def z3py.InRe (   s,
  re 
)
Create regular expression membership test
>>> re = Union(Re("a"),Re("b"))
>>> print (simplify(InRe("a", re)))
True
>>> print (simplify(InRe("b", re)))
True
>>> print (simplify(InRe("c", re)))
False

Definition at line 10924 of file z3py.py.

10924def InRe(s, re):
10925 """Create regular expression membership test
10926 >>> re = Union(Re("a"),Re("b"))
10927 >>> print (simplify(InRe("a", re)))
10928 True
10929 >>> print (simplify(InRe("b", re)))
10930 True
10931 >>> print (simplify(InRe("c", re)))
10932 False
10933 """
10934 s = _coerce_seq(s, re.ctx)
10935 return BoolRef(Z3_mk_seq_in_re(s.ctx_ref(), s.as_ast(), re.as_ast()), s.ctx)
10936
10937
def Re(s, ctx=None)
Definition: z3py.py:10885
def Union(*args)
Definition: z3py.py:10938
def InRe(s, re)
Definition: z3py.py:10924
Z3_ast Z3_API Z3_mk_seq_in_re(Z3_context c, Z3_ast seq, Z3_ast re)
Check if seq is in the language generated by the regular expression re.

Referenced by InRe(), Loop(), Option(), Plus(), Range(), Star(), and Union().

◆ Int()

def z3py.Int (   name,
  ctx = None 
)
Return an integer constant named `name`. If `ctx=None`, then the global context is used.

>>> x = Int('x')
>>> is_int(x)
True
>>> is_int(x + 1)
True

Definition at line 3210 of file z3py.py.

3210def Int(name, ctx=None):
3211 """Return an integer constant named `name`. If `ctx=None`, then the global context is used.
3212
3213 >>> x = Int('x')
3214 >>> is_int(x)
3215 True
3216 >>> is_int(x + 1)
3217 True
3218 """
3219 ctx = _get_ctx(ctx)
3220 return ArithRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), IntSort(ctx).ast), ctx)
3221
3222
def is_int(a)
Definition: z3py.py:2648

Referenced by ArithRef.__add__(), FuncDeclRef.__call__(), Probe.__call__(), AstVector.__contains__(), AstMap.__contains__(), ArithRef.__div__(), ExprRef.__eq__(), Probe.__eq__(), Probe.__ge__(), Statistics.__getattr__(), ArrayRef.__getitem__(), AstVector.__getitem__(), ModelRef.__getitem__(), Statistics.__getitem__(), AstMap.__getitem__(), Probe.__gt__(), Probe.__le__(), AstVector.__len__(), AstMap.__len__(), ModelRef.__len__(), Statistics.__len__(), Probe.__lt__(), ArithRef.__mod__(), ExprRef.__ne__(), Probe.__ne__(), ArithRef.__neg__(), ArithRef.__pos__(), ArithRef.__radd__(), ArithRef.__rdiv__(), ArithRef.__rmod__(), ArithRef.__rsub__(), AstVector.__setitem__(), AstMap.__setitem__(), ArithRef.__sub__(), Goal.add(), Solver.add(), Goal.append(), Solver.append(), ExprRef.arg(), Goal.as_expr(), ApplyResult.as_expr(), Solver.assert_and_track(), Optimize.assert_and_track(), Goal.assert_exprs(), Solver.assert_exprs(), Solver.assertions(), QuantifierRef.body(), BV2Int(), SortRef.cast(), Solver.check(), ExprRef.children(), QuantifierRef.children(), ExprRef.decl(), ModelRef.decls(), Distinct(), eq(), AstRef.eq(), AstMap.erase(), ModelRef.eval(), ModelRef.evaluate(), Exists(), ForAll(), ModelRef.get_interp(), Statistics.get_key_value(), get_var_index(), AstRef.hash(), If(), Goal.insert(), Solver.insert(), Int(), Ints(), IntVector(), is_app(), is_app_of(), is_arith(), is_arith_sort(), is_ast(), is_bv(), is_const(), QuantifierRef.is_exists(), is_expr(), is_finite_domain(), QuantifierRef.is_forall(), is_fp(), is_int(), ArithSortRef.is_int(), ArithRef.is_int(), is_int_value(), QuantifierRef.is_lambda(), is_pattern(), is_probe(), is_quantifier(), is_real(), ArithSortRef.is_real(), is_select(), is_sort(), is_to_real(), is_var(), K(), AstMap.keys(), Statistics.keys(), FuncDeclRef.kind(), Solver.model(), MultiPattern(), ExprRef.num_args(), QuantifierRef.num_patterns(), QuantifierRef.num_vars(), OrElse(), ParOr(), QuantifierRef.pattern(), Solver.pop(), Solver.push(), AstVector.push(), Solver.reason_unknown(), RecAddDefinition(), AstMap.reset(), Solver.reset(), AstVector.resize(), Select(), AstRef.sexpr(), Solver.sexpr(), SimpleSolver(), simplify(), Goal.simplify(), solve(), SolverFor(), ExprRef.sort(), ArithRef.sort(), Solver.statistics(), Store(), substitute(), substitute_vars(), ToReal(), AstVector.translate(), AstRef.translate(), Goal.translate(), Update(), QuantifierRef.var_name(), QuantifierRef.var_sort(), and QuantifierRef.weight().

◆ Int2BV()

def z3py.Int2BV (   a,
  num_bits 
)
Return the z3 expression Int2BV(a, num_bits).
It is a bit-vector of width num_bits and represents the
modulo of a by 2^num_bits

Definition at line 3958 of file z3py.py.

3958def Int2BV(a, num_bits):
3959 """Return the z3 expression Int2BV(a, num_bits).
3960 It is a bit-vector of width num_bits and represents the
3961 modulo of a by 2^num_bits
3962 """
3963 ctx = a.ctx
3964 return BitVecRef(Z3_mk_int2bv(ctx.ref(), num_bits, a.as_ast()), ctx)
3965
3966
def Int2BV(a, num_bits)
Definition: z3py.py:3958
Z3_ast Z3_API Z3_mk_int2bv(Z3_context c, unsigned n, Z3_ast t1)
Create an n bit bit-vector from the integer argument t1.

◆ Intersect()

def z3py.Intersect ( args)
Create intersection of regular expressions.
>>> re = Intersect(Re("a"), Re("b"), Re("c"))

Definition at line 10958 of file z3py.py.

10958def Intersect(*args):
10959 """Create intersection of regular expressions.
10960 >>> re = Intersect(Re("a"), Re("b"), Re("c"))
10961 """
10962 args = _get_args(args)
10963 sz = len(args)
10964 if z3_debug():
10965 _z3_assert(sz > 0, "At least one argument expected.")
10966 _z3_assert(all([is_re(a) for a in args]), "All arguments must be regular expressions.")
10967 if sz == 1:
10968 return args[0]
10969 ctx = args[0].ctx
10970 v = (Ast * sz)()
10971 for i in range(sz):
10972 v[i] = args[i].as_ast()
10973 return ReRef(Z3_mk_re_intersect(ctx.ref(), sz, v), ctx)
10974
10975
def Intersect(*args)
Definition: z3py.py:10958
Z3_ast Z3_API Z3_mk_re_intersect(Z3_context c, unsigned n, Z3_ast const args[])
Create the intersection of the regular languages.

Referenced by Intersect().

◆ Ints()

def z3py.Ints (   names,
  ctx = None 
)
Return a tuple of Integer constants.

>>> x, y, z = Ints('x y z')
>>> Sum(x, y, z)
x + y + z

Definition at line 3223 of file z3py.py.

3223def Ints(names, ctx=None):
3224 """Return a tuple of Integer constants.
3225
3226 >>> x, y, z = Ints('x y z')
3227 >>> Sum(x, y, z)
3228 x + y + z
3229 """
3230 ctx = _get_ctx(ctx)
3231 if isinstance(names, str):
3232 names = names.split(" ")
3233 return [Int(name, ctx) for name in names]
3234
3235

Referenced by Tactic.__call__(), ArithRef.__ge__(), Goal.__getitem__(), ApplyResult.__getitem__(), ArithRef.__gt__(), ArithRef.__le__(), Goal.__len__(), ApplyResult.__len__(), ArithRef.__lt__(), AndThen(), Tactic.apply(), Goal.convert_model(), Goal.depth(), FailIf(), Goal.get(), Goal.inconsistent(), Ints(), is_add(), is_distinct(), is_div(), is_eq(), is_ge(), is_gt(), is_idiv(), is_le(), is_lt(), is_mod(), is_mul(), is_sub(), Lambda(), parse_smt2_string(), ParThen(), Goal.prec(), Product(), Repeat(), Goal.size(), Store(), Sum(), Then(), Solver.unsat_core(), Update(), When(), With(), and WithParams().

◆ IntSort()

def z3py.IntSort (   ctx = None)
Return the integer sort in the given context. If `ctx=None`, then the global context is used.

>>> IntSort()
Int
>>> x = Const('x', IntSort())
>>> is_int(x)
True
>>> x.sort() == IntSort()
True
>>> x.sort() == BoolSort()
False

Definition at line 3100 of file z3py.py.

3100def IntSort(ctx=None):
3101 """Return the integer sort in the given context. If `ctx=None`, then the global context is used.
3102
3103 >>> IntSort()
3104 Int
3105 >>> x = Const('x', IntSort())
3106 >>> is_int(x)
3107 True
3108 >>> x.sort() == IntSort()
3109 True
3110 >>> x.sort() == BoolSort()
3111 False
3112 """
3113 ctx = _get_ctx(ctx)
3114 return ArithSortRef(Z3_mk_int_sort(ctx.ref()), ctx)
3115
3116
Z3_sort Z3_API Z3_mk_int_sort(Z3_context c)
Create the integer type.

Referenced by FuncDeclRef.__call__(), SortRef.__eq__(), ArrayRef.__getitem__(), ModelRef.__getitem__(), ModelRef.__len__(), SortRef.__ne__(), DatatypeSortRef.accessor(), ExprRef.arg(), FuncEntry.arg_value(), FuncDeclRef.arity(), FuncInterp.arity(), Array(), ArraySort(), FuncEntry.as_list(), FuncInterp.as_list(), QuantifierRef.body(), BoolSort(), ArithSortRef.cast(), ExprRef.children(), QuantifierRef.children(), Const(), DatatypeSortRef.constructor(), Consts(), Datatype.create(), CreateDatatypes(), ExprRef.decl(), Datatype.declare(), ModelRef.decls(), Default(), DisjointSum(), ArraySortRef.domain(), ArrayRef.domain(), FuncDeclRef.domain(), FuncInterp.else_value(), Empty(), EmptySet(), FuncInterp.entry(), Exists(), Ext(), ForAll(), FreshInt(), Full(), FullSet(), Function(), ModelRef.get_interp(), get_map_func(), get_var_index(), Context.getIntSort(), Int(), IntSort(), IntVal(), is_app(), is_arith_sort(), is_array(), is_ast(), is_bv_sort(), is_const_array(), is_default(), QuantifierRef.is_exists(), is_expr(), is_finite_domain_sort(), QuantifierRef.is_forall(), is_func_decl(), is_K(), QuantifierRef.is_lambda(), is_map(), is_pattern(), is_quantifier(), is_select(), is_sort(), is_store(), SeqSortRef.is_string(), is_var(), IsMember(), IsSubset(), K(), SortRef.kind(), Lambda(), Map(), Context.mkIntSort(), MultiPattern(), SortRef.name(), FuncDeclRef.name(), ExprRef.num_args(), FuncEntry.num_args(), DatatypeSortRef.num_constructors(), FuncInterp.num_entries(), QuantifierRef.num_patterns(), QuantifierRef.num_vars(), parse_smt2_string(), QuantifierRef.pattern(), FuncDeclRef.range(), ArraySortRef.range(), ArrayRef.range(), RecAddDefinition(), DatatypeSortRef.recognizer(), Select(), SeqSort(), SetAdd(), SetComplement(), SetDel(), SetDifference(), SetIntersect(), SetUnion(), ArrayRef.sort(), ExprRef.sort_kind(), Store(), SortRef.subsort(), substitute(), substitute_vars(), TupleSort(), Update(), FuncEntry.value(), Var(), QuantifierRef.var_name(), QuantifierRef.var_sort(), and QuantifierRef.weight().

◆ IntToStr()

def z3py.IntToStr (   s)
Convert integer expression to string

Definition at line 10878 of file z3py.py.

10878def IntToStr(s):
10879 """Convert integer expression to string"""
10880 if not is_expr(s):
10881 s = _py2expr(s)
10882 return SeqRef(Z3_mk_int_to_str(s.ctx_ref(), s.as_ast()), s.ctx)
10883
10884
def IntToStr(s)
Definition: z3py.py:10878
Z3_ast Z3_API Z3_mk_int_to_str(Z3_context c, Z3_ast s)
Integer to string conversion.

Referenced by StrToInt().

◆ IntVal()

def z3py.IntVal (   val,
  ctx = None 
)
Return a Z3 integer value. If `ctx=None`, then the global context is used.

>>> IntVal(1)
1
>>> IntVal("100")
100

Definition at line 3150 of file z3py.py.

3150def IntVal(val, ctx=None):
3151 """Return a Z3 integer value. If `ctx=None`, then the global context is used.
3152
3153 >>> IntVal(1)
3154 1
3155 >>> IntVal("100")
3156 100
3157 """
3158 ctx = _get_ctx(ctx)
3159 return IntNumRef(Z3_mk_numeral(ctx.ref(), _to_int_str(val), IntSort(ctx).ast), ctx)
3160
3161

Referenced by SeqRef.__getitem__(), AstMap.__len__(), ArithRef.__mod__(), ArithRef.__pow__(), ArithRef.__rpow__(), AstMap.__setitem__(), IntNumRef.as_binary_string(), IntNumRef.as_long(), IntNumRef.as_string(), SeqRef.at(), AlgebraicNumRef.index(), IndexOf(), IntVal(), is_app(), is_arith(), is_ast(), is_const(), is_expr(), is_int(), is_int_value(), is_rational_value(), is_seq(), AstMap.keys(), AstMap.reset(), SeqSort(), and substitute().

◆ IntVector()

def z3py.IntVector (   prefix,
  sz,
  ctx = None 
)
Return a list of integer constants of size `sz`.

>>> X = IntVector('x', 3)
>>> X
[x__0, x__1, x__2]
>>> Sum(X)
x__0 + x__1 + x__2

Definition at line 3236 of file z3py.py.

3236def IntVector(prefix, sz, ctx=None):
3237 """Return a list of integer constants of size `sz`.
3238
3239 >>> X = IntVector('x', 3)
3240 >>> X
3241 [x__0, x__1, x__2]
3242 >>> Sum(X)
3243 x__0 + x__1 + x__2
3244 """
3245 ctx = _get_ctx(ctx)
3246 return [Int("%s__%s" % (prefix, i), ctx) for i in range(sz)]
3247
3248
def IntVector(prefix, sz, ctx=None)
Definition: z3py.py:3236

Referenced by IntVector(), Product(), and Sum().

◆ is_add()

def z3py.is_add (   a)
Return `True` if `a` is an expression of the form b + c.

>>> x, y = Ints('x y')
>>> is_add(x + y)
True
>>> is_add(x - y)
False

Definition at line 2754 of file z3py.py.

2754def is_add(a):
2755 """Return `True` if `a` is an expression of the form b + c.
2756
2757 >>> x, y = Ints('x y')
2758 >>> is_add(x + y)
2759 True
2760 >>> is_add(x - y)
2761 False
2762 """
2763 return is_app_of(a, Z3_OP_ADD)
2764
2765
def is_add(a)
Definition: z3py.py:2754
def is_app_of(a, k)
Definition: z3py.py:1336

Referenced by is_add().

◆ is_algebraic_value()

def z3py.is_algebraic_value (   a)
Return `True` if `a` is an algebraic value of sort Real.

>>> is_algebraic_value(RealVal("3/5"))
False
>>> n = simplify(Sqrt(2))
>>> n
1.4142135623?
>>> is_algebraic_value(n)
True

Definition at line 2740 of file z3py.py.

2740def is_algebraic_value(a):
2741 """Return `True` if `a` is an algebraic value of sort Real.
2742
2743 >>> is_algebraic_value(RealVal("3/5"))
2744 False
2745 >>> n = simplify(Sqrt(2))
2746 >>> n
2747 1.4142135623?
2748 >>> is_algebraic_value(n)
2749 True
2750 """
2751 return is_arith(a) and a.is_real() and _is_algebraic(a.ctx, a.as_ast())
2752
2753
def Sqrt(a, ctx=None)
Definition: z3py.py:3373
def is_algebraic_value(a)
Definition: z3py.py:2740
def is_arith(a)
Definition: z3py.py:2627

Referenced by is_algebraic_value().

◆ is_and()

def z3py.is_and (   a)
Return `True` if `a` is a Z3 and expression.

>>> p, q = Bools('p q')
>>> is_and(And(p, q))
True
>>> is_and(Or(p, q))
False

Definition at line 1585 of file z3py.py.

1585def is_and(a):
1586 """Return `True` if `a` is a Z3 and expression.
1587
1588 >>> p, q = Bools('p q')
1589 >>> is_and(And(p, q))
1590 True
1591 >>> is_and(Or(p, q))
1592 False
1593 """
1594 return is_app_of(a, Z3_OP_AND)
1595
1596
def is_and(a)
Definition: z3py.py:1585

Referenced by is_and().

◆ is_app()

def z3py.is_app (   a)
Return `True` if `a` is a Z3 function application.

Note that, constants are function applications with 0 arguments.

>>> a = Int('a')
>>> is_app(a)
True
>>> is_app(a + 1)
True
>>> is_app(IntSort())
False
>>> is_app(1)
False
>>> is_app(IntVal(1))
True
>>> x = Int('x')
>>> is_app(ForAll(x, x >= 0))
False

Definition at line 1233 of file z3py.py.

1233def is_app(a):
1234 """Return `True` if `a` is a Z3 function application.
1235
1236 Note that, constants are function applications with 0 arguments.
1237
1238 >>> a = Int('a')
1239 >>> is_app(a)
1240 True
1241 >>> is_app(a + 1)
1242 True
1243 >>> is_app(IntSort())
1244 False
1245 >>> is_app(1)
1246 False
1247 >>> is_app(IntVal(1))
1248 True
1249 >>> x = Int('x')
1250 >>> is_app(ForAll(x, x >= 0))
1251 False
1252 """
1253 if not isinstance(a, ExprRef):
1254 return False
1255 k = _ast_kind(a.ctx, a)
1256 return k == Z3_NUMERAL_AST or k == Z3_APP_AST
1257
1258
def is_app(a)
Definition: z3py.py:1233

Referenced by ExprRef.arg(), ExprRef.children(), ExprRef.decl(), is_app(), is_app_of(), is_const(), is_quantifier(), Lambda(), ExprRef.num_args(), and RecAddDefinition().

◆ is_app_of()

def z3py.is_app_of (   a,
  k 
)
Return `True` if `a` is an application of the given kind `k`.

>>> x = Int('x')
>>> n = x + 1
>>> is_app_of(n, Z3_OP_ADD)
True
>>> is_app_of(n, Z3_OP_MUL)
False

Definition at line 1336 of file z3py.py.

1336def is_app_of(a, k):
1337 """Return `True` if `a` is an application of the given kind `k`.
1338
1339 >>> x = Int('x')
1340 >>> n = x + 1
1341 >>> is_app_of(n, Z3_OP_ADD)
1342 True
1343 >>> is_app_of(n, Z3_OP_MUL)
1344 False
1345 """
1346 return is_app(a) and a.decl().kind() == k
1347
1348

Referenced by is_add(), is_and(), is_app_of(), is_const_array(), is_default(), is_distinct(), is_div(), is_eq(), is_false(), is_ge(), is_gt(), is_idiv(), is_implies(), is_is_int(), is_K(), is_le(), is_lt(), is_map(), is_mod(), is_mul(), is_not(), is_or(), is_select(), is_store(), is_sub(), is_to_int(), is_to_real(), and is_true().

◆ is_arith()

def z3py.is_arith (   a)
Return `True` if `a` is an arithmetical expression.

>>> x = Int('x')
>>> is_arith(x)
True
>>> is_arith(x + 1)
True
>>> is_arith(1)
False
>>> is_arith(IntVal(1))
True
>>> y = Real('y')
>>> is_arith(y)
True
>>> is_arith(y + 1)
True

Definition at line 2627 of file z3py.py.

2627def is_arith(a):
2628 """Return `True` if `a` is an arithmetical expression.
2629
2630 >>> x = Int('x')
2631 >>> is_arith(x)
2632 True
2633 >>> is_arith(x + 1)
2634 True
2635 >>> is_arith(1)
2636 False
2637 >>> is_arith(IntVal(1))
2638 True
2639 >>> y = Real('y')
2640 >>> is_arith(y)
2641 True
2642 >>> is_arith(y + 1)
2643 True
2644 """
2645 return isinstance(a, ArithRef)
2646
2647

Referenced by is_algebraic_value(), is_arith(), is_int(), is_int_value(), is_rational_value(), and is_real().

◆ is_arith_sort()

def z3py.is_arith_sort (   s)
Return `True` if s is an arithmetical sort (type).

>>> is_arith_sort(IntSort())
True
>>> is_arith_sort(RealSort())
True
>>> is_arith_sort(BoolSort())
False
>>> n = Int('x') + 1
>>> is_arith_sort(n.sort())
True

Definition at line 2326 of file z3py.py.

2326def is_arith_sort(s):
2327 """Return `True` if s is an arithmetical sort (type).
2328
2329 >>> is_arith_sort(IntSort())
2330 True
2331 >>> is_arith_sort(RealSort())
2332 True
2333 >>> is_arith_sort(BoolSort())
2334 False
2335 >>> n = Int('x') + 1
2336 >>> is_arith_sort(n.sort())
2337 True
2338 """
2339 return isinstance(s, ArithSortRef)
2340
2341
def is_arith_sort(s)
Definition: z3py.py:2326

Referenced by is_arith_sort(), and ArithSortRef.subsort().

◆ is_array()

def z3py.is_array (   a)
Return `True` if `a` is a Z3 array expression.

>>> a = Array('a', IntSort(), IntSort())
>>> is_array(a)
True
>>> is_array(Store(a, 0, 1))
True
>>> is_array(a[0])
False

Definition at line 4556 of file z3py.py.

4556def is_array(a):
4557 """Return `True` if `a` is a Z3 array expression.
4558
4559 >>> a = Array('a', IntSort(), IntSort())
4560 >>> is_array(a)
4561 True
4562 >>> is_array(Store(a, 0, 1))
4563 True
4564 >>> is_array(a[0])
4565 False
4566 """
4567 return isinstance(a, ArrayRef)
4568
4569
def Store(a, i, v)
Definition: z3py.py:4725

Referenced by Ext(), is_array(), and Map().

◆ is_array_sort()

def z3py.is_array_sort (   a)

Definition at line 4552 of file z3py.py.

4552def is_array_sort(a):
4553 return Z3_get_sort_kind(a.ctx.ref(), Z3_get_sort(a.ctx.ref(), a.ast)) == Z3_ARRAY_SORT
4554
4555
Z3_sort_kind Z3_API Z3_get_sort_kind(Z3_context c, Z3_sort t)
Return the sort kind (e.g., array, tuple, int, bool, etc).
Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a)
Return the sort of an AST node.

Referenced by Default(), Ext(), Select(), and Update().

◆ is_as_array()

def z3py.is_as_array (   n)
Return true if n is a Z3 expression of the form (_ as-array f).

Definition at line 6584 of file z3py.py.

6584def is_as_array(n):
6585 """Return true if n is a Z3 expression of the form (_ as-array f)."""
6586 return isinstance(n, ExprRef) and Z3_is_as_array(n.ctx.ref(), n.as_ast())
6587
6588
bool Z3_API Z3_is_as_array(Z3_context c, Z3_ast a)
The (_ as-array f) AST node is a construct for assigning interpretations for arrays in Z3....

Referenced by get_as_array_func(), and ModelRef.get_interp().

◆ is_ast()

def z3py.is_ast (   a)
Return `True` if `a` is an AST node.

>>> is_ast(10)
False
>>> is_ast(IntVal(10))
True
>>> is_ast(Int('x'))
True
>>> is_ast(BoolSort())
True
>>> is_ast(Function('f', IntSort(), IntSort()))
True
>>> is_ast("x")
False
>>> is_ast(Solver())
False

Definition at line 450 of file z3py.py.

450def is_ast(a):
451 """Return `True` if `a` is an AST node.
452
453 >>> is_ast(10)
454 False
455 >>> is_ast(IntVal(10))
456 True
457 >>> is_ast(Int('x'))
458 True
459 >>> is_ast(BoolSort())
460 True
461 >>> is_ast(Function('f', IntSort(), IntSort()))
462 True
463 >>> is_ast("x")
464 False
465 >>> is_ast(Solver())
466 False
467 """
468 return isinstance(a, AstRef)
469
470

Referenced by eq(), AstRef.eq(), is_ast(), and ReSort().

◆ is_bool()

def z3py.is_bool (   a)
Return `True` if `a` is a Z3 Boolean expression.

>>> p = Bool('p')
>>> is_bool(p)
True
>>> q = Bool('q')
>>> is_bool(And(p, q))
True
>>> x = Real('x')
>>> is_bool(x)
False
>>> is_bool(x == 0)
True

Definition at line 1535 of file z3py.py.

1535def is_bool(a):
1536 """Return `True` if `a` is a Z3 Boolean expression.
1537
1538 >>> p = Bool('p')
1539 >>> is_bool(p)
1540 True
1541 >>> q = Bool('q')
1542 >>> is_bool(And(p, q))
1543 True
1544 >>> x = Real('x')
1545 >>> is_bool(x)
1546 False
1547 >>> is_bool(x == 0)
1548 True
1549 """
1550 return isinstance(a, BoolRef)
1551
1552

Referenced by BoolSort(), is_bool(), is_quantifier(), and prove().

◆ is_bv()

def z3py.is_bv (   a)
Return `True` if `a` is a Z3 bit-vector expression.

>>> b = BitVec('b', 32)
>>> is_bv(b)
True
>>> is_bv(b + 10)
True
>>> is_bv(Int('x'))
False

Definition at line 3906 of file z3py.py.

