Noname manuscript No.
(will be inserted by the editor)

Efficient Evaluation Methods of Elementary Functions
Suitable for SIMD Computation

Naoki Shibata

Received: date / Accepted: date

Abstract Data-parallel architectures like SIMD (Sin-
gle Instruction Multiple Data) or SIMT (Single Instruc-
tion Multiple Thread) have been adopted in many re-
cent CPU and GPU architectures. Although some SIMD
and SIMT instruction sets include double-precision arith-
metic and bitwise operations, there are no instructions
dedicated to evaluating elementary functions like trigono-
metric functions in double precision. Thus, these func-
tions have to be evaluated one by one using an FPU
or using a software library. However, traditional algo-
rithms for evaluating these elementary functions in-
volve heavy use of conditional branches and/or table
look-ups, which are not suitable for SIMD computa-
tion. In this paper, efficient methods are proposed for
evaluating the sine, cosine, arc tangent, exponential and
logarithmic functions in double precision without table
look-ups, scattering from, or gathering into SIMD reg-
isters, or conditional branches. We implemented these
methods using the Intel SSE2 instruction set to evaluate
their accuracy and speed. The results showed that the
average error was less than 0.67 ulp, and the maximum
error was 6 ulps. The computation speed was faster
than the FPUs on Intel Core 2 and Core i7 processors.

Keywords SIMD, elementary functions

1 Introduction

Recently, computer architects have been trying to achieve
high performance by adopting data-parallel architec-
tures like SIMD (Single Instruction Multiple Data) or

Naoki Shibata

Department of Information Processing & Management,
Shiga University

1-1-1 Bamba, Hikone 522-8522, Japan

E-mail: shibata@biwako.shiga-u.ac.jp

SIMT (Single Instruction Multiple Thread), rather than
extracting more instruction-level parallelism. Intel’s x86
architecture employs 128-bit-wide SIMD instructions,
but it will be extended to 256 bit in the Sandy Bridge
processors and 512 bit in the Larrabee processors[l].
Many supercomputers utilize AMD Opteron Proces-
sors as computing cores. IBM Roadrunner[2] also uti-
lizes Cell Broadband Engines (Cell B.E.)[3], and both of
these architectures have powerful SIMD engines. nVidia’s
CUDA-enabled GPGPUs use SIMT architecture, and
can achieve 600 double-precision GFLOPS with a Tesla
C2050 processor[4].

Utilizing SIMD or SIMT processing is becoming more
and more important for many kinds of applications, and
double-precision calculation capabilities are especially
important for many scientific applications. However,
those instruction sets only include basic arithmetic and
bitwise operations. Instructions for evaluating elemen-
tary functions like trigonometric functions in double-
precision are not provided, and we have to evaluate
these functions with a conventional FPU or a software
library. An FPU calculation is fast, but FPU instruc-
tions for evaluating the elementary functions are only
available in a few architectures.

We need to take special care for efficient computa-
tion utilizing SIMD instructions. Gathering and scat-
tering data from and into SIMD registers are expensive
operations. Looking up different table entries according
to the value of each element in a SIMD register can be
especially expensive, since each table look-up may cause
a cache miss. Also, the SSE instructions[5] in the x86
architecture have restrictions on data alignment, and
an access to unaligned data is always expensive. Ran-
dom conditional branches are expensive for processors
with a long instruction pipeline. On the other hand,
many SIMD architectures provide instructions for di-

vision and taking square root, and these calculations
are now inexpensive. Thus, sometimes traditional algo-
rithms are not suitable, and we need new algorithms
for them.

In this paper, we propose new methods for evaluat-
ing the sine, cosine, arc tangent, exponential and loga-
rithmic functions in double precision which are suitable
for processors with a long instruction pipeline and an
SIMD instruction set. Evaluations of these functions are
carried out by a series of double-precision arithmetic
and bitwise operations without table look-ups, scatter-
ing/gathering operations, or conditional branches. The
total code size is very small, and thus they are also suit-
able for Cell B.E. which has only 256K bytes of directly
accessible scratch pad memory in each SPE. The pro-
posed methods were implemented using the Intel SSE2
instruction set for evaluating accuracy and speed. The
results showed that the proposed methods were faster
than FPU calculations on Intel Core 2 and Core i7 pro-
cessors, and the average and maximum errors were less
than 0.67 ulp (unit in the last place) and 6 ulps, respec-
tively. The total code size was less than 1400 bytes.