3906def is_bv(a):
3907 """Return `True` if `a` is a Z3 bit-vector expression.
3908
3909 >>> b = BitVec('b', 32)
3910 >>> is_bv(b)
3911 True
3912 >>> is_bv(b + 10)
3913 True
3914 >>> is_bv(Int('x'))
3915 False
3916 """
3917 return isinstance(a, BitVecRef)
3918
3919

Referenced by BitVec(), BV2Int(), BVRedAnd(), BVRedOr(), BVSNegNoOverflow(), Concat(), Extract(), fpBVToFP(), fpFP(), fpSignedToFP(), fpToFP(), fpToFPUnsigned(), fpToIEEEBV(), fpToSBV(), fpToUBV(), fpUnsignedToFP(), is_bv(), is_bv_value(), Product(), RepeatBitVec(), SignExt(), Sum(), and ZeroExt().

◆ is_bv_sort()

def z3py.is_bv_sort (   s)
Return True if `s` is a Z3 bit-vector sort.

>>> is_bv_sort(BitVecSort(32))
True
>>> is_bv_sort(IntSort())
False

Definition at line 3438 of file z3py.py.

3438def is_bv_sort(s):
3439 """Return True if `s` is a Z3 bit-vector sort.
3440
3441 >>> is_bv_sort(BitVecSort(32))
3442 True
3443 >>> is_bv_sort(IntSort())
3444 False
3445 """
3446 return isinstance(s, BitVecSortRef)
3447
3448

Referenced by BitVecVal(), fpToSBV(), fpToUBV(), is_bv_sort(), and BitVecSortRef.subsort().

◆ is_bv_value()

def z3py.is_bv_value (   a)
Return `True` if `a` is a Z3 bit-vector numeral value.

>>> b = BitVec('b', 32)
>>> is_bv_value(b)
False
>>> b = BitVecVal(10, 32)
>>> b
10
>>> is_bv_value(b)
True

Definition at line 3920 of file z3py.py.

3920def is_bv_value(a):
3921 """Return `True` if `a` is a Z3 bit-vector numeral value.
3922
3923 >>> b = BitVec('b', 32)
3924 >>> is_bv_value(b)
3925 False
3926 >>> b = BitVecVal(10, 32)
3927 >>> b
3928 10
3929 >>> is_bv_value(b)
3930 True
3931 """
3932 return is_bv(a) and _is_numeral(a.ctx, a.as_ast())
3933
3934
def is_bv_value(a)
Definition: z3py.py:3920

Referenced by is_bv_value().

◆ is_const()

def z3py.is_const (   a)
Return `True` if `a` is Z3 constant/variable expression.

>>> a = Int('a')
>>> is_const(a)
True
>>> is_const(a + 1)
False
>>> is_const(1)
False
>>> is_const(IntVal(1))
True
>>> x = Int('x')
>>> is_const(ForAll(x, x >= 0))
False

Definition at line 1259 of file z3py.py.

1259def is_const(a):
1260 """Return `True` if `a` is Z3 constant/variable expression.
1261
1262 >>> a = Int('a')
1263 >>> is_const(a)
1264 True
1265 >>> is_const(a + 1)
1266 False
1267 >>> is_const(1)
1268 False
1269 >>> is_const(IntVal(1))
1270 True
1271 >>> x = Int('x')
1272 >>> is_const(ForAll(x, x >= 0))
1273 False
1274 """
1275 return is_app(a) and a.num_args() == 0
1276
1277

Referenced by ModelRef.__getitem__(), Solver.assert_and_track(), Optimize.assert_and_track(), ModelRef.get_interp(), get_var_index(), is_const(), is_quantifier(), is_var(), and prove().

◆ is_const_array()

def z3py.is_const_array (   a)
Return `True` if `a` is a Z3 constant array.

>>> a = K(IntSort(), 10)
>>> is_const_array(a)
True
>>> a = Array('a', IntSort(), IntSort())
>>> is_const_array(a)
False

Definition at line 4570 of file z3py.py.

4570def is_const_array(a):
4571 """Return `True` if `a` is a Z3 constant array.
4572
4573 >>> a = K(IntSort(), 10)
4574 >>> is_const_array(a)
4575 True
4576 >>> a = Array('a', IntSort(), IntSort())
4577 >>> is_const_array(a)
4578 False
4579 """
4580 return is_app_of(a, Z3_OP_CONST_ARRAY)
4581
4582
def is_const_array(a)
Definition: z3py.py:4570

Referenced by is_const_array().

◆ is_default()

def z3py.is_default (   a)
Return `True` if `a` is a Z3 default array expression.
>>> d = Default(K(IntSort(), 10))
>>> is_default(d)
True

Definition at line 4612 of file z3py.py.

4612def is_default(a):
4613 """Return `True` if `a` is a Z3 default array expression.
4614 >>> d = Default(K(IntSort(), 10))
4615 >>> is_default(d)
4616 True
4617 """
4618 return is_app_of(a, Z3_OP_ARRAY_DEFAULT)
4619
4620
def is_default(a)
Definition: z3py.py:4612

Referenced by is_default().

◆ is_distinct()

def z3py.is_distinct (   a)
Return `True` if `a` is a Z3 distinct expression.

>>> x, y, z = Ints('x y z')
>>> is_distinct(x == y)
False
>>> is_distinct(Distinct(x, y, z))
True

Definition at line 1643 of file z3py.py.

1643def is_distinct(a):
1644 """Return `True` if `a` is a Z3 distinct expression.
1645
1646 >>> x, y, z = Ints('x y z')
1647 >>> is_distinct(x == y)
1648 False
1649 >>> is_distinct(Distinct(x, y, z))
1650 True
1651 """
1652 return is_app_of(a, Z3_OP_DISTINCT)
1653
1654
def is_distinct(a)
Definition: z3py.py:1643

Referenced by is_distinct().

◆ is_div()

def z3py.is_div (   a)
Return `True` if `a` is an expression of the form b / c.

>>> x, y = Reals('x y')
>>> is_div(x / y)
True
>>> is_div(x + y)
False
>>> x, y = Ints('x y')
>>> is_div(x / y)
False
>>> is_idiv(x / y)
True

Definition at line 2790 of file z3py.py.

2790def is_div(a):
2791 """Return `True` if `a` is an expression of the form b / c.
2792
2793 >>> x, y = Reals('x y')
2794 >>> is_div(x / y)
2795 True
2796 >>> is_div(x + y)
2797 False
2798 >>> x, y = Ints('x y')
2799 >>> is_div(x / y)
2800 False
2801 >>> is_idiv(x / y)
2802 True
2803 """
2804 return is_app_of(a, Z3_OP_DIV)
2805
2806
def Reals(names, ctx=None)
Definition: z3py.py:3276
def is_idiv(a)
Definition: z3py.py:2807
def is_div(a)
Definition: z3py.py:2790

Referenced by is_div().

◆ is_eq()

def z3py.is_eq (   a)
Return `True` if `a` is a Z3 equality expression.

>>> x, y = Ints('x y')
>>> is_eq(x == y)
True

Definition at line 1633 of file z3py.py.

1633def is_eq(a):
1634 """Return `True` if `a` is a Z3 equality expression.
1635
1636 >>> x, y = Ints('x y')
1637 >>> is_eq(x == y)
1638 True
1639 """
1640 return is_app_of(a, Z3_OP_EQ)
1641
1642
def is_eq(a)
Definition: z3py.py:1633

Referenced by AstRef.__bool__(), and is_eq().

◆ is_expr()

def z3py.is_expr (   a)
Return `True` if `a` is a Z3 expression.

>>> a = Int('a')
>>> is_expr(a)
True
>>> is_expr(a + 1)
True
>>> is_expr(IntSort())
False
>>> is_expr(1)
False
>>> is_expr(IntVal(1))
True
>>> x = Int('x')
>>> is_expr(ForAll(x, x >= 0))
True
>>> is_expr(FPVal(1.0))
True

Definition at line 1210 of file z3py.py.

1210def is_expr(a):
1211 """Return `True` if `a` is a Z3 expression.
1212
1213 >>> a = Int('a')
1214 >>> is_expr(a)
1215 True
1216 >>> is_expr(a + 1)
1217 True
1218 >>> is_expr(IntSort())
1219 False
1220 >>> is_expr(1)
1221 False
1222 >>> is_expr(IntVal(1))
1223 True
1224 >>> x = Int('x')
1225 >>> is_expr(ForAll(x, x >= 0))
1226 True
1227 >>> is_expr(FPVal(1.0))
1228 True
1229 """
1230 return isinstance(a, ExprRef)
1231
1232

Referenced by SeqRef.__gt__(), SortRef.cast(), BoolSortRef.cast(), ArithSortRef.cast(), BitVecSortRef.cast(), FPSortRef.cast(), Cbrt(), ExprRef.children(), Concat(), AlgebraicNumRef.index(), IndexOf(), IntToStr(), is_expr(), is_quantifier(), is_sort(), is_var(), K(), MultiPattern(), Replace(), simplify(), Sqrt(), substitute(), and substitute_vars().

◆ is_false()

def z3py.is_false (   a)
Return `True` if `a` is the Z3 false expression.

>>> p = Bool('p')
>>> is_false(p)
False
>>> is_false(False)
False
>>> is_false(BoolVal(False))
True

Definition at line 1571 of file z3py.py.

1571def is_false(a):
1572 """Return `True` if `a` is the Z3 false expression.
1573
1574 >>> p = Bool('p')
1575 >>> is_false(p)
1576 False
1577 >>> is_false(False)
1578 False
1579 >>> is_false(BoolVal(False))
1580 True
1581 """
1582 return is_app_of(a, Z3_OP_FALSE)
1583
1584

Referenced by AstRef.__bool__(), BoolVal(), and is_false().

◆ is_finite_domain()

def z3py.is_finite_domain (   a)
Return `True` if `a` is a Z3 finite-domain expression.

>>> s = FiniteDomainSort('S', 100)
>>> b = Const('b', s)
>>> is_finite_domain(b)
True
>>> is_finite_domain(Int('x'))
False

Definition at line 7621 of file z3py.py.

7621def is_finite_domain(a):
7622 """Return `True` if `a` is a Z3 finite-domain expression.
7623
7624 >>> s = FiniteDomainSort('S', 100)
7625 >>> b = Const('b', s)
7626 >>> is_finite_domain(b)
7627 True
7628 >>> is_finite_domain(Int('x'))
7629 False
7630 """
7631 return isinstance(a, FiniteDomainRef)
7632
7633
def is_finite_domain(a)
Definition: z3py.py:7621

Referenced by is_finite_domain(), and is_finite_domain_value().

◆ is_finite_domain_sort()

def z3py.is_finite_domain_sort (   s)
Return True if `s` is a Z3 finite-domain sort.

>>> is_finite_domain_sort(FiniteDomainSort('S', 100))
True
>>> is_finite_domain_sort(IntSort())
False

Definition at line 7598 of file z3py.py.

7599 """Return True if `s` is a Z3 finite-domain sort.
7600
7602 True
7604 False
7605 """
7606 return isinstance(s, FiniteDomainSortRef)
7607
7608

Referenced by FiniteDomainVal(), and is_finite_domain_sort().

◆ is_finite_domain_value()

def z3py.is_finite_domain_value (   a)
Return `True` if `a` is a Z3 finite-domain value.

>>> s = FiniteDomainSort('S', 100)
>>> b = Const('b', s)
>>> is_finite_domain_value(b)
False
>>> b = FiniteDomainVal(10, s)
>>> b
10
>>> is_finite_domain_value(b)
True

Definition at line 7675 of file z3py.py.

7676 """Return `True` if `a` is a Z3 finite-domain value.
7677
7678 >>> s = FiniteDomainSort('S', 100)
7679 >>> b = Const('b', s)
7681 False
7682 >>> b = FiniteDomainVal(10, s)
7683 >>> b
7684 10
7686 True
7687 """
7688 return is_finite_domain(a) and _is_numeral(a.ctx, a.as_ast())
7689
7690
def is_finite_domain_value(a)
Definition: z3py.py:7675

Referenced by is_finite_domain_value().

◆ is_fp()

def z3py.is_fp (   a)
Return `True` if `a` is a Z3 floating-point expression.

>>> b = FP('b', FPSort(8, 24))
>>> is_fp(b)
True
>>> is_fp(b + 1.0)
True
>>> is_fp(Int('x'))
False

Definition at line 9698 of file z3py.py.

9698def is_fp(a):
9699 """Return `True` if `a` is a Z3 floating-point expression.
9700
9701 >>> b = FP('b', FPSort(8, 24))
9702 >>> is_fp(b)
9703 True
9704 >>> is_fp(b + 1.0)
9705 True
9706 >>> is_fp(Int('x'))
9707 False
9708 """
9709 return isinstance(a, FPRef)
9710
9711

Referenced by FP(), fpFPToFP(), fpIsPositive(), fpNeg(), fpToFP(), fpToIEEEBV(), fpToReal(), fpToSBV(), fpToUBV(), is_fp(), is_fp_value(), and set_default_fp_sort().

◆ is_fp_sort()

def z3py.is_fp_sort (   s)
Return True if `s` is a Z3 floating-point sort.

>>> is_fp_sort(FPSort(8, 24))
True
>>> is_fp_sort(IntSort())
False

Definition at line 9282 of file z3py.py.

9282def is_fp_sort(s):
9283 """Return True if `s` is a Z3 floating-point sort.
9284
9285 >>> is_fp_sort(FPSort(8, 24))
9286 True
9287 >>> is_fp_sort(IntSort())
9288 False
9289 """
9290 return isinstance(s, FPSortRef)
9291
9292

Referenced by fpBVToFP(), fpFPToFP(), fpRealToFP(), fpSignedToFP(), fpToFP(), fpToFPUnsigned(), fpUnsignedToFP(), and FPVal().

◆ is_fp_value()

def z3py.is_fp_value (   a)
Return `True` if `a` is a Z3 floating-point numeral value.

>>> b = FP('b', FPSort(8, 24))
>>> is_fp_value(b)
False
>>> b = FPVal(1.0, FPSort(8, 24))
>>> b
1
>>> is_fp_value(b)
True

Definition at line 9712 of file z3py.py.

9712def is_fp_value(a):
9713 """Return `True` if `a` is a Z3 floating-point numeral value.
9714
9715 >>> b = FP('b', FPSort(8, 24))
9716 >>> is_fp_value(b)
9717 False
9718 >>> b = FPVal(1.0, FPSort(8, 24))
9719 >>> b
9720 1
9721 >>> is_fp_value(b)
9722 True
9723 """
9724 return is_fp(a) and _is_numeral(a.ctx, a.ast)
9725
9726
def is_fp_value(a)
Definition: z3py.py:9712

Referenced by is_fp_value().

◆ is_fprm()

def z3py.is_fprm (   a)
Return `True` if `a` is a Z3 floating-point rounding mode expression.

>>> rm = RNE()
>>> is_fprm(rm)
True
>>> rm = 1.0
>>> is_fprm(rm)
False

Definition at line 9542 of file z3py.py.

9542def is_fprm(a):
9543 """Return `True` if `a` is a Z3 floating-point rounding mode expression.
9544
9545 >>> rm = RNE()
9546 >>> is_fprm(rm)
9547 True
9548 >>> rm = 1.0
9549 >>> is_fprm(rm)
9550 False
9551 """
9552 return isinstance(a, FPRMRef)
9553
9554

Referenced by fpFPToFP(), fpNeg(), fpRealToFP(), fpSignedToFP(), fpToFP(), fpToFPUnsigned(), fpToSBV(), fpToUBV(), fpUnsignedToFP(), is_fprm(), and is_fprm_value().

◆ is_fprm_sort()

def z3py.is_fprm_sort (   s)
Return True if `s` is a Z3 floating-point rounding mode sort.

>>> is_fprm_sort(FPSort(8, 24))
False
>>> is_fprm_sort(RNE().sort())
True

Definition at line 9293 of file z3py.py.

9293def is_fprm_sort(s):
9294 """Return True if `s` is a Z3 floating-point rounding mode sort.
9295
9296 >>> is_fprm_sort(FPSort(8, 24))
9297 False
9298 >>> is_fprm_sort(RNE().sort())
9299 True
9300 """
9301 return isinstance(s, FPRMSortRef)
9302
9303# FP Expressions
9304
9305
def is_fprm_sort(s)
Definition: z3py.py:9293

Referenced by is_fprm_sort().

◆ is_fprm_value()

def z3py.is_fprm_value (   a)
Return `True` if `a` is a Z3 floating-point rounding mode numeral value.

Definition at line 9555 of file z3py.py.

9555def is_fprm_value(a):
9556 """Return `True` if `a` is a Z3 floating-point rounding mode numeral value."""
9557 return is_fprm(a) and _is_numeral(a.ctx, a.ast)
9558
9559# FP Numerals
9560
9561
def is_fprm_value(a)
Definition: z3py.py:9555

Referenced by set_default_rounding_mode().

◆ is_func_decl()

def z3py.is_func_decl (   a)
Return `True` if `a` is a Z3 function declaration.

>>> f = Function('f', IntSort(), IntSort())
>>> is_func_decl(f)
True
>>> x = Real('x')
>>> is_func_decl(x)
False

Definition at line 847 of file z3py.py.

847def is_func_decl(a):
848 """Return `True` if `a` is a Z3 function declaration.
849
850 >>> f = Function('f', IntSort(), IntSort())
851 >>> is_func_decl(f)
852 True
853 >>> x = Real('x')
854 >>> is_func_decl(x)
855 False
856 """
857 return isinstance(a, FuncDeclRef)
858
859
def is_func_decl(a)
Definition: z3py.py:847

Referenced by is_func_decl(), Map(), and prove().

◆ is_ge()

def z3py.is_ge (   a)
Return `True` if `a` is an expression of the form b >= c.

>>> x, y = Ints('x y')
>>> is_ge(x >= y)
True
>>> is_ge(x == y)
False

Definition at line 2855 of file z3py.py.

2855def is_ge(a):
2856 """Return `True` if `a` is an expression of the form b >= c.
2857
2858 >>> x, y = Ints('x y')
2859 >>> is_ge(x >= y)
2860 True
2861 >>> is_ge(x == y)
2862 False
2863 """
2864 return is_app_of(a, Z3_OP_GE)
2865
2866
def is_ge(a)
Definition: z3py.py:2855

Referenced by is_ge().

◆ is_gt()

def z3py.is_gt (   a)
Return `True` if `a` is an expression of the form b > c.

>>> x, y = Ints('x y')
>>> is_gt(x > y)
True
>>> is_gt(x == y)
False

Definition at line 2867 of file z3py.py.

2867def is_gt(a):
2868 """Return `True` if `a` is an expression of the form b > c.
2869
2870 >>> x, y = Ints('x y')
2871 >>> is_gt(x > y)
2872 True
2873 >>> is_gt(x == y)
2874 False
2875 """
2876 return is_app_of(a, Z3_OP_GT)
2877
2878
def is_gt(a)
Definition: z3py.py:2867

Referenced by is_gt().

◆ is_idiv()

def z3py.is_idiv (   a)
Return `True` if `a` is an expression of the form b div c.

>>> x, y = Ints('x y')
>>> is_idiv(x / y)
True
>>> is_idiv(x + y)
False

Definition at line 2807 of file z3py.py.

2807def is_idiv(a):
2808 """Return `True` if `a` is an expression of the form b div c.
2809
2810 >>> x, y = Ints('x y')
2811 >>> is_idiv(x / y)
2812 True
2813 >>> is_idiv(x + y)
2814 False
2815 """
2816 return is_app_of(a, Z3_OP_IDIV)
2817
2818

Referenced by is_div(), and is_idiv().

◆ is_implies()

def z3py.is_implies (   a)
Return `True` if `a` is a Z3 implication expression.

>>> p, q = Bools('p q')
>>> is_implies(Implies(p, q))
True
>>> is_implies(And(p, q))
False

Definition at line 1609 of file z3py.py.

1609def is_implies(a):
1610 """Return `True` if `a` is a Z3 implication expression.
1611
1612 >>> p, q = Bools('p q')
1613 >>> is_implies(Implies(p, q))
1614 True
1615 >>> is_implies(And(p, q))
1616 False
1617 """
1618 return is_app_of(a, Z3_OP_IMPLIES)
1619
1620
def is_implies(a)
Definition: z3py.py:1609

Referenced by is_implies().

◆ is_int()

def z3py.is_int (   a)
Return `True` if `a` is an integer expression.

>>> x = Int('x')
>>> is_int(x + 1)
True
>>> is_int(1)
False
>>> is_int(IntVal(1))
True
>>> y = Real('y')
>>> is_int(y)
False
>>> is_int(y + 1)
False

Definition at line 2648 of file z3py.py.

2648def is_int(a):
2649 """Return `True` if `a` is an integer expression.
2650
2651 >>> x = Int('x')
2652 >>> is_int(x + 1)
2653 True
2654 >>> is_int(1)
2655 False
2656 >>> is_int(IntVal(1))
2657 True
2658 >>> y = Real('y')
2659 >>> is_int(y)
2660 False
2661 >>> is_int(y + 1)
2662 False
2663 """
2664 return is_arith(a) and a.is_int()
2665
2666

Referenced by Int(), IntSort(), is_int(), and RealSort().

◆ is_int_value()

def z3py.is_int_value (   a)
Return `True` if `a` is an integer value of sort Int.

>>> is_int_value(IntVal(1))
True
>>> is_int_value(1)
False
>>> is_int_value(Int('x'))
False
>>> n = Int('x') + 1
>>> n
x + 1
>>> n.arg(1)
1
>>> is_int_value(n.arg(1))
True
>>> is_int_value(RealVal("1/3"))
False
>>> is_int_value(RealVal(1))
False

Definition at line 2694 of file z3py.py.

2694def is_int_value(a):
2695 """Return `True` if `a` is an integer value of sort Int.
2696
2697 >>> is_int_value(IntVal(1))
2698 True
2699 >>> is_int_value(1)
2700 False
2701 >>> is_int_value(Int('x'))
2702 False
2703 >>> n = Int('x') + 1
2704 >>> n
2705 x + 1
2706 >>> n.arg(1)
2707 1
2708 >>> is_int_value(n.arg(1))
2709 True
2710 >>> is_int_value(RealVal("1/3"))
2711 False
2712 >>> is_int_value(RealVal(1))
2713 False
2714 """
2715 return is_arith(a) and a.is_int() and _is_numeral(a.ctx, a.as_ast())
2716
2717
def is_int_value(a)
Definition: z3py.py:2694

Referenced by is_int_value().

◆ is_is_int()

def z3py.is_is_int (   a)
Return `True` if `a` is an expression of the form IsInt(b).

>>> x = Real('x')
>>> is_is_int(IsInt(x))
True
>>> is_is_int(x)
False

Definition at line 2879 of file z3py.py.

2879def is_is_int(a):
2880 """Return `True` if `a` is an expression of the form IsInt(b).
2881
2882 >>> x = Real('x')
2883 >>> is_is_int(IsInt(x))
2884 True
2885 >>> is_is_int(x)
2886 False
2887 """
2888 return is_app_of(a, Z3_OP_IS_INT)
2889
2890
def is_is_int(a)
Definition: z3py.py:2879
def IsInt(a)
Definition: z3py.py:3356

Referenced by is_is_int().

◆ is_K()

def z3py.is_K (   a)
Return `True` if `a` is a Z3 constant array.

>>> a = K(IntSort(), 10)
>>> is_K(a)
True
>>> a = Array('a', IntSort(), IntSort())
>>> is_K(a)
False

Definition at line 4583 of file z3py.py.

4583def is_K(a):
4584 """Return `True` if `a` is a Z3 constant array.
4585
4586 >>> a = K(IntSort(), 10)
4587 >>> is_K(a)
4588 True
4589 >>> a = Array('a', IntSort(), IntSort())
4590 >>> is_K(a)
4591 False
4592 """
4593 return is_app_of(a, Z3_OP_CONST_ARRAY)
4594
4595
def is_K(a)
Definition: z3py.py:4583

Referenced by is_K().

◆ is_le()

def z3py.is_le (   a)
Return `True` if `a` is an expression of the form b <= c.

>>> x, y = Ints('x y')
>>> is_le(x <= y)
True
>>> is_le(x < y)
False

Definition at line 2831 of file z3py.py.

2831def is_le(a):
2832 """Return `True` if `a` is an expression of the form b <= c.
2833
2834 >>> x, y = Ints('x y')
2835 >>> is_le(x <= y)
2836 True
2837 >>> is_le(x < y)
2838 False
2839 """
2840 return is_app_of(a, Z3_OP_LE)
2841
2842
def is_le(a)
Definition: z3py.py:2831

Referenced by is_le().

◆ is_lt()

def z3py.is_lt (   a)
Return `True` if `a` is an expression of the form b < c.

>>> x, y = Ints('x y')
>>> is_lt(x < y)
True
>>> is_lt(x == y)
False

Definition at line 2843 of file z3py.py.

2843def is_lt(a):
2844 """Return `True` if `a` is an expression of the form b < c.
2845
2846 >>> x, y = Ints('x y')
2847 >>> is_lt(x < y)
2848 True
2849 >>> is_lt(x == y)
2850 False
2851 """
2852 return is_app_of(a, Z3_OP_LT)
2853
2854
def is_lt(a)
Definition: z3py.py:2843

Referenced by is_lt().

◆ is_map()

def z3py.is_map (   a)
Return `True` if `a` is a Z3 map array expression.

>>> f = Function('f', IntSort(), IntSort())
>>> b = Array('b', IntSort(), IntSort())
>>> a  = Map(f, b)
>>> a
Map(f, b)
>>> is_map(a)
True
>>> is_map(b)
False

Definition at line 4596 of file z3py.py.

4596def is_map(a):
4597 """Return `True` if `a` is a Z3 map array expression.
4598
4599 >>> f = Function('f', IntSort(), IntSort())
4600 >>> b = Array('b', IntSort(), IntSort())
4601 >>> a = Map(f, b)
4602 >>> a
4603 Map(f, b)
4604 >>> is_map(a)
4605 True
4606 >>> is_map(b)
4607 False
4608 """
4609 return is_app_of(a, Z3_OP_ARRAY_MAP)
4610
4611

Referenced by get_map_func(), and is_map().

◆ is_mod()

def z3py.is_mod (   a)
Return `True` if `a` is an expression of the form b % c.

>>> x, y = Ints('x y')
>>> is_mod(x % y)
True
>>> is_mod(x + y)
False

Definition at line 2819 of file z3py.py.

2819def is_mod(a):
2820 """Return `True` if `a` is an expression of the form b % c.
2821
2822 >>> x, y = Ints('x y')
2823 >>> is_mod(x % y)
2824 True
2825 >>> is_mod(x + y)
2826 False
2827 """
2828 return is_app_of(a, Z3_OP_MOD)
2829
2830
def is_mod(a)
Definition: z3py.py:2819

Referenced by is_mod().

◆ is_mul()

def z3py.is_mul (   a)
Return `True` if `a` is an expression of the form b * c.

>>> x, y = Ints('x y')
>>> is_mul(x * y)
True
>>> is_mul(x - y)
False

Definition at line 2766 of file z3py.py.

2766def is_mul(a):
2767 """Return `True` if `a` is an expression of the form b * c.
2768
2769 >>> x, y = Ints('x y')
2770 >>> is_mul(x * y)
2771 True
2772 >>> is_mul(x - y)
2773 False
2774 """
2775 return is_app_of(a, Z3_OP_MUL)
2776
2777
def is_mul(a)
Definition: z3py.py:2766

Referenced by is_mul().

◆ is_not()

def z3py.is_not (   a)
Return `True` if `a` is a Z3 not expression.

>>> p = Bool('p')
>>> is_not(p)
False
>>> is_not(Not(p))
True

Definition at line 1621 of file z3py.py.

1621def is_not(a):
1622 """Return `True` if `a` is a Z3 not expression.
1623
1624 >>> p = Bool('p')
1625 >>> is_not(p)
1626 False
1627 >>> is_not(Not(p))
1628 True
1629 """
1630 return is_app_of(a, Z3_OP_NOT)
1631
1632
def is_not(a)
Definition: z3py.py:1621

Referenced by is_not(), and mk_not().

◆ is_or()

def z3py.is_or (   a)
Return `True` if `a` is a Z3 or expression.

>>> p, q = Bools('p q')
>>> is_or(Or(p, q))
True
>>> is_or(And(p, q))
False

Definition at line 1597 of file z3py.py.

1597def is_or(a):
1598 """Return `True` if `a` is a Z3 or expression.
1599
1600 >>> p, q = Bools('p q')
1601 >>> is_or(Or(p, q))
1602 True
1603 >>> is_or(And(p, q))
1604 False
1605 """
1606 return is_app_of(a, Z3_OP_OR)
1607
1608
def is_or(a)
Definition: z3py.py:1597

Referenced by is_or().

◆ is_pattern()

def z3py.is_pattern (   a)
Return `True` if `a` is a Z3 pattern (hint for quantifier instantiation.

>>> f = Function('f', IntSort(), IntSort())
>>> x = Int('x')
>>> q = ForAll(x, f(x) == 0, patterns = [ f(x) ])
>>> q
ForAll(x, f(x) == 0)
>>> q.num_patterns()
1
>>> is_pattern(q.pattern(0))
True
>>> q.pattern(0)
f(Var(0))

Definition at line 1897 of file z3py.py.

1897def is_pattern(a):
1898 """Return `True` if `a` is a Z3 pattern (hint for quantifier instantiation.
1899
1900 >>> f = Function('f', IntSort(), IntSort())
1901 >>> x = Int('x')
1902 >>> q = ForAll(x, f(x) == 0, patterns = [ f(x) ])
1903 >>> q
1904 ForAll(x, f(x) == 0)
1905 >>> q.num_patterns()
1906 1
1907 >>> is_pattern(q.pattern(0))
1908 True
1909 >>> q.pattern(0)
1910 f(Var(0))
1911 """
1912 return isinstance(a, PatternRef)
1913
1914
def is_pattern(a)
Definition: z3py.py:1897

Referenced by is_pattern(), is_quantifier(), and MultiPattern().

◆ is_probe()

def z3py.is_probe (   p)
Return `True` if `p` is a Z3 probe.

>>> is_probe(Int('x'))
False
>>> is_probe(Probe('memory'))
True

Definition at line 8511 of file z3py.py.

8511def is_probe(p):
8512 """Return `True` if `p` is a Z3 probe.
8513
8514 >>> is_probe(Int('x'))
8515 False
8516 >>> is_probe(Probe('memory'))
8517 True
8518 """
8519 return isinstance(p, Probe)
8520
8521
def is_probe(p)
Definition: z3py.py:8511

Referenced by eq(), is_probe(), mk_not(), and Not().

◆ is_quantifier()

def z3py.is_quantifier (   a)
Return `True` if `a` is a Z3 quantifier.

>>> f = Function('f', IntSort(), IntSort())
>>> x = Int('x')
>>> q = ForAll(x, f(x) == 0)
>>> is_quantifier(q)
True
>>> is_quantifier(f(x))
False

Definition at line 2138 of file z3py.py.

2138def is_quantifier(a):
2139 """Return `True` if `a` is a Z3 quantifier.
2140
2141 >>> f = Function('f', IntSort(), IntSort())
2142 >>> x = Int('x')
2143 >>> q = ForAll(x, f(x) == 0)
2144 >>> is_quantifier(q)
2145 True
2146 >>> is_quantifier(f(x))
2147 False
2148 """
2149 return isinstance(a, QuantifierRef)
2150
2151

Referenced by Exists(), and is_quantifier().

◆ is_rational_value()

def z3py.is_rational_value (   a)
Return `True` if `a` is rational value of sort Real.

>>> is_rational_value(RealVal(1))
True
>>> is_rational_value(RealVal("3/5"))
True
>>> is_rational_value(IntVal(1))
False
>>> is_rational_value(1)
False
>>> n = Real('x') + 1
>>> n.arg(1)
1
>>> is_rational_value(n.arg(1))
True
>>> is_rational_value(Real('x'))
False

Definition at line 2718 of file z3py.py.

2718def is_rational_value(a):
2719 """Return `True` if `a` is rational value of sort Real.
2720
2722 True
2723 >>> is_rational_value(RealVal("3/5"))
2724 True
2726 False
2727 >>> is_rational_value(1)
2728 False
2729 >>> n = Real('x') + 1
2730 >>> n.arg(1)
2731 1
2732 >>> is_rational_value(n.arg(1))
2733 True
2734 >>> is_rational_value(Real('x'))
2735 False
2736 """
2737 return is_arith(a) and a.is_real() and _is_numeral(a.ctx, a.as_ast())
2738
2739
def is_rational_value(a)
Definition: z3py.py:2718

Referenced by RatNumRef.denominator(), is_rational_value(), and RatNumRef.numerator().

◆ is_re()

def z3py.is_re (   s)

Definition at line 10920 of file z3py.py.

10920def is_re(s):
10921 return isinstance(s, ReRef)
10922
10923

Referenced by Concat(), Intersect(), and Union().

◆ is_real()

def z3py.is_real (   a)
Return `True` if `a` is a real expression.

>>> x = Int('x')
>>> is_real(x + 1)
False
>>> y = Real('y')
>>> is_real(y)
True
>>> is_real(y + 1)
True
>>> is_real(1)
False
>>> is_real(RealVal(1))
True

Definition at line 2667 of file z3py.py.

2667def is_real(a):
2668 """Return `True` if `a` is a real expression.
2669
2670 >>> x = Int('x')
2671 >>> is_real(x + 1)
2672 False
2673 >>> y = Real('y')
2674 >>> is_real(y)
2675 True
2676 >>> is_real(y + 1)
2677 True
2678 >>> is_real(1)
2679 False
2680 >>> is_real(RealVal(1))
2681 True
2682 """
2683 return is_arith(a) and a.is_real()
2684
2685

Referenced by fpRealToFP(), fpToFP(), fpToReal(), is_real(), Real(), and RealSort().

◆ is_select()

def z3py.is_select (   a)
Return `True` if `a` is a Z3 array select application.

>>> a = Array('a', IntSort(), IntSort())
>>> is_select(a)
False
>>> i = Int('i')
>>> is_select(a[i])
True

Definition at line 4820 of file z3py.py.

4820def is_select(a):
4821 """Return `True` if `a` is a Z3 array select application.
4822
4823 >>> a = Array('a', IntSort(), IntSort())
4824 >>> is_select(a)
4825 False
4826 >>> i = Int('i')
4827 >>> is_select(a[i])
4828 True
4829 """
4830 return is_app_of(a, Z3_OP_SELECT)
4831
4832
def is_select(a)
Definition: z3py.py:4820

Referenced by is_select().

◆ is_seq()

def z3py.is_seq (   a)
Return `True` if `a` is a Z3 sequence expression.
>>> print (is_seq(Unit(IntVal(0))))
True
>>> print (is_seq(StringVal("abc")))
True

Definition at line 10658 of file z3py.py.

10658def is_seq(a):
10659 """Return `True` if `a` is a Z3 sequence expression.
10660 >>> print (is_seq(Unit(IntVal(0))))
10661 True
10662 >>> print (is_seq(StringVal("abc")))
10663 True
10664 """
10665 return isinstance(a, SeqRef)
10666
10667
def Unit(a)
Definition: z3py.py:10754

Referenced by SeqRef.__gt__(), Concat(), Extract(), and is_seq().

◆ is_sort()

def z3py.is_sort (   s)
Return `True` if `s` is a Z3 sort.

>>> is_sort(IntSort())
True
>>> is_sort(Int('x'))
False
>>> is_expr(Int('x'))
True

Definition at line 646 of file z3py.py.

646def is_sort(s):
647 """Return `True` if `s` is a Z3 sort.
648
649 >>> is_sort(IntSort())
650 True
651 >>> is_sort(Int('x'))
652 False
653 >>> is_expr(Int('x'))
654 True
655 """
656 return isinstance(s, SortRef)
657
658

Referenced by ArraySort(), CreateDatatypes(), FreshFunction(), Function(), is_sort(), IsSubset(), K(), prove(), RecFunction(), and Var().

◆ is_store()

def z3py.is_store (   a)
Return `True` if `a` is a Z3 array store application.

>>> a = Array('a', IntSort(), IntSort())
>>> is_store(a)
False
>>> is_store(Store(a, 0, 1))
True

Definition at line 4833 of file z3py.py.

4833def is_store(a):
4834 """Return `True` if `a` is a Z3 array store application.
4835
4836 >>> a = Array('a', IntSort(), IntSort())
4837 >>> is_store(a)
4838 False
4839 >>> is_store(Store(a, 0, 1))
4840 True
4841 """
4842 return is_app_of(a, Z3_OP_STORE)
4843
def is_store(a)
Definition: z3py.py:4833

Referenced by is_store().

◆ is_string()

def z3py.is_string (   a)
Return `True` if `a` is a Z3 string expression.
>>> print (is_string(StringVal("ab")))
True

Definition at line 10668 of file z3py.py.

10668def is_string(a):
10669 """Return `True` if `a` is a Z3 string expression.
10670 >>> print (is_string(StringVal("ab")))
10671 True
10672 """
10673 return isinstance(a, SeqRef) and a.is_string()
10674
10675
def is_string(a)
Definition: z3py.py:10668

Referenced by is_string().

◆ is_string_value()

def z3py.is_string_value (   a)
return 'True' if 'a' is a Z3 string constant expression.
>>> print (is_string_value(StringVal("a")))
True
>>> print (is_string_value(StringVal("a") + StringVal("b")))
False

Definition at line 10676 of file z3py.py.

10676def is_string_value(a):
10677 """return 'True' if 'a' is a Z3 string constant expression.
10678 >>> print (is_string_value(StringVal("a")))
10679 True
10680 >>> print (is_string_value(StringVal("a") + StringVal("b")))
10681 False
10682 """
10683 return isinstance(a, SeqRef) and a.is_string_value()
10684
10685
def is_string_value(a)
Definition: z3py.py:10676

Referenced by is_string_value().

◆ is_sub()

def z3py.is_sub (   a)
Return `True` if `a` is an expression of the form b - c.

>>> x, y = Ints('x y')
>>> is_sub(x - y)
True
>>> is_sub(x + y)
False

Definition at line 2778 of file z3py.py.

2778def is_sub(a):
2779 """Return `True` if `a` is an expression of the form b - c.
2780
2781 >>> x, y = Ints('x y')
2782 >>> is_sub(x - y)
2783 True
2784 >>> is_sub(x + y)
2785 False
2786 """
2787 return is_app_of(a, Z3_OP_SUB)
2788
2789
def is_sub(a)
Definition: z3py.py:2778

Referenced by is_sub().

◆ is_to_int()

def z3py.is_to_int (   a)
Return `True` if `a` is an expression of the form ToInt(b).

>>> x = Real('x')
>>> n = ToInt(x)
>>> n
ToInt(x)
>>> is_to_int(n)
True
>>> is_to_int(x)
False

Definition at line 2906 of file z3py.py.

2906def is_to_int(a):
2907 """Return `True` if `a` is an expression of the form ToInt(b).
2908
2909 >>> x = Real('x')
2910 >>> n = ToInt(x)
2911 >>> n
2912 ToInt(x)
2913 >>> is_to_int(n)
2914 True
2915 >>> is_to_int(x)
2916 False
2917 """
2918 return is_app_of(a, Z3_OP_TO_INT)
2919
2920
def is_to_int(a)
Definition: z3py.py:2906
def ToInt(a)
Definition: z3py.py:3338

Referenced by is_to_int().

◆ is_to_real()

def z3py.is_to_real (   a)
Return `True` if `a` is an expression of the form ToReal(b).

>>> x = Int('x')
>>> n = ToReal(x)
>>> n
ToReal(x)
>>> is_to_real(n)
True
>>> is_to_real(x)
False

Definition at line 2891 of file z3py.py.

2891def is_to_real(a):
2892 """Return `True` if `a` is an expression of the form ToReal(b).
2893
2894 >>> x = Int('x')
2895 >>> n = ToReal(x)
2896 >>> n
2897 ToReal(x)
2898 >>> is_to_real(n)
2899 True
2900 >>> is_to_real(x)
2901 False
2902 """
2903 return is_app_of(a, Z3_OP_TO_REAL)
2904
2905
def ToReal(a)
Definition: z3py.py:3320
def is_to_real(a)
Definition: z3py.py:2891

Referenced by is_to_real().

◆ is_true()

def z3py.is_true (   a)
Return `True` if `a` is the Z3 true expression.

>>> p = Bool('p')
>>> is_true(p)
False
>>> is_true(simplify(p == p))
True
>>> x = Real('x')
>>> is_true(x == 0)
False
>>> # True is a Python Boolean expression
>>> is_true(True)
False

Definition at line 1553 of file z3py.py.

1553def is_true(a):
1554 """Return `True` if `a` is the Z3 true expression.
1555
1556 >>> p = Bool('p')
1557 >>> is_true(p)
1558 False
1559 >>> is_true(simplify(p == p))
1560 True
1561 >>> x = Real('x')
1562 >>> is_true(x == 0)
1563 False
1564 >>> # True is a Python Boolean expression
1565 >>> is_true(True)
1566 False
1567 """
1568 return is_app_of(a, Z3_OP_TRUE)
1569
1570

Referenced by AstRef.__bool__(), BoolVal(), and is_true().

◆ is_var()

def z3py.is_var (   a)
Return `True` if `a` is variable.

Z3 uses de-Bruijn indices for representing bound variables in
quantifiers.

>>> x = Int('x')
>>> is_var(x)
False
>>> is_const(x)
True
>>> f = Function('f', IntSort(), IntSort())
>>> # Z3 replaces x with bound variables when ForAll is executed.
>>> q = ForAll(x, f(x) == x)
>>> b = q.body()
>>> b
f(Var(0)) == Var(0)
>>> b.arg(1)
Var(0)
>>> is_var(b.arg(1))
True

Definition at line 1278 of file z3py.py.

1278def is_var(a):
1279 """Return `True` if `a` is variable.
1280
1281 Z3 uses de-Bruijn indices for representing bound variables in
1282 quantifiers.
1283
1284 >>> x = Int('x')
1285 >>> is_var(x)
1286 False
1287 >>> is_const(x)
1288 True
1289 >>> f = Function('f', IntSort(), IntSort())
1290 >>> # Z3 replaces x with bound variables when ForAll is executed.
1291 >>> q = ForAll(x, f(x) == x)
1292 >>> b = q.body()
1293 >>> b
1294 f(Var(0)) == Var(0)
1295 >>> b.arg(1)
1296 Var(0)
1297 >>> is_var(b.arg(1))
1298 True
1299 """
1300 return is_expr(a) and _ast_kind(a.ctx, a) == Z3_VAR_AST
1301
1302

Referenced by get_var_index(), and is_var().

◆ IsInt()

def z3py.IsInt (   a)
 Return the Z3 predicate IsInt(a).

>>> x = Real('x')
>>> IsInt(x + "1/2")
IsInt(x + 1/2)
>>> solve(IsInt(x + "1/2"), x > 0, x < 1)
[x = 1/2]
>>> solve(IsInt(x + "1/2"), x > 0, x < 1, x != "1/2")
no solution

Definition at line 3356 of file z3py.py.

3356def IsInt(a):
3357 """ Return the Z3 predicate IsInt(a).
3358
3359 >>> x = Real('x')
3360 >>> IsInt(x + "1/2")
3361 IsInt(x + 1/2)
3362 >>> solve(IsInt(x + "1/2"), x > 0, x < 1)
3363 [x = 1/2]
3364 >>> solve(IsInt(x + "1/2"), x > 0, x < 1, x != "1/2")
3365 no solution
3366 """
3367 if z3_debug():
3368 _z3_assert(a.is_real(), "Z3 real expression expected.")
3369 ctx = a.ctx
3370 return BoolRef(Z3_mk_is_int(ctx.ref(), a.as_ast()), ctx)
3371
3372
Z3_ast Z3_API Z3_mk_is_int(Z3_context c, Z3_ast t1)
Check if a real number is an integer.

Referenced by is_is_int(), and IsInt().

◆ IsMember()

def z3py.IsMember (   e,
  s 
)
 Check if e is a member of set s
>>> a = Const('a', SetSort(IntSort()))
>>> IsMember(1, a)
a[1]

Definition at line 4943 of file z3py.py.

4943def IsMember(e, s):
4944 """ Check if e is a member of set s
4945 >>> a = Const('a', SetSort(IntSort()))
4946 >>> IsMember(1, a)
4947 a[1]
4948 """
4949 ctx = _ctx_from_ast_arg_list([s, e])
4950 e = _py2expr(e, ctx)
4951 return BoolRef(Z3_mk_set_member(ctx.ref(), e.as_ast(), s.as_ast()), ctx)
4952
4953
def IsMember(e, s)
Definition: z3py.py:4943
Z3_ast Z3_API Z3_mk_set_member(Z3_context c, Z3_ast elem, Z3_ast set)
Check for set membership.

Referenced by IsMember().

◆ IsSubset()

def z3py.IsSubset (   a,
  b 
)
 Check if a is a subset of b
>>> a = Const('a', SetSort(IntSort()))
>>> b = Const('b', SetSort(IntSort()))
>>> IsSubset(a, b)
subset(a, b)

Definition at line 4954 of file z3py.py.

4954def IsSubset(a, b):
4955 """ Check if a is a subset of b
4956 >>> a = Const('a', SetSort(IntSort()))
4957 >>> b = Const('b', SetSort(IntSort()))
4958 >>> IsSubset(a, b)
4959 subset(a, b)
4960 """
4961 ctx = _ctx_from_ast_arg_list([a, b])
4962 return BoolRef(Z3_mk_set_subset(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
4963
4964
def IsSubset(a, b)
Definition: z3py.py:4954
Z3_ast Z3_API Z3_mk_set_subset(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Check for subsetness of sets.

Referenced by IsSubset().

◆ K()

def z3py.K (   dom,
  v 
)
Return a Z3 constant array expression.

>>> a = K(IntSort(), 10)
>>> a
K(Int, 10)
>>> a.sort()
Array(Int, Int)
>>> i = Int('i')
>>> a[i]
K(Int, 10)[i]
>>> simplify(a[i])
10

Definition at line 4780 of file z3py.py.

4780def K(dom, v):
4781 """Return a Z3 constant array expression.
4782
4783 >>> a = K(IntSort(), 10)
4784 >>> a
4785 K(Int, 10)
4786 >>> a.sort()
4787 Array(Int, Int)
4788 >>> i = Int('i')
4789 >>> a[i]
4790 K(Int, 10)[i]
4791 >>> simplify(a[i])
4792 10
4793 """
4794 if z3_debug():
4795 _z3_assert(is_sort(dom), "Z3 sort expected")
4796 ctx = dom.ctx
4797 if not is_expr(v):
4798 v = _py2expr(v, ctx)
4799 return ArrayRef(Z3_mk_const_array(ctx.ref(), dom.ast, v.as_ast()), ctx)
4800
4801
Z3_ast Z3_API Z3_mk_const_array(Z3_context c, Z3_sort domain, Z3_ast v)
Create the constant array.

Referenced by Default(), EmptySet(), FullSet(), is_const_array(), is_default(), is_K(), and K().

◆ Lambda()

def z3py.Lambda (   vs,
  body 
)
Create a Z3 lambda expression.

>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> mem0 = Array('mem0', IntSort(), IntSort())
>>> lo, hi, e, i = Ints('lo hi e i')
>>> mem1 = Lambda([i], If(And(lo <= i, i <= hi), e, mem0[i]))
>>> mem1
Lambda(i, If(And(lo <= i, i <= hi), e, mem0[i]))

Definition at line 2226 of file z3py.py.

2226def Lambda(vs, body):
2227 """Create a Z3 lambda expression.
2228
2229 >>> f = Function('f', IntSort(), IntSort(), IntSort())
2230 >>> mem0 = Array('mem0', IntSort(), IntSort())
2231 >>> lo, hi, e, i = Ints('lo hi e i')
2232 >>> mem1 = Lambda([i], If(And(lo <= i, i <= hi), e, mem0[i]))
2233 >>> mem1
2234 Lambda(i, If(And(lo <= i, i <= hi), e, mem0[i]))
2235 """
2236 ctx = body.ctx
2237 if is_app(vs):
2238 vs = [vs]
2239 num_vars = len(vs)
2240 _vs = (Ast * num_vars)()
2241 for i in range(num_vars):
2242 # TODO: Check if is constant
2243 _vs[i] = vs[i].as_ast()
2244 return QuantifierRef(Z3_mk_lambda_const(ctx.ref(), num_vars, _vs, body.as_ast()), ctx)
2245
def Lambda(vs, body)
Definition: z3py.py:2226
Z3_ast Z3_API Z3_mk_lambda_const(Z3_context c, unsigned num_bound, Z3_app const bound[], Z3_ast body)
Create a lambda expression using a list of constants that form the set of bound variables.

Referenced by QuantifierRef.is_lambda(), Lambda(), and Context.MkLambda().

◆ LastIndexOf()

def z3py.LastIndexOf (   s,
  substr 
)
Retrieve the last index of substring within a string

Definition at line 10843 of file z3py.py.

10843def LastIndexOf(s, substr):
10844 """Retrieve the last index of substring within a string"""
10845 ctx = None
10846 ctx = _get_ctx2(s, substr, ctx)
10847 s = _coerce_seq(s, ctx)
10848 substr = _coerce_seq(substr, ctx)
10849 return ArithRef(Z3_mk_seq_last_index(s.ctx_ref(), s.as_ast(), substr.as_ast()), s.ctx)
10850
10851
def LastIndexOf(s, substr)
Definition: z3py.py:10843
Z3_ast Z3_API Z3_mk_seq_last_index(Z3_context c, Z3_ast, Z3_ast substr)
Return the last occurrence of substr in s. If s does not contain substr, then the value is -1,...

◆ Length()

def z3py.Length (   s)
Obtain the length of a sequence 's'
>>> l = Length(StringVal("abc"))
>>> simplify(l)
3

Definition at line 10852 of file z3py.py.

10852def Length(s):
10853 """Obtain the length of a sequence 's'
10854 >>> l = Length(StringVal("abc"))
10855 >>> simplify(l)
10856 3
10857 """
10858 s = _coerce_seq(s)
10859 return ArithRef(Z3_mk_seq_length(s.ctx_ref(), s.as_ast()), s.ctx)
10860
10861
def Length(s)
Definition: z3py.py:10852
Z3_ast Z3_API Z3_mk_seq_length(Z3_context c, Z3_ast s)
Return the length of the sequence s.

Referenced by Length().

◆ LinearOrder()

def z3py.LinearOrder (   a,
  index 
)

Definition at line 11052 of file z3py.py.

11052def LinearOrder(a, index):
11053 return FuncDeclRef(Z3_mk_linear_order(a.ctx_ref(), a.ast, index), a.ctx)
11054
11055
def LinearOrder(a, index)
Definition: z3py.py:11052
Z3_func_decl Z3_API Z3_mk_linear_order(Z3_context c, Z3_sort a, unsigned id)
create a linear ordering relation over signature a. The relation is identified by the index id.

◆ Loop()

def z3py.Loop (   re,
  lo,
  hi = 0 
)
Create the regular expression accepting between a lower and upper bound repetitions
>>> re = Loop(Re("a"), 1, 3)
>>> print(simplify(InRe("aa", re)))
True
>>> print(simplify(InRe("aaaa", re)))
False
>>> print(simplify(InRe("", re)))
False

Definition at line 11020 of file z3py.py.

11020def Loop(re, lo, hi=0):
11021 """Create the regular expression accepting between a lower and upper bound repetitions
11022 >>> re = Loop(Re("a"), 1, 3)
11023 >>> print(simplify(InRe("aa", re)))
11024 True
11025 >>> print(simplify(InRe("aaaa", re)))
11026 False
11027 >>> print(simplify(InRe("", re)))
11028 False
11029 """
11030 return ReRef(Z3_mk_re_loop(re.ctx_ref(), re.as_ast(), lo, hi), re.ctx)
11031
11032
def Loop(re, lo, hi=0)
Definition: z3py.py:11020
Z3_ast Z3_API Z3_mk_re_loop(Z3_context c, Z3_ast r, unsigned lo, unsigned hi)
Create a regular expression loop. The supplied regular expression r is repeated between lo and hi tim...

Referenced by Loop().

◆ LShR()

def z3py.LShR (   a,
  b 
)
Create the Z3 expression logical right shift.

Use the operator >> for the arithmetical right shift.