The remainder of this paper is organized as fol-
lows. Section 2 introduces some related works. Section
3 presents the proposed methods with working C codes.
Section 4 shows the results of the evaluation of accu-
racy, speed and code size. Section 5 presents our con-
clusions.

2 Related Works

Some software libraries have capabilities for evaluating
elementary functions. A few libraries with capabilities
for evaluating elementary functions using SIMD com-
putation in single precision are available[6,7,8]. How-
ever, adding capabilities of double-precision evaluations
to these libraries is not a straightforward task. Software
modules like the x87 FPU emulator code in Linux oper-
ating system kernel[9] or the libm in GNU C Library[10]
have capabilities for evaluating elementary functions in
double precision. These modules do not utilize SIMD
computation, and they involve heavy use of conditional
branches. Some multiple-precision floating-point com-
putation libraries have capabilities for evaluating ele-
mentary functions in multiple-precision[11,12]. The pro-
gram structures of these libraries are very different from
the proposed method.

There are many researches on evaluating elementary
functions on hardware[13,14,15,16]. The restrictions of
calculation are very different from the SIMD computa-
tions, and many of these methods use table look-ups.

There are many researches on accelerating applica-
tions using SIMD or SIMT computation[17,18]. Tra-

ditional irregular algorithms are sometimes difficult to
parallelize on massively multi-threaded hardware, and
many researchers are now working on new algorithms
for such hardware.

3 Proposed Method

In this section, the details of the proposed methods are
explained. The working C codes are provided which can
be easily converted into a series of SIMD instructions.
Having converted the codes, a target function can be
evaluated with multiple inputs in a SIMD register si-
multaneously.

3.1 Trigonometric Functions

The proposed method evaluates the functions of sine
and cosine on the argument of d at the same time. The
proposed method consists of two steps. First, the ar-
gument d is reduced to within 0 and 7/4 utilizing the
symmetry and periodicity of the sine and cosine func-
tions, shown as (1) and (2). Second, an evaluation of
the sine and cosine function on the reduced argument s
is performed assuming that the argument is within the
range.

cosz = Sin(g — z) = sin(z + g) (1)

sinx = cos(g —x) = —cos(z + g) (2)
For the first step, we first find s and an integer ¢ in
(3) so that 0 < s < /4.

d=s+ zq (3)
4
g can be found by dividing d by /4 and applying the
floor function. Then s can be found by multiplying ¢q by
/4 and subtracting it from d. We need to take special
care here, because a cancellation error can make the
derived value of s inaccurate when d is a large num-
ber close to a multiple of 7/4. Some implementations
like FPUs on x86 architectures exhibit this problem. In
this paper, a way for efficiently preventing this prob-
lem is proposed. The problem is in the last multipli-
cation and subtraction, and the proposed method pre-
vents the problem by calculating this part with extra
precision utilizing properties of the IEEE 754 standard
for floating-point arithmetic[19]. Here, ¢ is assumed to
be expressed in 26 bits, which is a half of the length of
the mantissa in an IEEE 754 double-precision FP num-
ber. The value of 7/4 is split into three parts so that

| 26bits |

26bits |

TU/4 = 11001001000011111101101010{10001000100001011010001100001000110...

Pl4_A = .11001001000011111101101010

Pl4_B = 2-26 x /1000100010000101101000110

Fig. 1 Splitting 7/4 into three parts

all of the bits in the lower half of the mantissa are zero,
as shown in Fig. 1. Then, multiplying these numbers
with ¢ does not produce an error at all, and subtract-
ing these numbers in descending order from d does not
produce a cancellation error either.

For the second step, we evaluate the sine and cosine
functions on the argument s. In many existing imple-
mentations, these evaluations are performed by simply
summing up the terms of the corresponding Taylor se-
ries, shown as (4).