>>> x, y = BitVecs('x y', 32)
>>> LShR(x, y)
LShR(x, y)
>>> (x >> y).sexpr()
'(bvashr x y)'
>>> LShR(x, y).sexpr()
'(bvlshr x y)'
>>> BitVecVal(4, 3)
4
>>> BitVecVal(4, 3).as_signed_long()
-4
>>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
-2
>>> simplify(BitVecVal(4, 3) >> 1)
6
>>> simplify(LShR(BitVecVal(4, 3), 1))
2
>>> simplify(BitVecVal(2, 3) >> 1)
1
>>> simplify(LShR(BitVecVal(2, 3), 1))
1

Definition at line 4261 of file z3py.py.

4261def LShR(a, b):
4262 """Create the Z3 expression logical right shift.
4263
4264 Use the operator >> for the arithmetical right shift.
4265
4266 >>> x, y = BitVecs('x y', 32)
4267 >>> LShR(x, y)
4268 LShR(x, y)
4269 >>> (x >> y).sexpr()
4270 '(bvashr x y)'
4271 >>> LShR(x, y).sexpr()
4272 '(bvlshr x y)'
4273 >>> BitVecVal(4, 3)
4274 4
4275 >>> BitVecVal(4, 3).as_signed_long()
4276 -4
4277 >>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
4278 -2
4279 >>> simplify(BitVecVal(4, 3) >> 1)
4280 6
4281 >>> simplify(LShR(BitVecVal(4, 3), 1))
4282 2
4283 >>> simplify(BitVecVal(2, 3) >> 1)
4284 1
4285 >>> simplify(LShR(BitVecVal(2, 3), 1))
4286 1
4287 """
4288 _check_bv_args(a, b)
4289 a, b = _coerce_exprs(a, b)
4290 return BitVecRef(Z3_mk_bvlshr(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4291
4292
def LShR(a, b)
Definition: z3py.py:4261
Z3_ast Z3_API Z3_mk_bvlshr(Z3_context c, Z3_ast t1, Z3_ast t2)
Logical shift right.

Referenced by BitVecRef.__rlshift__(), BitVecRef.__rrshift__(), BitVecRef.__rshift__(), and LShR().

◆ main_ctx()

def z3py.main_ctx ( )
Return a reference to the global Z3 context.

>>> x = Real('x')
>>> x.ctx == main_ctx()
True
>>> c = Context()
>>> c == main_ctx()
False
>>> x2 = Real('x', c)
>>> x2.ctx == c
True
>>> eq(x, x2)
False

Definition at line 238 of file z3py.py.

238def main_ctx():
239 """Return a reference to the global Z3 context.
240
241 >>> x = Real('x')
242 >>> x.ctx == main_ctx()
243 True
244 >>> c = Context()
245 >>> c == main_ctx()
246 False
247 >>> x2 = Real('x', c)
248 >>> x2.ctx == c
249 True
250 >>> eq(x, x2)
251 False
252 """
253 global _main_ctx
254 if _main_ctx is None:
255 _main_ctx = Context()
256 return _main_ctx
257
258

Referenced by SeqRef.__gt__(), help_simplify(), main_ctx(), simplify_param_descrs(), and Goal.translate().

◆ Map()

def z3py.Map (   f,
args 
)
Return a Z3 map array expression.

>>> f = Function('f', IntSort(), IntSort(), IntSort())
>>> a1 = Array('a1', IntSort(), IntSort())
>>> a2 = Array('a2', IntSort(), IntSort())
>>> b  = Map(f, a1, a2)
>>> b
Map(f, a1, a2)
>>> prove(b[0] == f(a1[0], a2[0]))
proved

Definition at line 4757 of file z3py.py.

4757def Map(f, *args):
4758 """Return a Z3 map array expression.
4759
4760 >>> f = Function('f', IntSort(), IntSort(), IntSort())
4761 >>> a1 = Array('a1', IntSort(), IntSort())
4762 >>> a2 = Array('a2', IntSort(), IntSort())
4763 >>> b = Map(f, a1, a2)
4764 >>> b
4765 Map(f, a1, a2)
4766 >>> prove(b[0] == f(a1[0], a2[0]))
4767 proved
4768 """
4769 args = _get_args(args)
4770 if z3_debug():
4771 _z3_assert(len(args) > 0, "At least one Z3 array expression expected")
4772 _z3_assert(is_func_decl(f), "First argument must be a Z3 function declaration")
4773 _z3_assert(all([is_array(a) for a in args]), "Z3 array expected expected")
4774 _z3_assert(len(args) == f.arity(), "Number of arguments mismatch")
4775 _args, sz = _to_ast_array(args)
4776 ctx = f.ctx
4777 return ArrayRef(Z3_mk_map(ctx.ref(), f.ast, sz, _args), ctx)
4778
4779
Z3_ast Z3_API Z3_mk_map(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast const *args)
Map f on the argument arrays.

Referenced by Context.Context(), get_map_func(), is_map(), and Map().

◆ mk_not()

def z3py.mk_not (   a)

Definition at line 1798 of file z3py.py.

1798def mk_not(a):
1799 if is_not(a):
1800 return a.arg(0)
1801 else:
1802 return Not(a)
1803
1804
def mk_not(a)
Definition: z3py.py:1798

◆ Model()

def z3py.Model (   ctx = None)

Definition at line 6579 of file z3py.py.

6579def Model(ctx=None):
6580 ctx = _get_ctx(ctx)
6581 return ModelRef(Z3_mk_model(ctx.ref()), ctx)
6582
6583
def Model(ctx=None)
Definition: z3py.py:6579
Z3_model Z3_API Z3_mk_model(Z3_context c)
Create a fresh model object. It has reference count 0.

Referenced by Goal.ConvertModel(), Goal.convertModel(), Optimize.getModel(), Solver.getModel(), and Optimize.set_on_model().

◆ MultiPattern()

def z3py.MultiPattern ( args)
Create a Z3 multi-pattern using the given expressions `*args`

>>> f = Function('f', IntSort(), IntSort())
>>> g = Function('g', IntSort(), IntSort())
>>> x = Int('x')
>>> q = ForAll(x, f(x) != g(x), patterns = [ MultiPattern(f(x), g(x)) ])
>>> q
ForAll(x, f(x) != g(x))
>>> q.num_patterns()
1
>>> is_pattern(q.pattern(0))
True
>>> q.pattern(0)
MultiPattern(f(Var(0)), g(Var(0)))

Definition at line 1915 of file z3py.py.

1915def MultiPattern(*args):
1916 """Create a Z3 multi-pattern using the given expressions `*args`
1917
1918 >>> f = Function('f', IntSort(), IntSort())
1919 >>> g = Function('g', IntSort(), IntSort())
1920 >>> x = Int('x')
1921 >>> q = ForAll(x, f(x) != g(x), patterns = [ MultiPattern(f(x), g(x)) ])
1922 >>> q
1923 ForAll(x, f(x) != g(x))
1924 >>> q.num_patterns()
1925 1
1926 >>> is_pattern(q.pattern(0))
1927 True
1928 >>> q.pattern(0)
1929 MultiPattern(f(Var(0)), g(Var(0)))
1930 """
1931 if z3_debug():
1932 _z3_assert(len(args) > 0, "At least one argument expected")
1933 _z3_assert(all([is_expr(a) for a in args]), "Z3 expressions expected")
1934 ctx = args[0].ctx
1935 args, sz = _to_ast_array(args)
1936 return PatternRef(Z3_mk_pattern(ctx.ref(), sz, args), ctx)
1937
1938
def MultiPattern(*args)
Definition: z3py.py:1915
Z3_pattern Z3_API Z3_mk_pattern(Z3_context c, unsigned num_patterns, Z3_ast const terms[])
Create a pattern for quantifier instantiation.

Referenced by MultiPattern().

◆ Not()

def z3py.Not (   a,
  ctx = None 
)
Create a Z3 not expression or probe.

>>> p = Bool('p')
>>> Not(Not(p))
Not(Not(p))
>>> simplify(Not(Not(p)))
p

Definition at line 1779 of file z3py.py.

1779def Not(a, ctx=None):
1780 """Create a Z3 not expression or probe.
1781
1782 >>> p = Bool('p')
1783 >>> Not(Not(p))
1784 Not(Not(p))
1785 >>> simplify(Not(Not(p)))
1786 p
1787 """
1788 ctx = _get_ctx(_ctx_from_ast_arg_list([a], ctx))
1789 if is_probe(a):
1790 # Not is also used to build probes
1791 return Probe(Z3_probe_not(ctx.ref(), a.probe), ctx)
1792 else:
1793 s = BoolSort(ctx)
1794 a = s.cast(a)
1795 return BoolRef(Z3_mk_not(ctx.ref(), a.as_ast()), ctx)
1796
1797
Z3_probe Z3_API Z3_probe_not(Z3_context x, Z3_probe p)
Return a probe that evaluates to "true" when p does not evaluate to true.
Z3_ast Z3_API Z3_mk_not(Z3_context c, Z3_ast a)
Create an AST node representing not(a).

Referenced by AndThen(), ApplyResult.as_expr(), Solver.consequences(), Goal.convert_model(), Distinct(), FailIf(), fpNEQ(), is_not(), mk_not(), Not(), prove(), simplify(), Then(), When(), and Xor().

◆ open_log()

def z3py.open_log (   fname)
Log interaction to a file. This function must be invoked immediately after init(). 

Definition at line 119 of file z3py.py.

119def open_log(fname):
120 """Log interaction to a file. This function must be invoked immediately after init(). """
121 Z3_open_log(fname)
122
123
def open_log(fname)
Definition: z3py.py:119
bool Z3_API Z3_open_log(Z3_string filename)
Log interaction to a file.

◆ Option()

def z3py.Option (   re)
Create the regular expression that optionally accepts the argument.
>>> re = Option(Re("a"))
>>> print(simplify(InRe("a", re)))
True
>>> print(simplify(InRe("", re)))
True
>>> print(simplify(InRe("aa", re)))
False

Definition at line 10989 of file z3py.py.

10989def Option(re):
10990 """Create the regular expression that optionally accepts the argument.
10991 >>> re = Option(Re("a"))
10992 >>> print(simplify(InRe("a", re)))
10993 True
10994 >>> print(simplify(InRe("", re)))
10995 True
10996 >>> print(simplify(InRe("aa", re)))
10997 False
10998 """
10999 return ReRef(Z3_mk_re_option(re.ctx_ref(), re.as_ast()), re.ctx)
11000
11001
def Option(re)
Definition: z3py.py:10989
Z3_ast Z3_API Z3_mk_re_option(Z3_context c, Z3_ast re)
Create the regular language [re].

Referenced by Option().

◆ Or()

def z3py.Or ( args)
Create a Z3 or-expression or or-probe.

>>> p, q, r = Bools('p q r')
>>> Or(p, q, r)
Or(p, q, r)
>>> P = BoolVector('p', 5)
>>> Or(P)
Or(p__0, p__1, p__2, p__3, p__4)

Definition at line 1846 of file z3py.py.

1846def Or(*args):
1847 """Create a Z3 or-expression or or-probe.
1848
1849 >>> p, q, r = Bools('p q r')
1850 >>> Or(p, q, r)
1851 Or(p, q, r)
1852 >>> P = BoolVector('p', 5)
1853 >>> Or(P)
1854 Or(p__0, p__1, p__2, p__3, p__4)
1855 """
1856 last_arg = None
1857 if len(args) > 0:
1858 last_arg = args[len(args) - 1]
1859 if isinstance(last_arg, Context):
1860 ctx = args[len(args) - 1]
1861 args = args[:len(args) - 1]
1862 elif len(args) == 1 and isinstance(args[0], AstVector):
1863 ctx = args[0].ctx
1864 args = [a for a in args[0]]
1865 else:
1866 ctx = None
1867 args = _get_args(args)
1868 ctx = _get_ctx(_ctx_from_ast_arg_list(args, ctx))
1869 if z3_debug():
1870 _z3_assert(ctx is not None, "At least one of the arguments must be a Z3 expression or probe")
1871 if _has_probe(args):
1872 return _probe_or(args, ctx)
1873 else:
1874 args = _coerce_expr_list(args, ctx)
1875 _args, sz = _to_ast_array(args)
1876 return BoolRef(Z3_mk_or(ctx.ref(), sz, _args), ctx)
1877
Z3_ast Z3_API Z3_mk_or(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] or ... or args[num_args-1].

Referenced by ApplyResult.__getitem__(), ApplyResult.__len__(), ApplyResult.as_expr(), Bools(), Goal.convert_model(), is_and(), is_or(), Or(), OrElse(), ParThen(), prove(), Repeat(), and simplify().

◆ OrElse()

def z3py.OrElse ( ts,
**  ks 
)
Return a tactic that applies the tactics in `*ts` until one of them succeeds (it doesn't fail).

>>> x = Int('x')
>>> t = OrElse(Tactic('split-clause'), Tactic('skip'))
>>> # Tactic split-clause fails if there is no clause in the given goal.
>>> t(x == 0)
[[x == 0]]
>>> t(Or(x == 0, x == 1))
[[x == 0], [x == 1]]

Definition at line 8204 of file z3py.py.

8204def OrElse(*ts, **ks):
8205 """Return a tactic that applies the tactics in `*ts` until one of them succeeds (it doesn't fail).
8206
8207 >>> x = Int('x')
8208 >>> t = OrElse(Tactic('split-clause'), Tactic('skip'))
8209 >>> # Tactic split-clause fails if there is no clause in the given goal.
8210 >>> t(x == 0)
8211 [[x == 0]]
8212 >>> t(Or(x == 0, x == 1))
8213 [[x == 0], [x == 1]]
8214 """
8215 if z3_debug():
8216 _z3_assert(len(ts) >= 2, "At least two arguments expected")
8217 ctx = ks.get("ctx", None)
8218 num = len(ts)
8219 r = ts[0]
8220 for i in range(num - 1):
8221 r = _or_else(r, ts[i + 1], ctx)
8222 return r
8223
8224

Referenced by FailIf(), OrElse(), and Repeat().

◆ ParAndThen()

def z3py.ParAndThen (   t1,
  t2,
  ctx = None 
)
Alias for ParThen(t1, t2, ctx).

Definition at line 8260 of file z3py.py.

8260def ParAndThen(t1, t2, ctx=None):
8261 """Alias for ParThen(t1, t2, ctx)."""
8262 return ParThen(t1, t2, ctx)
8263
8264
def ParThen(t1, t2, ctx=None)
Definition: z3py.py:8244
def ParAndThen(t1, t2, ctx=None)
Definition: z3py.py:8260

◆ ParOr()

def z3py.ParOr ( ts,
**  ks 
)
Return a tactic that applies the tactics in `*ts` in parallel until one of them succeeds (it doesn't fail).

>>> x = Int('x')
>>> t = ParOr(Tactic('simplify'), Tactic('fail'))
>>> t(x + 1 == 2)
[[x == 1]]

Definition at line 8225 of file z3py.py.

8225def ParOr(*ts, **ks):
8226 """Return a tactic that applies the tactics in `*ts` in parallel until one of them succeeds (it doesn't fail).
8227
8228 >>> x = Int('x')
8229 >>> t = ParOr(Tactic('simplify'), Tactic('fail'))
8230 >>> t(x + 1 == 2)
8231 [[x == 1]]
8232 """
8233 if z3_debug():
8234 _z3_assert(len(ts) >= 2, "At least two arguments expected")
8235 ctx = _get_ctx(ks.get("ctx", None))
8236 ts = [_to_tactic(t, ctx) for t in ts]
8237 sz = len(ts)
8238 _args = (TacticObj * sz)()
8239 for i in range(sz):
8240 _args[i] = ts[i].tactic
8241 return Tactic(Z3_tactic_par_or(ctx.ref(), sz, _args), ctx)
8242
8243
def ParOr(*ts, **ks)
Definition: z3py.py:8225
Z3_tactic Z3_API Z3_tactic_par_or(Z3_context c, unsigned num, Z3_tactic const ts[])
Return a tactic that applies the given tactics in parallel.

Referenced by ParOr().

◆ parse_smt2_file()

def z3py.parse_smt2_file (   f,
  sorts = {},
  decls = {},
  ctx = None 
)
Parse a file in SMT 2.0 format using the given sorts and decls.

This function is similar to parse_smt2_string().

Definition at line 9092 of file z3py.py.

9092def parse_smt2_file(f, sorts={}, decls={}, ctx=None):
9093 """Parse a file in SMT 2.0 format using the given sorts and decls.
9094
9095 This function is similar to parse_smt2_string().
9096 """
9097 ctx = _get_ctx(ctx)
9098 ssz, snames, ssorts = _dict2sarray(sorts, ctx)
9099 dsz, dnames, ddecls = _dict2darray(decls, ctx)
9100 return AstVector(Z3_parse_smtlib2_file(ctx.ref(), f, ssz, snames, ssorts, dsz, dnames, ddecls), ctx)
9101
9102
def parse_smt2_string(s, sorts={}, decls={}, ctx=None)
Definition: z3py.py:9071
def parse_smt2_file(f, sorts={}, decls={}, ctx=None)
Definition: z3py.py:9092
Z3_ast_vector Z3_API Z3_parse_smtlib2_file(Z3_context c, Z3_string file_name, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort const sorts[], unsigned num_decls, Z3_symbol const decl_names[], Z3_func_decl const decls[])
Similar to Z3_parse_smtlib2_string, but reads the benchmark from a file.

◆ parse_smt2_string()

def z3py.parse_smt2_string (   s,
  sorts = {},
  decls = {},
  ctx = None 
)
Parse a string in SMT 2.0 format using the given sorts and decls.

The arguments sorts and decls are Python dictionaries used to initialize
the symbol table used for the SMT 2.0 parser.

>>> parse_smt2_string('(declare-const x Int) (assert (> x 0)) (assert (< x 10))')
[x > 0, x < 10]
>>> x, y = Ints('x y')
>>> f = Function('f', IntSort(), IntSort())
>>> parse_smt2_string('(assert (> (+ foo (g bar)) 0))', decls={ 'foo' : x, 'bar' : y, 'g' : f})
[x + f(y) > 0]
>>> parse_smt2_string('(declare-const a U) (assert (> a 0))', sorts={ 'U' : IntSort() })
[a > 0]

Definition at line 9071 of file z3py.py.

9071def parse_smt2_string(s, sorts={}, decls={}, ctx=None):
9072 """Parse a string in SMT 2.0 format using the given sorts and decls.
9073
9074 The arguments sorts and decls are Python dictionaries used to initialize
9075 the symbol table used for the SMT 2.0 parser.
9076
9077 >>> parse_smt2_string('(declare-const x Int) (assert (> x 0)) (assert (< x 10))')
9078 [x > 0, x < 10]
9079 >>> x, y = Ints('x y')
9080 >>> f = Function('f', IntSort(), IntSort())
9081 >>> parse_smt2_string('(assert (> (+ foo (g bar)) 0))', decls={ 'foo' : x, 'bar' : y, 'g' : f})
9082 [x + f(y) > 0]
9083 >>> parse_smt2_string('(declare-const a U) (assert (> a 0))', sorts={ 'U' : IntSort() })
9084 [a > 0]
9085 """
9086 ctx = _get_ctx(ctx)
9087 ssz, snames, ssorts = _dict2sarray(sorts, ctx)
9088 dsz, dnames, ddecls = _dict2darray(decls, ctx)
9089 return AstVector(Z3_parse_smtlib2_string(ctx.ref(), s, ssz, snames, ssorts, dsz, dnames, ddecls), ctx)
9090
9091
Z3_ast_vector Z3_API Z3_parse_smtlib2_string(Z3_context c, Z3_string str, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort const sorts[], unsigned num_decls, Z3_symbol const decl_names[], Z3_func_decl const decls[])
Parse the given string using the SMT-LIB2 parser.

Referenced by parse_smt2_file(), and parse_smt2_string().

◆ ParThen()

def z3py.ParThen (   t1,
  t2,
  ctx = None 
)
Return a tactic that applies t1 and then t2 to every subgoal produced by t1.
The subgoals are processed in parallel.

>>> x, y = Ints('x y')
>>> t = ParThen(Tactic('split-clause'), Tactic('propagate-values'))
>>> t(And(Or(x == 1, x == 2), y == x + 1))
[[x == 1, y == 2], [x == 2, y == 3]]

Definition at line 8244 of file z3py.py.

8244def ParThen(t1, t2, ctx=None):
8245 """Return a tactic that applies t1 and then t2 to every subgoal produced by t1.
8246 The subgoals are processed in parallel.
8247
8248 >>> x, y = Ints('x y')
8249 >>> t = ParThen(Tactic('split-clause'), Tactic('propagate-values'))
8250 >>> t(And(Or(x == 1, x == 2), y == x + 1))
8251 [[x == 1, y == 2], [x == 2, y == 3]]
8252 """
8253 t1 = _to_tactic(t1, ctx)
8254 t2 = _to_tactic(t2, ctx)
8255 if z3_debug():
8256 _z3_assert(t1.ctx == t2.ctx, "Context mismatch")
8257 return Tactic(Z3_tactic_par_and_then(t1.ctx.ref(), t1.tactic, t2.tactic), t1.ctx)
8258
8259
Z3_tactic Z3_API Z3_tactic_par_and_then(Z3_context c, Z3_tactic t1, Z3_tactic t2)
Return a tactic that applies t1 to a given goal and then t2 to every subgoal produced by t1....

Referenced by ParAndThen(), and ParThen().

◆ PartialOrder()

def z3py.PartialOrder (   a,
  index 
)

Definition at line 11048 of file z3py.py.

11048def PartialOrder(a, index):
11049 return FuncDeclRef(Z3_mk_partial_order(a.ctx_ref(), a.ast, index), a.ctx)
11050
11051
def PartialOrder(a, index)
Definition: z3py.py:11048
Z3_func_decl Z3_API Z3_mk_partial_order(Z3_context c, Z3_sort a, unsigned id)
create a partial ordering relation over signature a and index id.

◆ PbEq()

def z3py.PbEq (   args,
  k,
  ctx = None 
)
Create a Pseudo-Boolean inequality k constraint.

>>> a, b, c = Bools('a b c')
>>> f = PbEq(((a,1),(b,3),(c,2)), 3)

Definition at line 8867 of file z3py.py.

8867def PbEq(args, k, ctx=None):
8868 """Create a Pseudo-Boolean inequality k constraint.
8869
8870 >>> a, b, c = Bools('a b c')
8871 >>> f = PbEq(((a,1),(b,3),(c,2)), 3)
8872 """
8873 _z3_check_cint_overflow(k, "k")
8874 ctx, sz, _args, _coeffs = _pb_args_coeffs(args)
8875 return BoolRef(Z3_mk_pbeq(ctx.ref(), sz, _args, _coeffs, k), ctx)
8876
8877
def PbEq(args, k, ctx=None)
Definition: z3py.py:8867
Z3_ast Z3_API Z3_mk_pbeq(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

Referenced by PbEq().

◆ PbGe()

def z3py.PbGe (   args,
  k 
)
Create a Pseudo-Boolean inequality k constraint.

>>> a, b, c = Bools('a b c')
>>> f = PbGe(((a,1),(b,3),(c,2)), 3)

Definition at line 8856 of file z3py.py.

8856def PbGe(args, k):
8857 """Create a Pseudo-Boolean inequality k constraint.
8858
8859 >>> a, b, c = Bools('a b c')
8860 >>> f = PbGe(((a,1),(b,3),(c,2)), 3)
8861 """
8862 _z3_check_cint_overflow(k, "k")
8863 ctx, sz, _args, _coeffs = _pb_args_coeffs(args)
8864 return BoolRef(Z3_mk_pbge(ctx.ref(), sz, _args, _coeffs, k), ctx)
8865
8866
def PbGe(args, k)
Definition: z3py.py:8856
Z3_ast Z3_API Z3_mk_pbge(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

Referenced by PbGe().

◆ PbLe()

def z3py.PbLe (   args,
  k 
)
Create a Pseudo-Boolean inequality k constraint.

>>> a, b, c = Bools('a b c')
>>> f = PbLe(((a,1),(b,3),(c,2)), 3)

Definition at line 8845 of file z3py.py.

8845def PbLe(args, k):
8846 """Create a Pseudo-Boolean inequality k constraint.
8847
8848 >>> a, b, c = Bools('a b c')
8849 >>> f = PbLe(((a,1),(b,3),(c,2)), 3)
8850 """
8851 _z3_check_cint_overflow(k, "k")
8852 ctx, sz, _args, _coeffs = _pb_args_coeffs(args)
8853 return BoolRef(Z3_mk_pble(ctx.ref(), sz, _args, _coeffs, k), ctx)
8854
8855
def PbLe(args, k)
Definition: z3py.py:8845
Z3_ast Z3_API Z3_mk_pble(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

Referenced by PbLe().

◆ PiecewiseLinearOrder()

def z3py.PiecewiseLinearOrder (   a,
  index 
)

Definition at line 11060 of file z3py.py.

11060def PiecewiseLinearOrder(a, index):
11061 return FuncDeclRef(Z3_mk_piecewise_linear_order(a.ctx_ref(), a.ast, index), a.ctx)
11062
11063
def PiecewiseLinearOrder(a, index)
Definition: z3py.py:11060
Z3_func_decl Z3_API Z3_mk_piecewise_linear_order(Z3_context c, Z3_sort a, unsigned id)
create a piecewise linear ordering relation over signature a and index id.

◆ Plus()

def z3py.Plus (   re)
Create the regular expression accepting one or more repetitions of argument.
>>> re = Plus(Re("a"))
>>> print(simplify(InRe("aa", re)))
True
>>> print(simplify(InRe("ab", re)))
False
>>> print(simplify(InRe("", re)))
False

Definition at line 10976 of file z3py.py.

10976def Plus(re):
10977 """Create the regular expression accepting one or more repetitions of argument.
10978 >>> re = Plus(Re("a"))
10979 >>> print(simplify(InRe("aa", re)))
10980 True
10981 >>> print(simplify(InRe("ab", re)))
10982 False
10983 >>> print(simplify(InRe("", re)))
10984 False
10985 """
10986 return ReRef(Z3_mk_re_plus(re.ctx_ref(), re.as_ast()), re.ctx)
10987
10988
def Plus(re)
Definition: z3py.py:10976
Z3_ast Z3_API Z3_mk_re_plus(Z3_context c, Z3_ast re)
Create the regular language re+.

Referenced by Plus().

◆ PrefixOf()

def z3py.PrefixOf (   a,
  b 
)
Check if 'a' is a prefix of 'b'
>>> s1 = PrefixOf("ab", "abc")
>>> simplify(s1)
True
>>> s2 = PrefixOf("bc", "abc")
>>> simplify(s2)
False

Definition at line 10759 of file z3py.py.

10759def PrefixOf(a, b):
10760 """Check if 'a' is a prefix of 'b'
10761 >>> s1 = PrefixOf("ab", "abc")
10762 >>> simplify(s1)
10763 True
10764 >>> s2 = PrefixOf("bc", "abc")
10765 >>> simplify(s2)
10766 False
10767 """
10768 ctx = _get_ctx2(a, b)
10769 a = _coerce_seq(a, ctx)
10770 b = _coerce_seq(b, ctx)
10771 return BoolRef(Z3_mk_seq_prefix(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
10772
10773
def PrefixOf(a, b)
Definition: z3py.py:10759
Z3_ast Z3_API Z3_mk_seq_prefix(Z3_context c, Z3_ast prefix, Z3_ast s)
Check if prefix is a prefix of s.

Referenced by PrefixOf().

◆ probe_description()

def z3py.probe_description (   name,
  ctx = None 
)
Return a short description for the probe named `name`.

>>> d = probe_description('memory')

Definition at line 8540 of file z3py.py.

8540def probe_description(name, ctx=None):
8541 """Return a short description for the probe named `name`.
8542
8543 >>> d = probe_description('memory')
8544 """
8545 ctx = _get_ctx(ctx)
8546 return Z3_probe_get_descr(ctx.ref(), name)
8547
8548
Z3_string Z3_API Z3_probe_get_descr(Z3_context c, Z3_string name)
Return a string containing a description of the probe with the given name.

Referenced by describe_probes(), and probe_description().

◆ probes()

def z3py.probes (   ctx = None)
Return a list of all available probes in Z3.

>>> l = probes()
>>> l.count('memory') == 1
True

Definition at line 8529 of file z3py.py.

8529def probes(ctx=None):
8530 """Return a list of all available probes in Z3.
8531
8532 >>> l = probes()
8533 >>> l.count('memory') == 1
8534 True
8535 """
8536 ctx = _get_ctx(ctx)
8537 return [Z3_get_probe_name(ctx.ref(), i) for i in range(Z3_get_num_probes(ctx.ref()))]
8538
8539
unsigned Z3_API Z3_get_num_probes(Z3_context c)
Return the number of builtin probes available in Z3.
Z3_string Z3_API Z3_get_probe_name(Z3_context c, unsigned i)
Return the name of the i probe.

Referenced by describe_probes(), and probes().

◆ Product()

def z3py.Product ( args)
Create the product of the Z3 expressions.

>>> a, b, c = Ints('a b c')
>>> Product(a, b, c)
a*b*c
>>> Product([a, b, c])
a*b*c
>>> A = IntVector('a', 5)
>>> Product(A)
a__0*a__1*a__2*a__3*a__4

Definition at line 8756 of file z3py.py.

8756def Product(*args):
8757 """Create the product of the Z3 expressions.
8758
8759 >>> a, b, c = Ints('a b c')
8760 >>> Product(a, b, c)
8761 a*b*c
8762 >>> Product([a, b, c])
8763 a*b*c
8764 >>> A = IntVector('a', 5)
8765 >>> Product(A)
8766 a__0*a__1*a__2*a__3*a__4
8767 """
8768 args = _get_args(args)
8769 if len(args) == 0:
8770 return 1
8771 ctx = _ctx_from_ast_arg_list(args)
8772 if ctx is None:
8773 return _reduce(lambda a, b: a * b, args, 1)
8774 args = _coerce_expr_list(args, ctx)
8775 if is_bv(args[0]):
8776 return _reduce(lambda a, b: a * b, args, 1)
8777 else:
8778 _args, sz = _to_ast_array(args)
8779 return ArithRef(Z3_mk_mul(ctx.ref(), sz, _args), ctx)
8780
8781
Z3_ast Z3_API Z3_mk_mul(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] * ... * args[num_args-1].

Referenced by BitVecs(), and Product().

◆ prove()

def z3py.prove (   claim,
  show = False,
**  keywords 
)
Try to prove the given claim.

This is a simple function for creating demonstrations.  It tries to prove
`claim` by showing the negation is unsatisfiable.

>>> p, q = Bools('p q')
>>> prove(Not(And(p, q)) == Or(Not(p), Not(q)))
proved

Definition at line 8939 of file z3py.py.

8939def prove(claim, show=False, **keywords):
8940 """Try to prove the given claim.
8941
8942 This is a simple function for creating demonstrations. It tries to prove
8943 `claim` by showing the negation is unsatisfiable.
8944
8945 >>> p, q = Bools('p q')
8946 >>> prove(Not(And(p, q)) == Or(Not(p), Not(q)))
8947 proved
8948 """
8949 if z3_debug():
8950 _z3_assert(is_bool(claim), "Z3 Boolean expression expected")
8951 s = Solver()
8952 s.set(**keywords)
8953 s.add(Not(claim))
8954 if show:
8955 print(s)
8956 r = s.check()
8957 if r == unsat:
8958 print("proved")
8959 elif r == unknown:
8960 print("failed to prove")
8961 print(s.model())
8962 else:
8963 print("counterexample")
8964 print(s.model())
8965
8966

Referenced by Default(), Map(), prove(), Store(), and Update().

◆ Q()

def z3py.Q (   a,
  b,
  ctx = None 
)
Return a Z3 rational a/b.

If `ctx=None`, then the global context is used.

>>> Q(3,5)
3/5
>>> Q(3,5).sort()
Real

Definition at line 3197 of file z3py.py.

3197def Q(a, b, ctx=None):
3198 """Return a Z3 rational a/b.
3199
3200 If `ctx=None`, then the global context is used.
3201
3202 >>> Q(3,5)
3203 3/5
3204 >>> Q(3,5).sort()
3205 Real
3206 """
3207 return simplify(RatVal(a, b))
3208
3209
def Q(a, b, ctx=None)
Definition: z3py.py:3197
def RatVal(a, b, ctx=None)
Definition: z3py.py:3181

Referenced by RatNumRef.as_string(), RatNumRef.denominator(), RatNumRef.numerator(), and Q().

◆ Range()

def z3py.Range (   lo,
  hi,
  ctx = None 
)
Create the range regular expression over two sequences of length 1
>>> range = Range("a","z")
>>> print(simplify(InRe("b", range)))
True
>>> print(simplify(InRe("bb", range)))
False

Definition at line 11033 of file z3py.py.

11033def Range(lo, hi, ctx=None):
11034 """Create the range regular expression over two sequences of length 1
11035 >>> range = Range("a","z")
11036 >>> print(simplify(InRe("b", range)))
11037 True
11038 >>> print(simplify(InRe("bb", range)))
11039 False
11040 """
11041 lo = _coerce_seq(lo, ctx)
11042 hi = _coerce_seq(hi, ctx)
11043 return ReRef(Z3_mk_re_range(lo.ctx_ref(), lo.ast, hi.ast), lo.ctx)
11044
11045# Special Relations
11046
11047
def Range(lo, hi, ctx=None)
Definition: z3py.py:11033
Z3_ast Z3_API Z3_mk_re_range(Z3_context c, Z3_ast lo, Z3_ast hi)
Create the range regular expression over two sequences of length 1.

Referenced by Range().

◆ RatVal()

def z3py.RatVal (   a,
  b,
  ctx = None 
)
Return a Z3 rational a/b.

If `ctx=None`, then the global context is used.

>>> RatVal(3,5)
3/5
>>> RatVal(3,5).sort()
Real

Definition at line 3181 of file z3py.py.

3181def RatVal(a, b, ctx=None):
3182 """Return a Z3 rational a/b.
3183
3184 If `ctx=None`, then the global context is used.
3185
3186 >>> RatVal(3,5)
3187 3/5
3188 >>> RatVal(3,5).sort()
3189 Real
3190 """
3191 if z3_debug():
3192 _z3_assert(_is_int(a) or isinstance(a, str), "First argument cannot be converted into an integer")
3193 _z3_assert(_is_int(b) or isinstance(b, str), "Second argument cannot be converted into an integer")
3194 return simplify(RealVal(a, ctx) / RealVal(b, ctx))
3195
3196

Referenced by Q(), and RatVal().

◆ Re()

def z3py.Re (   s,
  ctx = None 
)
The regular expression that accepts sequence 's'
>>> s1 = Re("ab")
>>> s2 = Re(StringVal("ab"))
>>> s3 = Re(Unit(BoolVal(True)))

Definition at line 10885 of file z3py.py.

10885def Re(s, ctx=None):
10886 """The regular expression that accepts sequence 's'
10887 >>> s1 = Re("ab")
10888 >>> s2 = Re(StringVal("ab"))
10889 >>> s3 = Re(Unit(BoolVal(True)))
10890 """
10891 s = _coerce_seq(s, ctx)
10892 return ReRef(Z3_mk_seq_to_re(s.ctx_ref(), s.as_ast()), s.ctx)
10893
10894
10895# Regular expressions
10896
Z3_ast Z3_API Z3_mk_seq_to_re(Z3_context c, Z3_ast seq)
Create a regular expression that accepts the sequence seq.

Referenced by InRe(), Intersect(), Loop(), Option(), Plus(), Re(), Star(), and Union().

◆ Real()

def z3py.Real (   name,
  ctx = None 
)
Return a real constant named `name`. If `ctx=None`, then the global context is used.

>>> x = Real('x')
>>> is_real(x)
True
>>> is_real(x + 1)
True

Definition at line 3263 of file z3py.py.

3263def Real(name, ctx=None):
3264 """Return a real constant named `name`. If `ctx=None`, then the global context is used.
3265
3266 >>> x = Real('x')
3267 >>> is_real(x)
3268 True
3269 >>> is_real(x + 1)
3270 True
3271 """
3272 ctx = _get_ctx(ctx)
3273 return ArithRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), RealSort(ctx).ast), ctx)
3274
3275

Referenced by FuncDeclRef.__call__(), ArithRef.__div__(), ArithRef.__ge__(), ArithRef.__gt__(), ArithRef.__le__(), ArithRef.__lt__(), ArithRef.__mul__(), ArithRef.__pow__(), ArithRef.__rdiv__(), ArithRef.__rmul__(), ArithRef.__rpow__(), Cbrt(), is_arith(), is_bool(), is_func_decl(), is_int(), ArithSortRef.is_int(), ArithRef.is_int(), is_is_int(), is_rational_value(), is_real(), ArithSortRef.is_real(), ArithRef.is_real(), is_to_int(), is_true(), IsInt(), main_ctx(), Real(), Reals(), RealVector(), Tactic.solver(), ExprRef.sort(), ArithRef.sort(), Sqrt(), ToInt(), and QuantifierRef.var_sort().

◆ Reals()

def z3py.Reals (   names,
  ctx = None 
)
Return a tuple of real constants.

>>> x, y, z = Reals('x y z')
>>> Sum(x, y, z)
x + y + z
>>> Sum(x, y, z).sort()
Real

Definition at line 3276 of file z3py.py.

3276def Reals(names, ctx=None):
3277 """Return a tuple of real constants.
3278
3279 >>> x, y, z = Reals('x y z')
3280 >>> Sum(x, y, z)
3281 x + y + z
3282 >>> Sum(x, y, z).sort()
3283 Real
3284 """
3285 ctx = _get_ctx(ctx)
3286 if isinstance(names, str):
3287 names = names.split(" ")
3288 return [Real(name, ctx) for name in names]
3289
3290

Referenced by is_div(), and Reals().

◆ RealSort()

def z3py.RealSort (   ctx = None)
Return the real sort in the given context. If `ctx=None`, then the global context is used.

>>> RealSort()
Real
>>> x = Const('x', RealSort())
>>> is_real(x)
True
>>> is_int(x)
False
>>> x.sort() == RealSort()
True

Definition at line 3117 of file z3py.py.

3117def RealSort(ctx=None):
3118 """Return the real sort in the given context. If `ctx=None`, then the global context is used.
3119
3120 >>> RealSort()
3121 Real
3122 >>> x = Const('x', RealSort())
3123 >>> is_real(x)
3124 True
3125 >>> is_int(x)
3126 False
3127 >>> x.sort() == RealSort()
3128 True
3129 """
3130 ctx = _get_ctx(ctx)
3131 return ArithSortRef(Z3_mk_real_sort(ctx.ref()), ctx)
3132
3133
Z3_sort Z3_API Z3_mk_real_sort(Z3_context c)
Create the real type.

Referenced by FuncDeclRef.__call__(), FuncDeclRef.arity(), SortRef.cast(), ArithSortRef.cast(), FuncDeclRef.domain(), FreshReal(), Context.getRealSort(), is_arith_sort(), Context.mkRealSort(), FuncDeclRef.range(), Real(), RealSort(), RealVal(), RealVar(), SortRef.subsort(), and QuantifierRef.var_sort().

◆ RealVal()

def z3py.RealVal (   val,
  ctx = None 
)
Return a Z3 real value.

`val` may be a Python int, long, float or string representing a number in decimal or rational notation.
If `ctx=None`, then the global context is used.

>>> RealVal(1)
1
>>> RealVal(1).sort()
Real
>>> RealVal("3/5")
3/5
>>> RealVal("1.5")
3/2

Definition at line 3162 of file z3py.py.

3162def RealVal(val, ctx=None):
3163 """Return a Z3 real value.
3164
3165 `val` may be a Python int, long, float or string representing a number in decimal or rational notation.
3166 If `ctx=None`, then the global context is used.
3167
3168 >>> RealVal(1)
3169 1
3170 >>> RealVal(1).sort()
3171 Real
3172 >>> RealVal("3/5")
3173 3/5
3174 >>> RealVal("1.5")
3175 3/2
3176 """
3177 ctx = _get_ctx(ctx)
3178 return RatNumRef(Z3_mk_numeral(ctx.ref(), str(val), RealSort(ctx).ast), ctx)
3179
3180

Referenced by RatNumRef.as_decimal(), RatNumRef.as_fraction(), Cbrt(), RatNumRef.denominator_as_long(), fpRealToFP(), fpToFP(), AlgebraicNumRef.index(), is_algebraic_value(), is_int_value(), is_rational_value(), is_real(), RatNumRef.numerator(), RatNumRef.numerator_as_long(), RatVal(), RealVal(), and Sqrt().

◆ RealVar()

def z3py.RealVar (   idx,
  ctx = None 
)
Create a real free variable. Free variables are used to create quantified formulas.
They are also used to create polynomials.

>>> RealVar(0)
Var(0)

Definition at line 1451 of file z3py.py.

1451def RealVar(idx, ctx=None):
1452 """
1453 Create a real free variable. Free variables are used to create quantified formulas.
1454 They are also used to create polynomials.
1455
1456 >>> RealVar(0)
1457 Var(0)
1458 """
1459 return Var(idx, RealSort(ctx))
1460
1461
def RealVar(idx, ctx=None)
Definition: z3py.py:1451

Referenced by RealVar(), and RealVarVector().

◆ RealVarVector()

def z3py.RealVarVector (   n,
  ctx = None 
)
Create a list of Real free variables.
The variables have ids: 0, 1, ..., n-1

>>> x0, x1, x2, x3 = RealVarVector(4)
>>> x2
Var(2)

Definition at line 1462 of file z3py.py.

1462def RealVarVector(n, ctx=None):
1463 """
1464 Create a list of Real free variables.
1465 The variables have ids: 0, 1, ..., n-1
1466
1467 >>> x0, x1, x2, x3 = RealVarVector(4)
1468 >>> x2
1469 Var(2)
1470 """
1471 return [RealVar(i, ctx) for i in range(n)]
1472
def RealVarVector(n, ctx=None)
Definition: z3py.py:1462

Referenced by RealVarVector().

◆ RealVector()

def z3py.RealVector (   prefix,
  sz,
  ctx = None 
)
Return a list of real constants of size `sz`.

>>> X = RealVector('x', 3)
>>> X
[x__0, x__1, x__2]
>>> Sum(X)
x__0 + x__1 + x__2
>>> Sum(X).sort()
Real

Definition at line 3291 of file z3py.py.

3291def RealVector(prefix, sz, ctx=None):
3292 """Return a list of real constants of size `sz`.
3293
3294 >>> X = RealVector('x', 3)
3295 >>> X
3296 [x__0, x__1, x__2]
3297 >>> Sum(X)
3298 x__0 + x__1 + x__2
3299 >>> Sum(X).sort()
3300 Real
3301 """
3302 ctx = _get_ctx(ctx)
3303 return [Real("%s__%s" % (prefix, i), ctx) for i in range(sz)]
3304
3305
def RealVector(prefix, sz, ctx=None)
Definition: z3py.py:3291

Referenced by RealVector().

◆ RecAddDefinition()

def z3py.RecAddDefinition (   f,
  args,
  body 
)
Set the body of a recursive function.
   Recursive definitions can be simplified if they are applied to ground
   arguments.
>>> ctx = Context()
>>> fac = RecFunction('fac', IntSort(ctx), IntSort(ctx))
>>> n = Int('n', ctx)
>>> RecAddDefinition(fac, n, If(n == 0, 1, n*fac(n-1)))
>>> simplify(fac(5))
120
>>> s = Solver(ctx=ctx)
>>> s.add(fac(n) < 3)
>>> s.check()
sat
>>> s.model().eval(fac(5))
120

Definition at line 924 of file z3py.py.

924def RecAddDefinition(f, args, body):
925 """Set the body of a recursive function.
926 Recursive definitions can be simplified if they are applied to ground
927 arguments.
928 >>> ctx = Context()
929 >>> fac = RecFunction('fac', IntSort(ctx), IntSort(ctx))
930 >>> n = Int('n', ctx)
931 >>> RecAddDefinition(fac, n, If(n == 0, 1, n*fac(n-1)))
932 >>> simplify(fac(5))
933 120
934 >>> s = Solver(ctx=ctx)
935 >>> s.add(fac(n) < 3)
936 >>> s.check()
937 sat
938 >>> s.model().eval(fac(5))
939 120
940 """
941 if is_app(args):
942 args = [args]
943 ctx = body.ctx
944 args = _get_args(args)
945 n = len(args)
946 _args = (Ast * n)()
947 for i in range(n):
948 _args[i] = args[i].ast
949 Z3_add_rec_def(ctx.ref(), f.ast, n, _args, body.ast)
950
def RecAddDefinition(f, args, body)
Definition: z3py.py:924
def RecFunction(name, *sig)
Definition: z3py.py:906
void Z3_API Z3_add_rec_def(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast args[], Z3_ast body)
Define the body of a recursive function.

Referenced by RecAddDefinition().

◆ RecFunction()

def z3py.RecFunction (   name,
sig 
)
Create a new Z3 recursive with the given sorts.

Definition at line 906 of file z3py.py.

906def RecFunction(name, *sig):
907 """Create a new Z3 recursive with the given sorts."""
908 sig = _get_args(sig)
909 if z3_debug():
910 _z3_assert(len(sig) > 0, "At least two arguments expected")
911 arity = len(sig) - 1
912 rng = sig[arity]
913 if z3_debug():
914 _z3_assert(is_sort(rng), "Z3 sort expected")
915 dom = (Sort * arity)()
916 for i in range(arity):
917 if z3_debug():
918 _z3_assert(is_sort(sig[i]), "Z3 sort expected")
919 dom[i] = sig[i].ast
920 ctx = rng.ctx
921 return FuncDeclRef(Z3_mk_rec_func_decl(ctx.ref(), to_symbol(name, ctx), arity, dom, rng.ast), ctx)
922
923
Z3_func_decl Z3_API Z3_mk_rec_func_decl(Z3_context c, Z3_symbol s, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
Declare a recursive function.

Referenced by RecAddDefinition().

◆ Repeat()

def z3py.Repeat (   t,
  max = 4294967295,
  ctx = None 
)
Return a tactic that keeps applying `t` until the goal is not modified anymore
or the maximum number of iterations `max` is reached.

>>> x, y = Ints('x y')
>>> c = And(Or(x == 0, x == 1), Or(y == 0, y == 1), x > y)
>>> t = Repeat(OrElse(Tactic('split-clause'), Tactic('skip')))
>>> r = t(c)
>>> for subgoal in r: print(subgoal)
[x == 0, y == 0, x > y]
[x == 0, y == 1, x > y]
[x == 1, y == 0, x > y]
[x == 1, y == 1, x > y]
>>> t = Then(t, Tactic('propagate-values'))
>>> t(c)
[[x == 1, y == 0]]

Definition at line 8293 of file z3py.py.

8293def Repeat(t, max=4294967295, ctx=None):
8294 """Return a tactic that keeps applying `t` until the goal is not modified anymore
8295 or the maximum number of iterations `max` is reached.
8296
8297 >>> x, y = Ints('x y')
8298 >>> c = And(Or(x == 0, x == 1), Or(y == 0, y == 1), x > y)
8299 >>> t = Repeat(OrElse(Tactic('split-clause'), Tactic('skip')))
8300 >>> r = t(c)
8301 >>> for subgoal in r: print(subgoal)
8302 [x == 0, y == 0, x > y]
8303 [x == 0, y == 1, x > y]
8304 [x == 1, y == 0, x > y]
8305 [x == 1, y == 1, x > y]
8306 >>> t = Then(t, Tactic('propagate-values'))
8307 >>> t(c)
8308 [[x == 1, y == 0]]
8309 """
8310 t = _to_tactic(t, ctx)
8311 return Tactic(Z3_tactic_repeat(t.ctx.ref(), t.tactic, max), t.ctx)
8312
8313
def Repeat(t, max=4294967295, ctx=None)
Definition: z3py.py:8293
def Then(*ts, **ks)
Definition: z3py.py:8191
Z3_tactic Z3_API Z3_tactic_repeat(Z3_context c, Z3_tactic t, unsigned max)
Return a tactic that keeps applying t until the goal is not modified anymore or the maximum number of...

Referenced by Repeat().

◆ RepeatBitVec()

def z3py.RepeatBitVec (   n,
  a 
)
Return an expression representing `n` copies of `a`.

>>> x = BitVec('x', 8)
>>> n = RepeatBitVec(4, x)
>>> n
RepeatBitVec(4, x)
>>> n.size()
32
>>> v0 = BitVecVal(10, 4)
>>> print("%.x" % v0.as_long())
a
>>> v = simplify(RepeatBitVec(4, v0))
>>> v.size()
16
>>> print("%.x" % v.as_long())
aaaa

Definition at line 4383 of file z3py.py.

4383def RepeatBitVec(n, a):
4384 """Return an expression representing `n` copies of `a`.
4385
4386 >>> x = BitVec('x', 8)
4387 >>> n = RepeatBitVec(4, x)
4388 >>> n
4389 RepeatBitVec(4, x)
4390 >>> n.size()
4391 32
4392 >>> v0 = BitVecVal(10, 4)
4393 >>> print("%.x" % v0.as_long())
4394 a
4395 >>> v = simplify(RepeatBitVec(4, v0))
4396 >>> v.size()
4397 16
4398 >>> print("%.x" % v.as_long())
4399 aaaa
4400 """
4401 if z3_debug():
4402 _z3_assert(_is_int(n), "First argument must be an integer")
4403 _z3_assert(is_bv(a), "Second argument must be a Z3 bit-vector expression")
4404 return BitVecRef(Z3_mk_repeat(a.ctx_ref(), n, a.as_ast()), a.ctx)
4405
4406
def RepeatBitVec(n, a)
Definition: z3py.py:4383
Z3_ast Z3_API Z3_mk_repeat(Z3_context c, unsigned i, Z3_ast t1)
Repeat the given bit-vector up length i.

Referenced by RepeatBitVec().

◆ Replace()

def z3py.Replace (   s,
  src,
  dst 
)
Replace the first occurrence of 'src' by 'dst' in 's'
>>> r = Replace("aaa", "a", "b")
>>> simplify(r)
"baa"

Definition at line 10808 of file z3py.py.

10808def Replace(s, src, dst):
10809 """Replace the first occurrence of 'src' by 'dst' in 's'
10810 >>> r = Replace("aaa", "a", "b")
10811 >>> simplify(r)
10812 "baa"
10813 """
10814 ctx = _get_ctx2(dst, s)
10815 if ctx is None and is_expr(src):
10816 ctx = src.ctx
10817 src = _coerce_seq(src, ctx)
10818 dst = _coerce_seq(dst, ctx)
10819 s = _coerce_seq(s, ctx)
10820 return SeqRef(Z3_mk_seq_replace(src.ctx_ref(), s.as_ast(), src.as_ast(), dst.as_ast()), s.ctx)
10821
10822
def Replace(s, src, dst)
Definition: z3py.py:10808
Z3_ast Z3_API Z3_mk_seq_replace(Z3_context c, Z3_ast s, Z3_ast src, Z3_ast dst)
Replace the first occurrence of src with dst in s.

Referenced by Replace().

◆ reset_params()

def z3py.reset_params ( )
Reset all global (or module) parameters.

Definition at line 294 of file z3py.py.

294def reset_params():
295 """Reset all global (or module) parameters.
296 """
298
299
def reset_params()
Definition: z3py.py:294
void Z3_API Z3_global_param_reset_all(void)
Restore the value of all global (and module) parameters. This command will not affect already created...

◆ ReSort()

def z3py.ReSort (   s)

Definition at line 10904 of file z3py.py.

10904def ReSort(s):
10905 if is_ast(s):
10906 return ReSortRef(Z3_mk_re_sort(s.ctx.ref(), s.ast), s.ctx)
10907 if s is None or isinstance(s, Context):
10908 ctx = _get_ctx(s)
10909 return ReSortRef(Z3_mk_re_sort(ctx.ref(), Z3_mk_string_sort(ctx.ref())), s.ctx)
10910 raise Z3Exception("Regular expression sort constructor expects either a string or a context or no argument")
10911
10912
Z3_sort Z3_API Z3_mk_re_sort(Z3_context c, Z3_sort seq)
Create a regular expression sort out of a sequence sort.
Z3_sort Z3_API Z3_mk_string_sort(Z3_context c)
Create a sort for 8 bit strings.

Referenced by Empty(), Full(), and Context.MkReSort().

◆ RNA()

def z3py.RNA (   ctx = None)

Definition at line 9507 of file z3py.py.

9507def RNA(ctx=None):
9508 ctx = _get_ctx(ctx)
9509 return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_away(ctx.ref()), ctx)
9510
9511
Z3_ast Z3_API Z3_mk_fpa_round_nearest_ties_to_away(Z3_context c)
Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode.

Referenced by get_default_rounding_mode().

◆ RNE()

def z3py.RNE (   ctx = None)

Definition at line 9497 of file z3py.py.

9497def RNE(ctx=None):
9498 ctx = _get_ctx(ctx)
9499 return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_even(ctx.ref()), ctx)
9500
9501
Z3_ast Z3_API Z3_mk_fpa_round_nearest_ties_to_even(Z3_context c)
Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode.

Referenced by fpAbs(), fpAdd(), fpDiv(), fpFPToFP(), fpMax(), fpMin(), fpMul(), fpNeg(), fpRealToFP(), FPs(), fpSignedToFP(), fpSub(), fpToFP(), fpUnsignedToFP(), get_default_rounding_mode(), is_fprm(), and is_fprm_sort().

◆ RotateLeft()

def z3py.RotateLeft (   a,
  b 
)
Return an expression representing `a` rotated to the left `b` times.

>>> a, b = BitVecs('a b', 16)
>>> RotateLeft(a, b)
RotateLeft(a, b)
>>> simplify(RotateLeft(a, 0))
a
>>> simplify(RotateLeft(a, 16))
a

Definition at line 4293 of file z3py.py.

4293def RotateLeft(a, b):
4294 """Return an expression representing `a` rotated to the left `b` times.
4295
4296 >>> a, b = BitVecs('a b', 16)
4297 >>> RotateLeft(a, b)
4298 RotateLeft(a, b)
4299 >>> simplify(RotateLeft(a, 0))
4300 a
4301 >>> simplify(RotateLeft(a, 16))
4302 a
4303 """
4304 _check_bv_args(a, b)
4305 a, b = _coerce_exprs(a, b)
4306 return BitVecRef(Z3_mk_ext_rotate_left(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4307
4308
def RotateLeft(a, b)
Definition: z3py.py:4293
Z3_ast Z3_API Z3_mk_ext_rotate_left(Z3_context c, Z3_ast t1, Z3_ast t2)
Rotate bits of t1 to the left t2 times.

Referenced by RotateLeft().

◆ RotateRight()

def z3py.RotateRight (   a,
  b 
)
Return an expression representing `a` rotated to the right `b` times.

>>> a, b = BitVecs('a b', 16)
>>> RotateRight(a, b)
RotateRight(a, b)
>>> simplify(RotateRight(a, 0))
a
>>> simplify(RotateRight(a, 16))
a

Definition at line 4309 of file z3py.py.

4309def RotateRight(a, b):
4310 """Return an expression representing `a` rotated to the right `b` times.
4311
4312 >>> a, b = BitVecs('a b', 16)
4313 >>> RotateRight(a, b)
4314 RotateRight(a, b)
4315 >>> simplify(RotateRight(a, 0))
4316 a
4317 >>> simplify(RotateRight(a, 16))
4318 a
4319 """
4320 _check_bv_args(a, b)
4321 a, b = _coerce_exprs(a, b)
4322 return BitVecRef(Z3_mk_ext_rotate_right(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4323
4324
def RotateRight(a, b)
Definition: z3py.py:4309
Z3_ast Z3_API Z3_mk_ext_rotate_right(Z3_context c, Z3_ast t1, Z3_ast t2)
Rotate bits of t1 to the right t2 times.

Referenced by RotateRight().

◆ RoundNearestTiesToAway()

def z3py.RoundNearestTiesToAway (   ctx = None)

Definition at line 9502 of file z3py.py.

9502def RoundNearestTiesToAway(ctx=None):
9503 ctx = _get_ctx(ctx)
9504 return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_away(ctx.ref()), ctx)
9505
9506
def RoundNearestTiesToAway(ctx=None)
Definition: z3py.py:9502

◆ RoundNearestTiesToEven()

def z3py.RoundNearestTiesToEven (   ctx = None)

Definition at line 9492 of file z3py.py.

9492def RoundNearestTiesToEven(ctx=None):
9493 ctx = _get_ctx(ctx)
9494 return FPRMRef(Z3_mk_fpa_round_nearest_ties_to_even(ctx.ref()), ctx)
9495
9496
def RoundNearestTiesToEven(ctx=None)
Definition: z3py.py:9492

◆ RoundTowardNegative()

def z3py.RoundTowardNegative (   ctx = None)

Definition at line 9522 of file z3py.py.

9522def RoundTowardNegative(ctx=None):
9523 ctx = _get_ctx(ctx)
9524 return FPRMRef(Z3_mk_fpa_round_toward_negative(ctx.ref()), ctx)
9525
9526
def RoundTowardNegative(ctx=None)
Definition: z3py.py:9522
Z3_ast Z3_API Z3_mk_fpa_round_toward_negative(Z3_context c)
Create a numeral of RoundingMode sort which represents the TowardNegative rounding mode.

◆ RoundTowardPositive()

def z3py.RoundTowardPositive (   ctx = None)

Definition at line 9512 of file z3py.py.

9512def RoundTowardPositive(ctx=None):
9513 ctx = _get_ctx(ctx)
9514 return FPRMRef(Z3_mk_fpa_round_toward_positive(ctx.ref()), ctx)
9515
9516
def RoundTowardPositive(ctx=None)
Definition: z3py.py:9512
Z3_ast Z3_API Z3_mk_fpa_round_toward_positive(Z3_context c)
Create a numeral of RoundingMode sort which represents the TowardPositive rounding mode.

◆ RoundTowardZero()

def z3py.RoundTowardZero (   ctx = None)

Definition at line 9532 of file z3py.py.

9532def RoundTowardZero(ctx=None):
9533 ctx = _get_ctx(ctx)
9534 return FPRMRef(Z3_mk_fpa_round_toward_zero(ctx.ref()), ctx)
9535
9536
def RoundTowardZero(ctx=None)
Definition: z3py.py:9532
Z3_ast Z3_API Z3_mk_fpa_round_toward_zero(Z3_context c)
Create a numeral of RoundingMode sort which represents the TowardZero rounding mode.

◆ RTN()

def z3py.RTN (   ctx = None)

Definition at line 9527 of file z3py.py.

9527def RTN(ctx=None):
9528 ctx = _get_ctx(ctx)
9529 return FPRMRef(Z3_mk_fpa_round_toward_negative(ctx.ref()), ctx)
9530
9531

Referenced by get_default_rounding_mode().

◆ RTP()

def z3py.RTP (   ctx = None)

Definition at line 9517 of file z3py.py.

9517def RTP(ctx=None):
9518 ctx = _get_ctx(ctx)
9519 return FPRMRef(Z3_mk_fpa_round_toward_positive(ctx.ref()), ctx)
9520
9521

Referenced by get_default_rounding_mode().

◆ RTZ()

def z3py.RTZ (   ctx = None)

Definition at line 9537 of file z3py.py.

9537def RTZ(ctx=None):
9538 ctx = _get_ctx(ctx)
9539 return FPRMRef(Z3_mk_fpa_round_toward_zero(ctx.ref()), ctx)
9540
9541

Referenced by fpAdd(), fpToSBV(), fpToUBV(), and get_default_rounding_mode().

◆ Select()

def z3py.Select (   a,
  i 
)
Return a Z3 select array expression.

>>> a = Array('a', IntSort(), IntSort())
>>> i = Int('i')
>>> Select(a, i)
a[i]
>>> eq(Select(a, i), a[i])
True

Definition at line 4742 of file z3py.py.

4742def Select(a, i):
4743 """Return a Z3 select array expression.
4744
4745 >>> a = Array('a', IntSort(), IntSort())
4746 >>> i = Int('i')
4747 >>> Select(a, i)
4748 a[i]
4749 >>> eq(Select(a, i), a[i])
4750 True
4751 """
4752 if z3_debug():
4753 _z3_assert(is_array_sort(a), "First argument must be a Z3 array expression")
4754 return a[i]
4755
4756
def Select(a, i)
Definition: z3py.py:4742

Referenced by Select().

◆ SeqSort()

def z3py.SeqSort (   s)
Create a sequence sort over elements provided in the argument
>>> s = SeqSort(IntSort())
>>> s == Unit(IntVal(1)).sort()
True

Definition at line 10579 of file z3py.py.

10579def SeqSort(s):
10580 """Create a sequence sort over elements provided in the argument
10581 >>> s = SeqSort(IntSort())
10582 >>> s == Unit(IntVal(1)).sort()
10583 True
10584 """
10585 return SeqSortRef(Z3_mk_seq_sort(s.ctx_ref(), s.ast), s.ctx)
10586
10587
Z3_sort Z3_API Z3_mk_seq_sort(Z3_context c, Z3_sort s)
Create a sequence sort out of the sort for the elements.

Referenced by Empty(), Full(), SeqSortRef.is_string(), Context.MkSeqSort(), and SeqSort().

◆ set_default_fp_sort()

def z3py.set_default_fp_sort (   ebits,
  sbits,
  ctx = None 
)

Definition at line 9153 of file z3py.py.

9153def set_default_fp_sort(ebits, sbits, ctx=None):
9154 global _dflt_fpsort_ebits
9155 global _dflt_fpsort_sbits
9156 _dflt_fpsort_ebits = ebits
9157 _dflt_fpsort_sbits = sbits
9158
9159
def set_default_fp_sort(ebits, sbits, ctx=None)
Definition: z3py.py:9153

◆ set_default_rounding_mode()

def z3py.set_default_rounding_mode (   rm,
  ctx = None 
)

Definition at line 9140 of file z3py.py.

9140def set_default_rounding_mode(rm, ctx=None):
9141 global _dflt_rounding_mode
9142 if is_fprm_value(rm):
9143 _dflt_rounding_mode = rm.decl().kind()
9144 else:
9145 _z3_assert(_dflt_rounding_mode in _ROUNDING_MODES, "illegal rounding mode")
9146 _dflt_rounding_mode = rm
9147
9148
def set_default_rounding_mode(rm, ctx=None)
Definition: z3py.py:9140

◆ set_option()

def z3py.set_option ( args,
**  kws 
)
Alias for 'set_param' for backward compatibility.

Definition at line 300 of file z3py.py.

300def set_option(*args, **kws):
301 """Alias for 'set_param' for backward compatibility.
302 """
303 return set_param(*args, **kws)
304
305
def set_option(*args, **kws)
Definition: z3py.py:300
def set_param(*args, **kws)
Definition: z3py.py:270

◆ set_param()

def z3py.set_param ( args,
**  kws 
)
Set Z3 global (or module) parameters.

>>> set_param(precision=10)

Definition at line 270 of file z3py.py.

270def set_param(*args, **kws):
271 """Set Z3 global (or module) parameters.
272
273 >>> set_param(precision=10)
274 """
275 if z3_debug():
276 _z3_assert(len(args) % 2 == 0, "Argument list must have an even number of elements.")
277 new_kws = {}
278 for k in kws:
279 v = kws[k]
280 if not set_pp_option(k, v):
281 new_kws[k] = v
282 for key in new_kws:
283 value = new_kws[key]
284 Z3_global_param_set(str(key).upper(), _to_param_value(value))
285 prev = None
286 for a in args:
287 if prev is None:
288 prev = a
289 else:
290 Z3_global_param_set(str(prev), _to_param_value(a))
291 prev = None
292
293
void Z3_API Z3_global_param_set(Z3_string param_id, Z3_string param_value)
Set a global (or module) parameter. This setting is shared by all Z3 contexts.

Referenced by set_option(), and set_param().

◆ SetAdd()

def z3py.SetAdd (   s,
  e 
)
 Add element e to set s
>>> a = Const('a', SetSort(IntSort()))
>>> SetAdd(a, 1)
Store(a, 1, True)

Definition at line 4900 of file z3py.py.

4900def SetAdd(s, e):
4901 """ Add element e to set s
4902 >>> a = Const('a', SetSort(IntSort()))
4903 >>> SetAdd(a, 1)
4904 Store(a, 1, True)
4905 """
4906 ctx = _ctx_from_ast_arg_list([s, e])
4907 e = _py2expr(e, ctx)
4908 return ArrayRef(Z3_mk_set_add(ctx.ref(), s.as_ast(), e.as_ast()), ctx)
4909
4910
def SetAdd(s, e)
Definition: z3py.py:4900
Z3_ast Z3_API Z3_mk_set_add(Z3_context c, Z3_ast set, Z3_ast elem)
Add an element to a set.

Referenced by SetAdd().

◆ SetComplement()

def z3py.SetComplement (   s)
 The complement of set s
>>> a = Const('a', SetSort(IntSort()))
>>> SetComplement(a)
complement(a)

Definition at line 4922 of file z3py.py.

4922def SetComplement(s):
4923 """ The complement of set s
4924 >>> a = Const('a', SetSort(IntSort()))
4925 >>> SetComplement(a)
4926 complement(a)
4927 """
4928 ctx = s.ctx
4929 return ArrayRef(Z3_mk_set_complement(ctx.ref(), s.as_ast()), ctx)
4930
4931
def SetComplement(s)
Definition: z3py.py:4922
Z3_ast Z3_API Z3_mk_set_complement(Z3_context c, Z3_ast arg)
Take the complement of a set.

Referenced by SetComplement().

◆ SetDel()

def z3py.SetDel (   s,
  e 
)
 Remove element e to set s
>>> a = Const('a', SetSort(IntSort()))
>>> SetDel(a, 1)
Store(a, 1, False)

Definition at line 4911 of file z3py.py.

4911def SetDel(s, e):
4912 """ Remove element e to set s
4913 >>> a = Const('a', SetSort(IntSort()))
4914 >>> SetDel(a, 1)
4915 Store(a, 1, False)
4916 """
4917 ctx = _ctx_from_ast_arg_list([s, e])
4918 e = _py2expr(e, ctx)
4919 return ArrayRef(Z3_mk_set_del(ctx.ref(), s.as_ast(), e.as_ast()), ctx)
4920
4921
def SetDel(s, e)
Definition: z3py.py:4911
Z3_ast Z3_API Z3_mk_set_del(Z3_context c, Z3_ast set, Z3_ast elem)
Remove an element to a set.

Referenced by SetDel().

◆ SetDifference()

def z3py.SetDifference (   a,
  b 
)
 The set difference of a and b
>>> a = Const('a', SetSort(IntSort()))
>>> b = Const('b', SetSort(IntSort()))
>>> SetDifference(a, b)
setminus(a, b)

Definition at line 4932 of file z3py.py.

4932def SetDifference(a, b):
4933 """ The set difference of a and b
4934 >>> a = Const('a', SetSort(IntSort()))
4935 >>> b = Const('b', SetSort(IntSort()))
4936 >>> SetDifference(a, b)
4937 setminus(a, b)
4938 """
4939 ctx = _ctx_from_ast_arg_list([a, b])
4940 return ArrayRef(Z3_mk_set_difference(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
4941
4942
def SetDifference(a, b)
Definition: z3py.py:4932
Z3_ast Z3_API Z3_mk_set_difference(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Take the set difference between two sets.

Referenced by SetDifference().

◆ SetHasSize()

def z3py.SetHasSize (   a,
  k 
)

Definition at line 4814 of file z3py.py.

4814def SetHasSize(a, k):
4815 ctx = a.ctx
4816 k = _py2expr(k, ctx)
4817 return _to_expr_ref(Z3_mk_set_has_size(ctx.ref(), a.as_ast(), k.as_ast()), ctx)
4818
4819
def SetHasSize(a, k)
Definition: z3py.py:4814
Z3_ast Z3_API Z3_mk_set_has_size(Z3_context c, Z3_ast set, Z3_ast k)
Create predicate that holds if Boolean array set has k elements set to true.

◆ SetIntersect()

def z3py.SetIntersect ( args)
 Take the union of sets
>>> a = Const('a', SetSort(IntSort()))
>>> b = Const('b', SetSort(IntSort()))
>>> SetIntersect(a, b)
intersection(a, b)

Definition at line 4887 of file z3py.py.

4887def SetIntersect(*args):
4888 """ Take the union of sets
4889 >>> a = Const('a', SetSort(IntSort()))
4890 >>> b = Const('b', SetSort(IntSort()))
4891 >>> SetIntersect(a, b)
4892 intersection(a, b)
4893 """
4894 args = _get_args(args)
4895 ctx = _ctx_from_ast_arg_list(args)
4896 _args, sz = _to_ast_array(args)
4897 return ArrayRef(Z3_mk_set_intersect(ctx.ref(), sz, _args), ctx)
4898
4899
def SetIntersect(*args)
Definition: z3py.py:4887
Z3_ast Z3_API Z3_mk_set_intersect(Z3_context c, unsigned num_args, Z3_ast const args[])
Take the intersection of a list of sets.

Referenced by SetIntersect().

◆ SetSort()

def z3py.SetSort (   s)

Sets.

 Create a set sort over element sort s

Definition at line 4851 of file z3py.py.

4851def SetSort(s):
4852 """ Create a set sort over element sort s"""
4853 return ArraySort(s, BoolSort())
4854
4855

Referenced by Ext(), IsMember(), IsSubset(), Context.MkSetSort(), SetAdd(), SetComplement(), SetDel(), SetDifference(), SetIntersect(), and SetUnion().

◆ SetUnion()

def z3py.SetUnion ( args)
 Take the union of sets
>>> a = Const('a', SetSort(IntSort()))
>>> b = Const('b', SetSort(IntSort()))
>>> SetUnion(a, b)
union(a, b)

Definition at line 4874 of file z3py.py.

4874def SetUnion(*args):
4875 """ Take the union of sets
4876 >>> a = Const('a', SetSort(IntSort()))
4877 >>> b = Const('b', SetSort(IntSort()))
4878 >>> SetUnion(a, b)
4879 union(a, b)
4880 """
4881 args = _get_args(args)
4882 ctx = _ctx_from_ast_arg_list(args)
4883 _args, sz = _to_ast_array(args)
4884 return ArrayRef(Z3_mk_set_union(ctx.ref(), sz, _args), ctx)
4885
4886
def SetUnion(*args)
Definition: z3py.py:4874
Z3_ast Z3_API Z3_mk_set_union(Z3_context c, unsigned num_args, Z3_ast const args[])
Take the union of a list of sets.

Referenced by SetUnion().

◆ SignExt()

def z3py.SignExt (   n,
  a 
)
Return a bit-vector expression with `n` extra sign-bits.

>>> x = BitVec('x', 16)
>>> n = SignExt(8, x)
>>> n.size()
24
>>> n
SignExt(8, x)
>>> n.sort()
BitVec(24)
>>> v0 = BitVecVal(2, 2)
>>> v0
2
>>> v0.size()
2
>>> v  = simplify(SignExt(6, v0))
>>> v
254
>>> v.size()
8
>>> print("%.x" % v.as_long())
fe

Definition at line 4325 of file z3py.py.

4325def SignExt(n, a):
4326 """Return a bit-vector expression with `n` extra sign-bits.
4327
4328 >>> x = BitVec('x', 16)
4329 >>> n = SignExt(8, x)
4330 >>> n.size()
4331 24
4332 >>> n
4333 SignExt(8, x)
4334 >>> n.sort()
4335 BitVec(24)
4336 >>> v0 = BitVecVal(2, 2)
4337 >>> v0
4338 2
4339 >>> v0.size()
4340 2
4341 >>> v = simplify(SignExt(6, v0))
4342 >>> v
4343 254
4344 >>> v.size()
4345 8
4346 >>> print("%.x" % v.as_long())
4347 fe
4348 """
4349 if z3_debug():
4350 _z3_assert(_is_int(n), "First argument must be an integer")
4351 _z3_assert(is_bv(a), "Second argument must be a Z3 bit-vector expression")
4352 return BitVecRef(Z3_mk_sign_ext(a.ctx_ref(), n, a.as_ast()), a.ctx)
4353
4354
def SignExt(n, a)
Definition: z3py.py:4325
Z3_ast Z3_API Z3_mk_sign_ext(Z3_context c, unsigned i, Z3_ast t1)
Sign-extend of the given bit-vector to the (signed) equivalent bit-vector of size m+i,...

Referenced by SignExt().

◆ SimpleSolver()

def z3py.SimpleSolver (   ctx = None,
  logFile = None 
)
Return a simple general purpose solver with limited amount of preprocessing.

>>> s = SimpleSolver()
>>> x = Int('x')
>>> s.add(x > 0)
>>> s.check()
sat

Definition at line 7293 of file z3py.py.

7293def SimpleSolver(ctx=None, logFile=None):
7294 """Return a simple general purpose solver with limited amount of preprocessing.
7295
7296 >>> s = SimpleSolver()
7297 >>> x = Int('x')
7298 >>> s.add(x > 0)
7299 >>> s.check()
7300 sat
7301 """
7302 ctx = _get_ctx(ctx)
7303 return Solver(Z3_mk_simple_solver(ctx.ref()), ctx, logFile)
7304
def SimpleSolver(ctx=None, logFile=None)
Definition: z3py.py:7293
Z3_solver Z3_API Z3_mk_simple_solver(Z3_context c)
Create a new incremental solver.

Referenced by Solver.reason_unknown(), SimpleSolver(), and Solver.statistics().

◆ simplify()

def z3py.simplify (   a,
arguments,
**  keywords 
)

Utils.

Simplify the expression `a` using the given options.

This function has many options. Use `help_simplify` to obtain the complete list.

>>> x = Int('x')
>>> y = Int('y')
>>> simplify(x + 1 + y + x + 1)
2 + 2*x + y
>>> simplify((x + 1)*(y + 1), som=True)
1 + x + y + x*y
>>> simplify(Distinct(x, y, 1), blast_distinct=True)
And(Not(x == y), Not(x == 1), Not(y == 1))
>>> simplify(And(x == 0, y == 1), elim_and=True)
Not(Or(Not(x == 0), Not(y == 1)))

Definition at line 8645 of file z3py.py.

8645def simplify(a, *arguments, **keywords):
8646 """Simplify the expression `a` using the given options.
8647
8648 This function has many options. Use `help_simplify` to obtain the complete list.
8649
8650 >>> x = Int('x')
8651 >>> y = Int('y')
8652 >>> simplify(x + 1 + y + x + 1)
8653 2 + 2*x + y
8654 >>> simplify((x + 1)*(y + 1), som=True)
8655 1 + x + y + x*y
8656 >>> simplify(Distinct(x, y, 1), blast_distinct=True)
8657 And(Not(x == y), Not(x == 1), Not(y == 1))
8658 >>> simplify(And(x == 0, y == 1), elim_and=True)
8659 Not(Or(Not(x == 0), Not(y == 1)))
8660 """
8661 if z3_debug():
8662 _z3_assert(is_expr(a), "Z3 expression expected")
8663 if len(arguments) > 0 or len(keywords) > 0:
8664 p = args2params(arguments, keywords, a.ctx)
8665 return _to_expr_ref(Z3_simplify_ex(a.ctx_ref(), a.as_ast(), p.params), a.ctx)
8666 else:
8667 return _to_expr_ref(Z3_simplify(a.ctx_ref(), a.as_ast()), a.ctx)
8668
8669
Z3_ast Z3_API Z3_simplify(Z3_context c, Z3_ast a)
Interface to simplifier.
Z3_ast Z3_API Z3_simplify_ex(Z3_context c, Z3_ast a, Z3_params p)
Interface to simplifier.

Referenced by BitVecRef.__invert__(), BitVecRef.__lshift__(), ArithRef.__mod__(), ArithRef.__neg__(), BitVecRef.__neg__(), ArithRef.__pow__(), ArithRef.__rpow__(), BitVecRef.__rshift__(), AlgebraicNumRef.approx(), AlgebraicNumRef.as_decimal(), BitVecs(), Concat(), Contains(), CreateDatatypes(), Distinct(), eq(), AstRef.eq(), Extract(), fpBVToFP(), fpFPToFP(), fpRealToFP(), fpSignedToFP(), fpToFP(), fpUnsignedToFP(), AstRef.hash(), If(), IndexOf(), InRe(), is_algebraic_value(), is_true(), K(), Length(), Loop(), LShR(), Not(), Option(), Plus(), PrefixOf(), Q(), Range(), RatVal(), RecAddDefinition(), DatatypeSortRef.recognizer(), RepeatBitVec(), Replace(), RotateLeft(), RotateRight(), SignExt(), Expr< R extends Sort >.simplify(), simplify(), Star(), StrToInt(), SuffixOf(), Union(), Xor(), and ZeroExt().

◆ simplify_param_descrs()

def z3py.simplify_param_descrs ( )
Return the set of parameter descriptions for Z3 `simplify` procedure.

Definition at line 8675 of file z3py.py.

8676 """Return the set of parameter descriptions for Z3 `simplify` procedure."""
8677 return ParamDescrsRef(Z3_simplify_get_param_descrs(main_ctx().ref()), main_ctx())
8678
8679
def simplify_param_descrs()
Definition: z3py.py:8675
Z3_param_descrs Z3_API Z3_simplify_get_param_descrs(Z3_context c)
Return the parameter description set for the simplify procedure.

◆ solve()

def z3py.solve ( args,
**  keywords 
)
Solve the constraints `*args`.

This is a simple function for creating demonstrations. It creates a solver,
configure it using the options in `keywords`, adds the constraints
in `args`, and invokes check.

>>> a = Int('a')
>>> solve(a > 0, a < 2)
[a = 1]

Definition at line 8878 of file z3py.py.

8878def solve(*args, **keywords):
8879 """Solve the constraints `*args`.
8880
8881 This is a simple function for creating demonstrations. It creates a solver,
8882 configure it using the options in `keywords`, adds the constraints
8883 in `args`, and invokes check.
8884
8885 >>> a = Int('a')
8886 >>> solve(a > 0, a < 2)
8887 [a = 1]
8888 """
8889 show = keywords.pop("show", False)
8890 s = Solver()
8891 s.set(**keywords)
8892 s.add(*args)
8893 if show:
8894 print(s)
8895 r = s.check()
8896 if r == unsat:
8897 print("no solution")
8898 elif r == unknown:
8899 print("failed to solve")
8900 try:
8901 print(s.model())
8902 except Z3Exception:
8903 return
8904 else:
8905 print(s.model())
8906
8907

Referenced by BV2Int(), IsInt(), and solve().

◆ solve_using()

def z3py.solve_using (   s,
args,
**  keywords 
)
Solve the constraints `*args` using solver `s`.

This is a simple function for creating demonstrations. It is similar to `solve`,
but it uses the given solver `s`.
It configures solver `s` using the options in `keywords`, adds the constraints
in `args`, and invokes check.

Definition at line 8908 of file z3py.py.

8908def solve_using(s, *args, **keywords):
8909 """Solve the constraints `*args` using solver `s`.
8910
8911 This is a simple function for creating demonstrations. It is similar to `solve`,
8912 but it uses the given solver `s`.
8913 It configures solver `s` using the options in `keywords`, adds the constraints
8914 in `args`, and invokes check.
8915 """
8916 show = keywords.pop("show", False)
8917 if z3_debug():
8918 _z3_assert(isinstance(s, Solver), "Solver object expected")
8919 s.set(**keywords)
8920 s.add(*args)
8921 if show:
8922 print("Problem:")
8923 print(s)
8924 r = s.check()
8925 if r == unsat:
8926 print("no solution")
8927 elif r == unknown:
8928 print("failed to solve")
8929 try:
8930 print(s.model())
8931 except Z3Exception:
8932 return
8933 else:
8934 if show:
8935 print("Solution:")
8936 print(s.model())
8937
8938
def solve_using(s, *args, **keywords)
Definition: z3py.py:8908

◆ SolverFor()

def z3py.SolverFor (   logic,
  ctx = None,
  logFile = None 
)
Create a solver customized for the given logic.

The parameter `logic` is a string. It should be contains
the name of a SMT-LIB logic.
See http://www.smtlib.org/ for the name of all available logics.

>>> s = SolverFor("QF_LIA")
>>> x = Int('x')
>>> s.add(x > 0)
>>> s.add(x < 2)
>>> s.check()
sat
>>> s.model()
[x = 1]

Definition at line 7272 of file z3py.py.

7272def SolverFor(logic, ctx=None, logFile=None):
7273 """Create a solver customized for the given logic.
7274
7275 The parameter `logic` is a string. It should be contains
7276 the name of a SMT-LIB logic.
7277 See http://www.smtlib.org/ for the name of all available logics.
7278
7279 >>> s = SolverFor("QF_LIA")
7280 >>> x = Int('x')
7281 >>> s.add(x > 0)
7282 >>> s.add(x < 2)
7283 >>> s.check()
7284 sat
7285 >>> s.model()
7286 [x = 1]
7287 """
7288 ctx = _get_ctx(ctx)
7289 logic = to_symbol(logic)
7290 return Solver(Z3_mk_solver_for_logic(ctx.ref(), logic), ctx, logFile)
7291
7292
def SolverFor(logic, ctx=None, logFile=None)
Definition: z3py.py:7272
Z3_solver Z3_API Z3_mk_solver_for_logic(Z3_context c, Z3_symbol logic)
Create a new solver customized for the given logic. It behaves like Z3_mk_solver if the logic is unkn...

Referenced by SolverFor().

◆ Sqrt()

def z3py.Sqrt (   a,
  ctx = None 
)
 Return a Z3 expression which represents the square root of a.

>>> x = Real('x')
>>> Sqrt(x)
x**(1/2)

Definition at line 3373 of file z3py.py.

3373def Sqrt(a, ctx=None):
3374 """ Return a Z3 expression which represents the square root of a.
3375
3376 >>> x = Real('x')
3377 >>> Sqrt(x)
3378 x**(1/2)
3379 """
3380 if not is_expr(a):
3381 ctx = _get_ctx(ctx)
3382 a = RealVal(a, ctx)
3383 return a ** "1/2"
3384
3385

Referenced by AlgebraicNumRef.approx(), AlgebraicNumRef.as_decimal(), is_algebraic_value(), and Sqrt().

◆ SRem()

def z3py.SRem (   a,
  b 
)
Create the Z3 expression signed remainder.

Use the operator % for signed modulus, and URem() for unsigned remainder.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> SRem(x, y)
SRem(x, y)
>>> SRem(x, y).sort()
BitVec(32)
>>> (x % y).sexpr()
'(bvsmod x y)'
>>> SRem(x, y).sexpr()
'(bvsrem x y)'

Definition at line 4240 of file z3py.py.

4240def SRem(a, b):
4241 """Create the Z3 expression signed remainder.
4242
4243 Use the operator % for signed modulus, and URem() for unsigned remainder.
4244
4245 >>> x = BitVec('x', 32)
4246 >>> y = BitVec('y', 32)
4247 >>> SRem(x, y)
4248 SRem(x, y)
4249 >>> SRem(x, y).sort()
4250 BitVec(32)
4251 >>> (x % y).sexpr()
4252 '(bvsmod x y)'
4253 >>> SRem(x, y).sexpr()
4254 '(bvsrem x y)'
4255 """
4256 _check_bv_args(a, b)
4257 a, b = _coerce_exprs(a, b)
4258 return BitVecRef(Z3_mk_bvsrem(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4259
4260
def SRem(a, b)
Definition: z3py.py:4240
def URem(a, b)
Definition: z3py.py:4219
Z3_ast Z3_API Z3_mk_bvsrem(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows dividend).

Referenced by BitVecRef.__mod__(), BitVecRef.__rmod__(), SRem(), and URem().

◆ Star()

def z3py.Star (   re)
Create the regular expression accepting zero or more repetitions of argument.
>>> re = Star(Re("a"))
>>> print(simplify(InRe("aa", re)))
True
>>> print(simplify(InRe("ab", re)))
False
>>> print(simplify(InRe("", re)))
True

Definition at line 11007 of file z3py.py.

11007def Star(re):
11008 """Create the regular expression accepting zero or more repetitions of argument.
11009 >>> re = Star(Re("a"))
11010 >>> print(simplify(InRe("aa", re)))
11011 True
11012 >>> print(simplify(InRe("ab", re)))
11013 False
11014 >>> print(simplify(InRe("", re)))
11015 True
11016 """
11017 return ReRef(Z3_mk_re_star(re.ctx_ref(), re.as_ast()), re.ctx)
11018
11019
def Star(re)
Definition: z3py.py:11007
Z3_ast Z3_API Z3_mk_re_star(Z3_context c, Z3_ast re)
Create the regular language re*.

Referenced by Star().

◆ Store()

def z3py.Store (   a,
  i,
  v 
)
Return a Z3 store array expression.

>>> a    = Array('a', IntSort(), IntSort())
>>> i, v = Ints('i v')
>>> s    = Store(a, i, v)
>>> s.sort()
Array(Int, Int)
>>> prove(s[i] == v)
proved
>>> j    = Int('j')
>>> prove(Implies(i != j, s[j] == a[j]))
proved

Definition at line 4725 of file z3py.py.

4725def Store(a, i, v):
4726 """Return a Z3 store array expression.
4727
4728 >>> a = Array('a', IntSort(), IntSort())
4729 >>> i, v = Ints('i v')
4730 >>> s = Store(a, i, v)
4731 >>> s.sort()
4732 Array(Int, Int)
4733 >>> prove(s[i] == v)
4734 proved
4735 >>> j = Int('j')
4736 >>> prove(Implies(i != j, s[j] == a[j]))
4737 proved
4738 """
4739 return Update(a, i, v)
4740
4741
def Update(a, i, v)
Definition: z3py.py:4692

Referenced by is_array(), is_store(), SetAdd(), SetDel(), and Store().

◆ String()

def z3py.String (   name,
  ctx = None 
)
Return a string constant named `name`. If `ctx=None`, then the global context is used.

>>> x = String('x')

Definition at line 10693 of file z3py.py.

10693def String(name, ctx=None):
10694 """Return a string constant named `name`. If `ctx=None`, then the global context is used.
10695
10696 >>> x = String('x')
10697 """
10698 ctx = _get_ctx(ctx)
10699 return SeqRef(Z3_mk_const(ctx.ref(), to_symbol(name, ctx), StringSort(ctx).ast), ctx)
10700
10701
def String(name, ctx=None)
Definition: z3py.py:10693

Referenced by Context.Context(), Statistics.getEntries(), Statistics.getKeys(), Context.getProbeNames(), Context.getTacticNames(), String(), Strings(), and FuncInterp< R extends Sort >.toString().

◆ Strings()

def z3py.Strings (   names,
  ctx = None 
)
Return a tuple of String constants. 

Definition at line 10702 of file z3py.py.

10702def Strings(names, ctx=None):
10703 """Return a tuple of String constants. """
10704 ctx = _get_ctx(ctx)
10705 if isinstance(names, str):
10706 names = names.split(" ")
10707 return [String(name, ctx) for name in names]
10708
10709

Referenced by Contains().

◆ StringSort()

def z3py.StringSort (   ctx = None)
Create a string sort
>>> s = StringSort()
>>> print(s)
String

Definition at line 10569 of file z3py.py.

10569def StringSort(ctx=None):
10570 """Create a string sort
10571 >>> s = StringSort()
10572 >>> print(s)
10573 String
10574 """
10575 ctx = _get_ctx(ctx)
10576 return SeqSortRef(Z3_mk_string_sort(ctx.ref()), ctx)
10577
10578

Referenced by DisjointSum(), Empty(), Full(), SeqSortRef.is_string(), String(), StringSort(), and TupleSort().

◆ StringVal()

def z3py.StringVal (   s,
  ctx = None 
)
create a string expression

Definition at line 10686 of file z3py.py.

10686def StringVal(s, ctx=None):
10687 """create a string expression"""
10688 s = "".join(str(ch) if ord(ch) < 128 else "\\u{%x}" % (ord(ch)) for ch in s)
10689 ctx = _get_ctx(ctx)
10690 return SeqRef(Z3_mk_lstring(ctx.ref(), len(s), s), ctx)
10691
10692
Z3_ast Z3_API Z3_mk_lstring(Z3_context c, unsigned len, Z3_string s)
Create a string constant out of the string that is passed in It takes the length of the string as wel...

Referenced by SeqRef.__gt__(), ExprRef.children(), Empty(), Extract(), AlgebraicNumRef.index(), is_seq(), is_string(), is_string_value(), Length(), and Re().

◆ StrToInt()

def z3py.StrToInt (   s)
Convert string expression to integer
>>> a = StrToInt("1")
>>> simplify(1 == a)
True
>>> b = StrToInt("2")
>>> simplify(1 == b)
False
>>> c = StrToInt(IntToStr(2))
>>> simplify(1 == c)
False

Definition at line 10862 of file z3py.py.

10862def StrToInt(s):
10863 """Convert string expression to integer
10864 >>> a = StrToInt("1")
10865 >>> simplify(1 == a)
10866 True
10867 >>> b = StrToInt("2")
10868 >>> simplify(1 == b)
10869 False
10870 >>> c = StrToInt(IntToStr(2))
10871 >>> simplify(1 == c)
10872 False
10873 """
10874 s = _coerce_seq(s)
10875 return ArithRef(Z3_mk_str_to_int(s.ctx_ref(), s.as_ast()), s.ctx)
10876
10877
def StrToInt(s)
Definition: z3py.py:10862
Z3_ast Z3_API Z3_mk_str_to_int(Z3_context c, Z3_ast s)
Convert string to integer.

Referenced by StrToInt().

◆ SubSeq()

def z3py.SubSeq (   s,
  offset,
  length 
)
Extract substring or subsequence starting at offset

Definition at line 10715 of file z3py.py.

10715def SubSeq(s, offset, length):
10716 """Extract substring or subsequence starting at offset"""
10717 return Extract(s, offset, length)
10718
10719
def SubSeq(s, offset, length)
Definition: z3py.py:10715

◆ substitute()

def z3py.substitute (   t,
m 
)
Apply substitution m on t, m is a list of pairs of the form (from, to).
Every occurrence in t of from is replaced with to.

>>> x = Int('x')
>>> y = Int('y')
>>> substitute(x + 1, (x, y + 1))
y + 1 + 1
>>> f = Function('f', IntSort(), IntSort())
>>> substitute(f(x) + f(y), (f(x), IntVal(1)), (f(y), IntVal(1)))
1 + 1

Definition at line 8680 of file z3py.py.

8680def substitute(t, *m):
8681 """Apply substitution m on t, m is a list of pairs of the form (from, to).
8682 Every occurrence in t of from is replaced with to.
8683
8684 >>> x = Int('x')
8685 >>> y = Int('y')
8686 >>> substitute(x + 1, (x, y + 1))
8687 y + 1 + 1
8688 >>> f = Function('f', IntSort(), IntSort())
8689 >>> substitute(f(x) + f(y), (f(x), IntVal(1)), (f(y), IntVal(1)))
8690 1 + 1
8691 """
8692 if isinstance(m, tuple):
8693 m1 = _get_args(m)
8694 if isinstance(m1, list) and all(isinstance(p, tuple) for p in m1):
8695 m = m1
8696 if z3_debug():
8697 _z3_assert(is_expr(t), "Z3 expression expected")
8698 _z3_assert(all([isinstance(p, tuple) and is_expr(p[0]) and is_expr(p[1]) and p[0].sort().eq(
8699 p[1].sort()) for p in m]), "Z3 invalid substitution, expression pairs expected.")
8700 num = len(m)
8701 _from = (Ast * num)()
8702 _to = (Ast * num)()
8703 for i in range(num):
8704 _from[i] = m[i][0].as_ast()
8705 _to[i] = m[i][1].as_ast()
8706 return _to_expr_ref(Z3_substitute(t.ctx.ref(), t.as_ast(), num, _from, _to), t.ctx)
8707
8708
def substitute(t, *m)
Definition: z3py.py:8680
Z3_ast Z3_API Z3_substitute(Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const from[], Z3_ast const to[])
Substitute every occurrence of from[i] in a with to[i], for i smaller than num_exprs....

Referenced by Expr< R extends Sort >.substitute(), and substitute().

◆ substitute_vars()

def z3py.substitute_vars (   t,
m 
)
Substitute the free variables in t with the expression in m.

>>> v0 = Var(0, IntSort())
>>> v1 = Var(1, IntSort())
>>> x  = Int('x')
>>> f  = Function('f', IntSort(), IntSort(), IntSort())
>>> # replace v0 with x+1 and v1 with x
>>> substitute_vars(f(v0, v1), x + 1, x)
f(x + 1, x)

Definition at line 8709 of file z3py.py.

8709def substitute_vars(t, *m):
8710 """Substitute the free variables in t with the expression in m.
8711
8712 >>> v0 = Var(0, IntSort())
8713 >>> v1 = Var(1, IntSort())
8714 >>> x = Int('x')
8715 >>> f = Function('f', IntSort(), IntSort(), IntSort())
8716 >>> # replace v0 with x+1 and v1 with x
8717 >>> substitute_vars(f(v0, v1), x + 1, x)
8718 f(x + 1, x)
8719 """
8720 if z3_debug():
8721 _z3_assert(is_expr(t), "Z3 expression expected")
8722 _z3_assert(all([is_expr(n) for n in m]), "Z3 invalid substitution, list of expressions expected.")
8723 num = len(m)
8724 _to = (Ast * num)()
8725 for i in range(num):
8726 _to[i] = m[i].as_ast()
8727 return _to_expr_ref(Z3_substitute_vars(t.ctx.ref(), t.as_ast(), num, _to), t.ctx)
8728
8729
def substitute_vars(t, *m)
Definition: z3py.py:8709
Z3_ast Z3_API Z3_substitute_vars(Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const to[])
Substitute the free variables in a with the expressions in to. For every i smaller than num_exprs,...

Referenced by substitute_vars().

◆ SubString()

def z3py.SubString (   s,
  offset,
  length 
)
Extract substring or subsequence starting at offset

Definition at line 10710 of file z3py.py.

10710def SubString(s, offset, length):
10711 """Extract substring or subsequence starting at offset"""
10712 return Extract(s, offset, length)
10713
10714
def SubString(s, offset, length)
Definition: z3py.py:10710

◆ SuffixOf()

def z3py.SuffixOf (   a,
  b 
)
Check if 'a' is a suffix of 'b'
>>> s1 = SuffixOf("ab", "abc")
>>> simplify(s1)
False
>>> s2 = SuffixOf("bc", "abc")
>>> simplify(s2)
True

Definition at line 10774 of file z3py.py.

10774def SuffixOf(a, b):
10775 """Check if 'a' is a suffix of 'b'
10776 >>> s1 = SuffixOf("ab", "abc")
10777 >>> simplify(s1)
10778 False
10779 >>> s2 = SuffixOf("bc", "abc")
10780 >>> simplify(s2)
10781 True
10782 """
10783 ctx = _get_ctx2(a, b)
10784 a = _coerce_seq(a, ctx)
10785 b = _coerce_seq(b, ctx)
10786 return BoolRef(Z3_mk_seq_suffix(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
10787
10788
def SuffixOf(a, b)
Definition: z3py.py:10774
Z3_ast Z3_API Z3_mk_seq_suffix(Z3_context c, Z3_ast suffix, Z3_ast s)
Check if suffix is a suffix of s.

Referenced by SuffixOf().

◆ Sum()

def z3py.Sum ( args)
Create the sum of the Z3 expressions.

>>> a, b, c = Ints('a b c')
>>> Sum(a, b, c)
a + b + c
>>> Sum([a, b, c])
a + b + c
>>> A = IntVector('a', 5)
>>> Sum(A)
a__0 + a__1 + a__2 + a__3 + a__4

Definition at line 8730 of file z3py.py.

8730def Sum(*args):
8731 """Create the sum of the Z3 expressions.
8732
8733 >>> a, b, c = Ints('a b c')
8734 >>> Sum(a, b, c)
8735 a + b + c
8736 >>> Sum([a, b, c])
8737 a + b + c
8738 >>> A = IntVector('a', 5)
8739 >>> Sum(A)
8740 a__0 + a__1 + a__2 + a__3 + a__4
8741 """
8742 args = _get_args(args)
8743 if len(args) == 0:
8744 return 0
8745 ctx = _ctx_from_ast_arg_list(args)
8746 if ctx is None:
8747 return _reduce(lambda a, b: a + b, args, 0)
8748 args = _coerce_expr_list(args, ctx)
8749 if is_bv(args[0]):
8750 return _reduce(lambda a, b: a + b, args, 0)
8751 else:
8752 _args, sz = _to_ast_array(args)
8753 return ArithRef(Z3_mk_add(ctx.ref(), sz, _args), ctx)
8754
8755
Z3_ast Z3_API Z3_mk_add(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] + ... + args[num_args-1].

Referenced by BitVecs(), Ints(), IntVector(), Reals(), RealVector(), and Sum().

◆ tactic_description()

def z3py.tactic_description (   name,
  ctx = None 
)
Return a short description for the tactic named `name`.

>>> d = tactic_description('simplify')

Definition at line 8334 of file z3py.py.

8334def tactic_description(name, ctx=None):
8335 """Return a short description for the tactic named `name`.
8336
8337 >>> d = tactic_description('simplify')
8338 """
8339 ctx = _get_ctx(ctx)
8340 return Z3_tactic_get_descr(ctx.ref(), name)
8341
8342
Z3_string Z3_API Z3_tactic_get_descr(Z3_context c, Z3_string name)
Return a string containing a description of the tactic with the given name.

Referenced by describe_tactics(), and tactic_description().

◆ tactics()

def z3py.tactics (   ctx = None)
Return a list of all available tactics in Z3.

>>> l = tactics()
>>> l.count('simplify') == 1
True

Definition at line 8323 of file z3py.py.

8323def tactics(ctx=None):
8324 """Return a list of all available tactics in Z3.
8325
8326 >>> l = tactics()
8327 >>> l.count('simplify') == 1
8328 True
8329 """
8330 ctx = _get_ctx(ctx)
8331 return [Z3_get_tactic_name(ctx.ref(), i) for i in range(Z3_get_num_tactics(ctx.ref()))]
8332
8333
unsigned Z3_API Z3_get_num_tactics(Z3_context c)
Return the number of builtin tactics available in Z3.
Z3_string Z3_API Z3_get_tactic_name(Z3_context c, unsigned i)
Return the name of the idx tactic.

Referenced by describe_tactics(), and tactics().

◆ Then()

def z3py.Then ( ts,
**  ks 
)
Return a tactic that applies the tactics in `*ts` in sequence. Shorthand for AndThen(*ts, **ks).

>>> x, y = Ints('x y')
>>> t = Then(Tactic('simplify'), Tactic('solve-eqs'))
>>> t(And(x == 0, y > x + 1))
[[Not(y <= 1)]]
>>> t(And(x == 0, y > x + 1)).as_expr()
Not(y <= 1)

Definition at line 8191 of file z3py.py.

8191def Then(*ts, **ks):
8192 """Return a tactic that applies the tactics in `*ts` in sequence. Shorthand for AndThen(*ts, **ks).
8193
8194 >>> x, y = Ints('x y')
8195 >>> t = Then(Tactic('simplify'), Tactic('solve-eqs'))
8196 >>> t(And(x == 0, y > x + 1))
8197 [[Not(y <= 1)]]
8198 >>> t(And(x == 0, y > x + 1)).as_expr()
8199 Not(y <= 1)
8200 """
8201 return AndThen(*ts, **ks)
8202
8203

Referenced by Statistics.__getattr__(), Statistics.__getitem__(), Statistics.__len__(), ApplyResult.__len__(), Goal.convert_model(), Goal.depth(), Statistics.get_key_value(), Statistics.keys(), Repeat(), Tactic.solver(), and Then().

◆ to_symbol()

def z3py.to_symbol (   s,
  ctx = None 
)
Convert an integer or string into a Z3 symbol.

Definition at line 129 of file z3py.py.

129def to_symbol(s, ctx=None):
130 """Convert an integer or string into a Z3 symbol."""
131 if _is_int(s):
132 return Z3_mk_int_symbol(_get_ctx(ctx).ref(), s)
133 else:
134 return Z3_mk_string_symbol(_get_ctx(ctx).ref(), s)
135
136
Z3_symbol Z3_API Z3_mk_string_symbol(Z3_context c, Z3_string s)
Create a Z3 symbol using a C string.
Z3_symbol Z3_API Z3_mk_int_symbol(Z3_context c, int i)
Create a Z3 symbol using an integer.

Referenced by Fixedpoint.add_rule(), Optimize.add_soft(), Array(), BitVec(), Bool(), Const(), CreateDatatypes(), DeclareSort(), EnumSort(), FiniteDomainSort(), FP(), Function(), ParamDescrsRef.get_documentation(), ParamDescrsRef.get_kind(), Int(), is_quantifier(), prove(), Real(), RecFunction(), ParamsRef.set(), Fixedpoint.set_predicate_representation(), SolverFor(), String(), and Fixedpoint.update_rule().

◆ ToInt()

def z3py.ToInt (   a)
 Return the Z3 expression ToInt(a).

>>> x = Real('x')
>>> x.sort()
Real
>>> n = ToInt(x)
>>> n
ToInt(x)
>>> n.sort()
Int

Definition at line 3338 of file z3py.py.

3338def ToInt(a):
3339 """ Return the Z3 expression ToInt(a).
3340
3341 >>> x = Real('x')
3342 >>> x.sort()
3343 Real
3344 >>> n = ToInt(x)
3345 >>> n
3346 ToInt(x)
3347 >>> n.sort()
3348 Int
3349 """
3350 if z3_debug():
3351 _z3_assert(a.is_real(), "Z3 real expression expected.")
3352 ctx = a.ctx
3353 return ArithRef(Z3_mk_real2int(ctx.ref(), a.as_ast()), ctx)
3354
3355
Z3_ast Z3_API Z3_mk_real2int(Z3_context c, Z3_ast t1)
Coerce a real to an integer.

Referenced by is_to_int(), and ToInt().

◆ ToReal()

def z3py.ToReal (   a)
 Return the Z3 expression ToReal(a).

>>> x = Int('x')
>>> x.sort()
Int
>>> n = ToReal(x)
>>> n
ToReal(x)
>>> n.sort()
Real

Definition at line 3320 of file z3py.py.

3320def ToReal(a):
3321 """ Return the Z3 expression ToReal(a).
3322
3323 >>> x = Int('x')
3324 >>> x.sort()
3325 Int
3326 >>> n = ToReal(x)
3327 >>> n
3328 ToReal(x)
3329 >>> n.sort()
3330 Real
3331 """
3332 if z3_debug():
3333 _z3_assert(a.is_int(), "Z3 integer expression expected.")
3334 ctx = a.ctx
3335 return ArithRef(Z3_mk_int2real(ctx.ref(), a.as_ast()), ctx)
3336
3337
Z3_ast Z3_API Z3_mk_int2real(Z3_context c, Z3_ast t1)
Coerce an integer to a real.

Referenced by FuncDeclRef.__call__(), ArithRef.__ge__(), ArithRef.__gt__(), ArithRef.__le__(), ArithRef.__lt__(), SortRef.cast(), is_to_real(), and ToReal().

◆ TransitiveClosure()

def z3py.TransitiveClosure (   f)
Given a binary relation R, such that the two arguments have the same sort
create the transitive closure relation R+.
The transitive closure R+ is a new relation.

Definition at line 11064 of file z3py.py.

11064def TransitiveClosure(f):
11065 """Given a binary relation R, such that the two arguments have the same sort
11066 create the transitive closure relation R+.
11067 The transitive closure R+ is a new relation.
11068 """
11069 return FuncDeclRef(Z3_mk_transitive_closure(f.ctx_ref(), f.ast), f.ctx)
11070
11071
def TransitiveClosure(f)
Definition: z3py.py:11064
Z3_func_decl Z3_API Z3_mk_transitive_closure(Z3_context c, Z3_func_decl f)
create transitive closure of binary relation.

◆ TreeOrder()

def z3py.TreeOrder (   a,
  index 
)

Definition at line 11056 of file z3py.py.

11056def TreeOrder(a, index):
11057 return FuncDeclRef(Z3_mk_tree_order(a.ctx_ref(), a.ast, index), a.ctx)
11058
11059
def TreeOrder(a, index)
Definition: z3py.py:11056
Z3_func_decl Z3_API Z3_mk_tree_order(Z3_context c, Z3_sort a, unsigned id)
create a tree ordering relation over signature a identified using index id.

◆ TryFor()

def z3py.TryFor (   t,
  ms,
  ctx = None 
)
Return a tactic that applies `t` to a given goal for `ms` milliseconds.

If `t` does not terminate in `ms` milliseconds, then it fails.

Definition at line 8314 of file z3py.py.

8314def TryFor(t, ms, ctx=None):
8315 """Return a tactic that applies `t` to a given goal for `ms` milliseconds.
8316
8317 If `t` does not terminate in `ms` milliseconds, then it fails.
8318 """
8319 t = _to_tactic(t, ctx)
8320 return Tactic(Z3_tactic_try_for(t.ctx.ref(), t.tactic, ms), t.ctx)
8321
8322
def TryFor(t, ms, ctx=None)
Definition: z3py.py:8314
Z3_tactic Z3_API Z3_tactic_try_for(Z3_context c, Z3_tactic t, unsigned ms)
Return a tactic that applies t to a given goal for ms milliseconds. If t does not terminate in ms mil...

◆ TupleSort()

def z3py.TupleSort (   name,
  sorts,
  ctx = None 
)
Create a named tuple sort base on a set of underlying sorts
Example:
    >>> pair, mk_pair, (first, second) = TupleSort("pair", [IntSort(), StringSort()])

Definition at line 5293 of file z3py.py.

5293def TupleSort(name, sorts, ctx=None):
5294 """Create a named tuple sort base on a set of underlying sorts
5295 Example:
5296 >>> pair, mk_pair, (first, second) = TupleSort("pair", [IntSort(), StringSort()])
5297 """
5298 tuple = Datatype(name, ctx)
5299 projects = [("project%d" % i, sorts[i]) for i in range(len(sorts))]
5300 tuple.declare(name, *projects)
5301 tuple = tuple.create()
5302 return tuple, tuple.constructor(0), [tuple.accessor(0, i) for i in range(len(sorts))]
5303
5304
def TupleSort(name, sorts, ctx=None)
Definition: z3py.py:5293

Referenced by Context.MkTupleSort(), Context.mkTupleSort(), and TupleSort().

◆ UDiv()

def z3py.UDiv (   a,
  b 
)
Create the Z3 expression (unsigned) division `self / other`.

Use the operator / for signed division.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> UDiv(x, y)
UDiv(x, y)
>>> UDiv(x, y).sort()
BitVec(32)
>>> (x / y).sexpr()
'(bvsdiv x y)'
>>> UDiv(x, y).sexpr()
'(bvudiv x y)'

Definition at line 4198 of file z3py.py.

4198def UDiv(a, b):
4199 """Create the Z3 expression (unsigned) division `self / other`.
4200
4201 Use the operator / for signed division.
4202
4203 >>> x = BitVec('x', 32)
4204 >>> y = BitVec('y', 32)
4205 >>> UDiv(x, y)
4206 UDiv(x, y)
4207 >>> UDiv(x, y).sort()
4208 BitVec(32)
4209 >>> (x / y).sexpr()
4210 '(bvsdiv x y)'
4211 >>> UDiv(x, y).sexpr()
4212 '(bvudiv x y)'
4213 """
4214 _check_bv_args(a, b)
4215 a, b = _coerce_exprs(a, b)
4216 return BitVecRef(Z3_mk_bvudiv(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4217
4218
def UDiv(a, b)
Definition: z3py.py:4198
Z3_ast Z3_API Z3_mk_bvudiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned division.

Referenced by BitVecRef.__div__(), BitVecRef.__rdiv__(), and UDiv().

◆ UGE()

def z3py.UGE (   a,
  b 
)
Create the Z3 expression (unsigned) `other >= self`.

Use the operator >= for signed greater than or equal to.

>>> x, y = BitVecs('x y', 32)
>>> UGE(x, y)
UGE(x, y)
>>> (x >= y).sexpr()
'(bvsge x y)'
>>> UGE(x, y).sexpr()
'(bvuge x y)'

Definition at line 4162 of file z3py.py.

4162def UGE(a, b):
4163 """Create the Z3 expression (unsigned) `other >= self`.
4164
4165 Use the operator >= for signed greater than or equal to.
4166
4167 >>> x, y = BitVecs('x y', 32)
4168 >>> UGE(x, y)
4169 UGE(x, y)
4170 >>> (x >= y).sexpr()
4171 '(bvsge x y)'
4172 >>> UGE(x, y).sexpr()
4173 '(bvuge x y)'
4174 """
4175 _check_bv_args(a, b)
4176 a, b = _coerce_exprs(a, b)
4177 return BoolRef(Z3_mk_bvuge(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4178
4179
def UGE(a, b)
Definition: z3py.py:4162
Z3_ast Z3_API Z3_mk_bvuge(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than or equal to.

Referenced by BitVecRef.__ge__(), and UGE().

◆ UGT()

def z3py.UGT (   a,
  b 
)
Create the Z3 expression (unsigned) `other > self`.

Use the operator > for signed greater than.

>>> x, y = BitVecs('x y', 32)
>>> UGT(x, y)
UGT(x, y)
>>> (x > y).sexpr()
'(bvsgt x y)'
>>> UGT(x, y).sexpr()
'(bvugt x y)'

Definition at line 4180 of file z3py.py.

4180def UGT(a, b):
4181 """Create the Z3 expression (unsigned) `other > self`.
4182
4183 Use the operator > for signed greater than.
4184
4185 >>> x, y = BitVecs('x y', 32)
4186 >>> UGT(x, y)
4187 UGT(x, y)
4188 >>> (x > y).sexpr()
4189 '(bvsgt x y)'
4190 >>> UGT(x, y).sexpr()
4191 '(bvugt x y)'
4192 """
4193 _check_bv_args(a, b)
4194 a, b = _coerce_exprs(a, b)
4195 return BoolRef(Z3_mk_bvugt(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4196
4197
def UGT(a, b)
Definition: z3py.py:4180
Z3_ast Z3_API Z3_mk_bvugt(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than.

Referenced by BitVecRef.__gt__(), and UGT().

◆ ULE()

def z3py.ULE (   a,
  b 
)
Create the Z3 expression (unsigned) `other <= self`.

Use the operator <= for signed less than or equal to.

>>> x, y = BitVecs('x y', 32)
>>> ULE(x, y)
ULE(x, y)
>>> (x <= y).sexpr()
'(bvsle x y)'
>>> ULE(x, y).sexpr()
'(bvule x y)'

Definition at line 4126 of file z3py.py.

4126def ULE(a, b):
4127 """Create the Z3 expression (unsigned) `other <= self`.
4128
4129 Use the operator <= for signed less than or equal to.
4130
4131 >>> x, y = BitVecs('x y', 32)
4132 >>> ULE(x, y)
4133 ULE(x, y)
4134 >>> (x <= y).sexpr()
4135 '(bvsle x y)'
4136 >>> ULE(x, y).sexpr()
4137 '(bvule x y)'
4138 """
4139 _check_bv_args(a, b)
4140 a, b = _coerce_exprs(a, b)
4141 return BoolRef(Z3_mk_bvule(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4142
4143
def ULE(a, b)
Definition: z3py.py:4126
Z3_ast Z3_API Z3_mk_bvule(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned less than or equal to.

Referenced by BitVecRef.__le__(), and ULE().

◆ ULT()

def z3py.ULT (   a,
  b 
)
Create the Z3 expression (unsigned) `other < self`.

Use the operator < for signed less than.

>>> x, y = BitVecs('x y', 32)
>>> ULT(x, y)
ULT(x, y)
>>> (x < y).sexpr()
'(bvslt x y)'
>>> ULT(x, y).sexpr()
'(bvult x y)'

Definition at line 4144 of file z3py.py.

4144def ULT(a, b):
4145 """Create the Z3 expression (unsigned) `other < self`.
4146
4147 Use the operator < for signed less than.
4148
4149 >>> x, y = BitVecs('x y', 32)
4150 >>> ULT(x, y)
4151 ULT(x, y)
4152 >>> (x < y).sexpr()
4153 '(bvslt x y)'
4154 >>> ULT(x, y).sexpr()
4155 '(bvult x y)'
4156 """
4157 _check_bv_args(a, b)
4158 a, b = _coerce_exprs(a, b)
4159 return BoolRef(Z3_mk_bvult(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4160
4161
def ULT(a, b)
Definition: z3py.py:4144
Z3_ast Z3_API Z3_mk_bvult(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned less than.

Referenced by BitVecRef.__lt__(), and ULT().

◆ Union()

def z3py.Union ( args)
Create union of regular expressions.
>>> re = Union(Re("a"), Re("b"), Re("c"))
>>> print (simplify(InRe("d", re)))
False

Definition at line 10938 of file z3py.py.

10938def Union(*args):
10939 """Create union of regular expressions.
10940 >>> re = Union(Re("a"), Re("b"), Re("c"))
10941 >>> print (simplify(InRe("d", re)))
10942 False
10943 """
10944 args = _get_args(args)
10945 sz = len(args)
10946 if z3_debug():
10947 _z3_assert(sz > 0, "At least one argument expected.")
10948 _z3_assert(all([is_re(a) for a in args]), "All arguments must be regular expressions.")
10949 if sz == 1:
10950 return args[0]
10951 ctx = args[0].ctx
10952 v = (Ast * sz)()
10953 for i in range(sz):
10954 v[i] = args[i].as_ast()
10955 return ReRef(Z3_mk_re_union(ctx.ref(), sz, v), ctx)
10956
10957
Z3_ast Z3_API Z3_mk_re_union(Z3_context c, unsigned n, Z3_ast const args[])
Create the union of the regular languages.

Referenced by ReRef.__add__(), InRe(), and Union().

◆ Unit()

def z3py.Unit (   a)
Create a singleton sequence

Definition at line 10754 of file z3py.py.

10754def Unit(a):
10755 """Create a singleton sequence"""
10756 return SeqRef(Z3_mk_seq_unit(a.ctx_ref(), a.as_ast()), a.ctx)
10757
10758
Z3_ast Z3_API Z3_mk_seq_unit(Z3_context c, Z3_ast a)
Create a unit sequence of a.

Referenced by is_seq(), Re(), and SeqSort().

◆ Update()

def z3py.Update (   a,
  i,
  v 
)
Return a Z3 store array expression.

>>> a    = Array('a', IntSort(), IntSort())
>>> i, v = Ints('i v')
>>> s    = Update(a, i, v)
>>> s.sort()
Array(Int, Int)
>>> prove(s[i] == v)
proved
>>> j    = Int('j')
>>> prove(Implies(i != j, s[j] == a[j]))
proved

Definition at line 4692 of file z3py.py.

4692def Update(a, i, v):
4693 """Return a Z3 store array expression.
4694
4695 >>> a = Array('a', IntSort(), IntSort())
4696 >>> i, v = Ints('i v')
4697 >>> s = Update(a, i, v)
4698 >>> s.sort()
4699 Array(Int, Int)
4700 >>> prove(s[i] == v)
4701 proved
4702 >>> j = Int('j')
4703 >>> prove(Implies(i != j, s[j] == a[j]))
4704 proved
4705 """
4706 if z3_debug():
4707 _z3_assert(is_array_sort(a), "First argument must be a Z3 array expression")
4708 i = a.sort().domain().cast(i)
4709 v = a.sort().range().cast(v)
4710 ctx = a.ctx
4711 return _to_expr_ref(Z3_mk_store(ctx.ref(), a.as_ast(), i.as_ast(), v.as_ast()), ctx)
4712
4713
Z3_ast Z3_API Z3_mk_store(Z3_context c, Z3_ast a, Z3_ast i, Z3_ast v)
Array update.

Referenced by Store(), and Update().

◆ URem()

def z3py.URem (   a,
  b 
)
Create the Z3 expression (unsigned) remainder `self % other`.

Use the operator % for signed modulus, and SRem() for signed remainder.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> URem(x, y)
URem(x, y)
>>> URem(x, y).sort()
BitVec(32)
>>> (x % y).sexpr()
'(bvsmod x y)'
>>> URem(x, y).sexpr()
'(bvurem x y)'

Definition at line 4219 of file z3py.py.

4219def URem(a, b):
4220 """Create the Z3 expression (unsigned) remainder `self % other`.
4221
4222 Use the operator % for signed modulus, and SRem() for signed remainder.
4223
4224 >>> x = BitVec('x', 32)
4225 >>> y = BitVec('y', 32)
4226 >>> URem(x, y)
4227 URem(x, y)
4228 >>> URem(x, y).sort()
4229 BitVec(32)
4230 >>> (x % y).sexpr()
4231 '(bvsmod x y)'
4232 >>> URem(x, y).sexpr()
4233 '(bvurem x y)'
4234 """
4235 _check_bv_args(a, b)
4236 a, b = _coerce_exprs(a, b)
4237 return BitVecRef(Z3_mk_bvurem(a.ctx_ref(), a.as_ast(), b.as_ast()), a.ctx)
4238
4239
Z3_ast Z3_API Z3_mk_bvurem(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned remainder.

Referenced by BitVecRef.__mod__(), BitVecRef.__rmod__(), SRem(), and URem().

◆ user_prop_diseq()

def z3py.user_prop_diseq (   ctx,
  cb,
  x,
  y 
)

Definition at line 11152 of file z3py.py.

11152def user_prop_diseq(ctx, cb, x, y):
11153 prop = _prop_closures.get(ctx)
11154 prop.cb = cb
11155 prop.diseq(x, y)
11156 prop.cb = None
11157
11158
def user_prop_diseq(ctx, cb, x, y)
Definition: z3py.py:11152

◆ user_prop_eq()

def z3py.user_prop_eq (   ctx,
  cb,
  x,
  y 
)

Definition at line 11145 of file z3py.py.

11145def user_prop_eq(ctx, cb, x, y):
11146 prop = _prop_closures.get(ctx)
11147 prop.cb = cb
11148 prop.eq(x, y)
11149 prop.cb = None
11150
11151
def user_prop_eq(ctx, cb, x, y)
Definition: z3py.py:11145

◆ user_prop_final()

def z3py.user_prop_final (   ctx,
  cb 
)

Definition at line 11138 of file z3py.py.

11138def user_prop_final(ctx, cb):
11139 prop = _prop_closures.get(ctx)
11140 prop.cb = cb
11141 prop.final()
11142 prop.cb = None
11143
11144
def user_prop_final(ctx, cb)
Definition: z3py.py:11138

◆ user_prop_fixed()

def z3py.user_prop_fixed (   ctx,
  cb,
  id,
  value 
)

Definition at line 11131 of file z3py.py.

11131def user_prop_fixed(ctx, cb, id, value):
11132 prop = _prop_closures.get(ctx)
11133 prop.cb = cb
11134 prop.fixed(id, _to_expr_ref(ctypes.c_void_p(value), prop.ctx()))
11135 prop.cb = None
11136
11137
def user_prop_fixed(ctx, cb, id, value)
Definition: z3py.py:11131

◆ user_prop_fresh()

def z3py.user_prop_fresh (   id,
  ctx 
)

Definition at line 11124 of file z3py.py.

11124def user_prop_fresh(id, ctx):
11125 _prop_closures.set_threaded()
11126 new_prop = UsePropagateBase(None, ctx)
11127 _prop_closures.set(new_prop.id, new_prop.fresh())
11128 return ctypes.c_void_p(new_prop.id)
11129
11130
def user_prop_fresh(id, ctx)
Definition: z3py.py:11124

◆ user_prop_pop()

def z3py.user_prop_pop (   ctx,
  num_scopes 
)

Definition at line 11120 of file z3py.py.

11120def user_prop_pop(ctx, num_scopes):
11121 _prop_closures.get(ctx).pop(num_scopes)
11122
11123
def user_prop_pop(ctx, num_scopes)
Definition: z3py.py:11120

◆ user_prop_push()

def z3py.user_prop_push (   ctx)

Definition at line 11116 of file z3py.py.

11116def user_prop_push(ctx):
11117 _prop_closures.get(ctx).push()
11118
11119
def user_prop_push(ctx)
Definition: z3py.py:11116

◆ Var()

def z3py.Var (   idx,
  s 
)
Create a Z3 free variable. Free variables are used to create quantified formulas.

>>> Var(0, IntSort())
Var(0)
>>> eq(Var(0, IntSort()), Var(0, BoolSort()))
False

Definition at line 1438 of file z3py.py.

1438def Var(idx, s):
1439 """Create a Z3 free variable. Free variables are used to create quantified formulas.
1440
1441 >>> Var(0, IntSort())
1442 Var(0)
1443 >>> eq(Var(0, IntSort()), Var(0, BoolSort()))
1444 False
1445 """
1446 if z3_debug():
1447 _z3_assert(is_sort(s), "Z3 sort expected")
1448 return _to_expr_ref(Z3_mk_bound(s.ctx_ref(), idx, s.ast), s.ctx)
1449
1450
Z3_ast Z3_API Z3_mk_bound(Z3_context c, unsigned index, Z3_sort ty)
Create a bound variable.

Referenced by QuantifierRef.body(), QuantifierRef.children(), get_var_index(), is_pattern(), is_var(), MultiPattern(), QuantifierRef.pattern(), RealVar(), RealVarVector(), substitute_vars(), and Var().

◆ When()

def z3py.When (   p,
  t,
  ctx = None 
)
Return a tactic that applies tactic `t` only if probe `p` evaluates to true.
Otherwise, it returns the input goal unmodified.

>>> t = When(Probe('size') > 2, Tactic('simplify'))
>>> x, y = Ints('x y')
>>> g = Goal()
>>> g.add(x > 0)
>>> g.add(y > 0)
>>> t(g)
[[x > 0, y > 0]]
>>> g.add(x == y + 1)
>>> t(g)
[[Not(x <= 0), Not(y <= 0), x == 1 + y]]

Definition at line 8608 of file z3py.py.

8608def When(p, t, ctx=None):
8609 """Return a tactic that applies tactic `t` only if probe `p` evaluates to true.
8610 Otherwise, it returns the input goal unmodified.
8611
8612 >>> t = When(Probe('size') > 2, Tactic('simplify'))
8613 >>> x, y = Ints('x y')
8614 >>> g = Goal()
8615 >>> g.add(x > 0)
8616 >>> g.add(y > 0)
8617 >>> t(g)
8618 [[x > 0, y > 0]]
8619 >>> g.add(x == y + 1)
8620 >>> t(g)
8621 [[Not(x <= 0), Not(y <= 0), x == 1 + y]]
8622 """
8623 p = _to_probe(p, ctx)
8624 t = _to_tactic(t, ctx)
8625 return Tactic(Z3_tactic_when(t.ctx.ref(), p.probe, t.tactic), t.ctx)
8626
8627
def When(p, t, ctx=None)
Definition: z3py.py:8608
Z3_tactic Z3_API Z3_tactic_when(Z3_context c, Z3_probe p, Z3_tactic t)
Return a tactic that applies t to a given goal is the probe p evaluates to true. If p evaluates to fa...

Referenced by When().

◆ With()

def z3py.With (   t,
args,
**  keys 
)
Return a tactic that applies tactic `t` using the given configuration options.

>>> x, y = Ints('x y')
>>> t = With(Tactic('simplify'), som=True)
>>> t((x + 1)*(y + 2) == 0)
[[2*x + y + x*y == -2]]

Definition at line 8265 of file z3py.py.

8265def With(t, *args, **keys):
8266 """Return a tactic that applies tactic `t` using the given configuration options.
8267
8268 >>> x, y = Ints('x y')
8269 >>> t = With(Tactic('simplify'), som=True)
8270 >>> t((x + 1)*(y + 2) == 0)
8271 [[2*x + y + x*y == -2]]
8272 """
8273 ctx = keys.pop("ctx", None)
8274 t = _to_tactic(t, ctx)
8275 p = args2params(args, keys, t.ctx)
8276 return Tactic(Z3_tactic_using_params(t.ctx.ref(), t.tactic, p.params), t.ctx)
8277
8278
def With(t, *args, **keys)
Definition: z3py.py:8265
Z3_tactic Z3_API Z3_tactic_using_params(Z3_context c, Z3_tactic t, Z3_params p)
Return a tactic that applies t using the given set of parameters.

Referenced by Goal.prec(), and With().

◆ WithParams()

def z3py.WithParams (   t,
  p 
)
Return a tactic that applies tactic `t` using the given configuration options.

>>> x, y = Ints('x y')
>>> p = ParamsRef()
>>> p.set("som", True)
>>> t = WithParams(Tactic('simplify'), p)
>>> t((x + 1)*(y + 2) == 0)
[[2*x + y + x*y == -2]]

Definition at line 8279 of file z3py.py.

8279def WithParams(t, p):
8280 """Return a tactic that applies tactic `t` using the given configuration options.
8281
8282 >>> x, y = Ints('x y')
8283 >>> p = ParamsRef()
8284 >>> p.set("som", True)
8285 >>> t = WithParams(Tactic('simplify'), p)
8286 >>> t((x + 1)*(y + 2) == 0)
8287 [[2*x + y + x*y == -2]]
8288 """
8289 t = _to_tactic(t, None)
8290 return Tactic(Z3_tactic_using_params(t.ctx.ref(), t.tactic, p.params), t.ctx)
8291
8292
def WithParams(t, p)
Definition: z3py.py:8279

Referenced by WithParams().

◆ Xor()

def z3py.Xor (   a,
  b,
  ctx = None 
)
Create a Z3 Xor expression.

>>> p, q = Bools('p q')
>>> Xor(p, q)
Xor(p, q)
>>> simplify(Xor(p, q))
Not(p) == q

Definition at line 1763 of file z3py.py.

1763def Xor(a, b, ctx=None):
1764 """Create a Z3 Xor expression.
1765
1766 >>> p, q = Bools('p q')
1767 >>> Xor(p, q)
1768 Xor(p, q)
1769 >>> simplify(Xor(p, q))
1770 Not(p) == q
1771 """
1772 ctx = _get_ctx(_ctx_from_ast_arg_list([a, b], ctx))
1773 s = BoolSort(ctx)
1774 a = s.cast(a)
1775 b = s.cast(b)
1776 return BoolRef(Z3_mk_xor(ctx.ref(), a.as_ast(), b.as_ast()), ctx)
1777
1778
def Xor(a, b, ctx=None)
Definition: z3py.py:1763
Z3_ast Z3_API Z3_mk_xor(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 xor t2.

Referenced by Xor().

◆ z3_debug()

def z3py.z3_debug ( )

Definition at line 64 of file z3py.py.

64def z3_debug():
65 global Z3_DEBUG
66 return Z3_DEBUG
67
68

Referenced by FuncDeclRef.__call__(), Probe.__call__(), QuantifierRef.__getitem__(), ModelRef.__getitem__(), Context.__init__(), Goal.__init__(), ArithRef.__mod__(), ArithRef.__rmod__(), DatatypeSortRef.accessor(), And(), AndThen(), Tactic.apply(), ExprRef.arg(), args2params(), ArraySort(), IntNumRef.as_long(), AtLeast(), AtMost(), BV2Int(), BVRedAnd(), BVRedOr(), BVSNegNoOverflow(), SortRef.cast(), BoolSortRef.cast(), ArithSortRef.cast(), BitVecSortRef.cast(), FPSortRef.cast(), ExprRef.children(), Concat(), Const(), DatatypeSortRef.constructor(), Goal.convert_model(), CreateDatatypes(), ExprRef.decl(), Datatype.declare(), Datatype.declare_core(), Default(), describe_probes(), Distinct(), FuncDeclRef.domain(), EnumSort(), eq(), AstRef.eq(), Ext(), Extract(), FiniteDomainVal(), fpIsPositive(), fpNeg(), FPSort(), fpToFPUnsigned(), fpToIEEEBV(), fpToReal(), fpToSBV(), fpToUBV(), FreshFunction(), Function(), get_as_array_func(), ModelRef.get_interp(), get_map_func(), ModelRef.get_universe(), get_var_index(), If(), AlgebraicNumRef.index(), Intersect(), is_quantifier(), is_sort(), IsInt(), K(), Map(), MultiPattern(), QuantifierRef.no_pattern(), ExprRef.num_args(), Or(), OrElse(), Tactic.param_descrs(), ParOr(), ParThen(), QuantifierRef.pattern(), prove(), RatVal(), RealSort(), RecFunction(), DatatypeSortRef.recognizer(), RepeatBitVec(), Select(), ParamsRef.set(), set_param(), SignExt(), simplify(), solve_using(), substitute(), substitute_vars(), ToInt(), ToReal(), AstRef.translate(), Goal.translate(), ModelRef.translate(), Solver.translate(), Union(), Update(), Var(), QuantifierRef.var_name(), QuantifierRef.var_sort(), and ZeroExt().

◆ z3_error_handler()

def z3py.z3_error_handler (   c,
  e 
)

Definition at line 179 of file z3py.py.

179def z3_error_handler(c, e):
180 # Do nothing error handler, just avoid exit(0)
181 # The wrappers in z3core.py will raise a Z3Exception if an error is detected
182 return
183
184
def z3_error_handler(c, e)
Definition: z3py.py:179

◆ ZeroExt()

def z3py.ZeroExt (   n,
  a 
)
Return a bit-vector expression with `n` extra zero-bits.

>>> x = BitVec('x', 16)
>>> n = ZeroExt(8, x)
>>> n.size()
24
>>> n
ZeroExt(8, x)
>>> n.sort()
BitVec(24)
>>> v0 = BitVecVal(2, 2)
>>> v0
2
>>> v0.size()
2
>>> v  = simplify(ZeroExt(6, v0))
>>> v
2
>>> v.size()
8

Definition at line 4355 of file z3py.py.

4355def ZeroExt(n, a):
4356 """Return a bit-vector expression with `n` extra zero-bits.
4357
4358 >>> x = BitVec('x', 16)
4359 >>> n = ZeroExt(8, x)
4360 >>> n.size()
4361 24
4362 >>> n
4363 ZeroExt(8, x)
4364 >>> n.sort()
4365 BitVec(24)
4366 >>> v0 = BitVecVal(2, 2)
4367 >>> v0
4368 2
4369 >>> v0.size()
4370 2
4371 >>> v = simplify(ZeroExt(6, v0))
4372 >>> v
4373 2
4374 >>> v.size()
4375 8
4376 """
4377 if z3_debug():
4378 _z3_assert(_is_int(n), "First argument must be an integer")
4379 _z3_assert(is_bv(a), "Second argument must be a Z3 bit-vector expression")
4380 return BitVecRef(Z3_mk_zero_ext(a.ctx_ref(), n, a.as_ast()), a.ctx)
4381
4382
def ZeroExt(n, a)
Definition: z3py.py:4355
Z3_ast Z3_API Z3_mk_zero_ext(Z3_context c, unsigned i, Z3_ast t1)
Extend the given bit-vector with zeros to the (unsigned) equivalent bit-vector of size m+i,...

Referenced by ZeroExt().

Variable Documentation

◆ sat

Definition at line 6782 of file z3py.py.

◆ unknown

Definition at line 6784 of file z3py.py.

◆ unsat

Definition at line 6783 of file z3py.py.

◆ Z3_DEBUG

Z3_DEBUG = __debug__

Definition at line 61 of file z3py.py.