. = (=" oni1 ad ab
smx—;mx _x_§+§_"' (4)
However, if these terms are summed up using double-
precision calculations, we cannot get an accurate result
because of the accumulation of errors. In order to im-
prove the accuracy while speeding up the evaluation,
many implementations use another way of argument
reduction [11]. The argument s is divided by a certain
number, the terms of the Taylor series are evaluated
for this value, and then the triple-angle formula (5) is
used to obtain the final value. For example, in order
to evaluate sin 0.27, we first divide 0.27 by 9, evaluate
the terms of the Taylor series for sin 0.03, and then ap-
ply the triple-angle formula two times to find the value
of sin0.27. Since the argument for the Taylor series is
reduced, its convergence is accelerated, and we do not
need to evaluate many terms to get an accurate value.
In this way, we can reduce the accumulation of errors.

sin3z = 3sina — 4sin’z (5)

However, this way does not yield sufficient accuracy
with double-precision calculations, because the differ-
ence between 3sinz and 4sin® z becomes large if sin z
is small, and applying the triple-angle formula produces
a rounding error. To prevent this error, we can use the
double-angle formula (6) of cosine. In this case, the
value of the sine function can be evaluated from the
value of the cosine function using (7).

Pl4_C = 2-52 x |001000110...

cos 2z = 2cos’x — 1 (6)
sinz = v/1—cos?z (7)

Now, we have another problem. If x is close to 0, find-
ing the value of the sine function using (7) produces a
cancellation error, since cos? z is close to 1. In this pa-
per, instead of cos s, the value of 1 — cos s is found. Let
f(z) be 1 — cosz, and we get the following equations.

f(22) = 4f(2) - 2f(2)? (®)
2f(x) — f(x)? 9)

Since s is between 0 and 7/4, the application of (8) or
(9) does not produce cancellation or rounding errors. By
evaluating the first five terms of the Taylor series and
applying (8) three times, we can evaluate the functions
of sine and cosine on the argument of s with sufficient
accuracy. In order to improve the computational per-
formance, we use the following technique. Let g(z) be
2f(x) and we get the following equation:

sinx =

9(2z) = (4 —g(x)) - g(x) (10)

By using (10) instead of (8), we can omit one multi-
plication each time we apply the double-angle formula.
This also improves the accuracy by a little. To incorpo-
rate the result from the first step, we use the symmetry
and periodicity of the trigonometric functions. This is
performed by exchanging the derived values of sin s and
cos s, and multiplying those values by —1 according to
the remainder ¢ divided by 4. In order to evaluate the
tangent function, we can simply use (11).

A working C code for the proposed method is shown
in Fig. 2'.

(11)

I The code contains conditional branches for ease of reading.
All of these conditional branches can be eliminated by unrolling
loops or replacing them by combinations of comparisons and bit-
wise operations.

#include <math.h>
typedef struct sincos_-t { double s, c;

#define N 3

sincos-t
int i;

xsincos0 (double s) { //0<s < 7w/4

// Argument reduction
s = s % pow(2, —N);
s

s«s; // Bvaluating Taylor series

} sincos_t;

} // Applying double angle formula

s ((((s/1814400 — 1.0/20160)%s + 1.0/360)xs — 1.0/12)%s + 1)xs;
for (i=0;i<N;i++) { s = (4—s) =* s;

s = s 2;

sincos-t sc;

sc.s = sqrt((2—s)*s); sc.c = 1 — s;

return sc;

}
#define PI4_A

#define PI4_B
#define PI4_C

// 4]m

.7853981554508209228515625 // 7 /4 split into three parts
.794662735614792836713604629039764404296875e¢—8
.306161699786838294306516483068750264552437361480769e—16

#define M_4_PI 1.273239544735162542821171882678754627704620361328125

sincos-t xsincos (double d) {
double s = fabs (d);

s ;

int q = (int)(s * M_4_PI), r = q + (q & 1);

s —= r % PI4_A; s —= r % PI4_B; s —= r % PI4_C;
sincos_.t sc = xsincosO (s);

if (((g + 1) & 2) != 0) { s = sc.c; sc.c = sc.
if (((qg & 4) !'= 0) != (d < 0)) sc.s = —sc.s;
if (((q + 2) & 4) != 0) sc.c = —sc.c;

return sc;

}

double xsin (double d) {
double xcos(double d) {
double xtan (double d) {

sincos_t sc

sincos_t sc

sincos-t sc

xsincos (d);
xsincos (d);
xsincos (d);

sc.s = s; }
return sc.s; }
return sc.c; }

return sc.s / sc.c; }

Fig. 2 Working C code for evaluating trigonometric functions

3.2 Inverse Trigonometric Functions

We cannot get an accurate result by simply summing
up many terms of the Taylor series (12) using double-
precision calculations because of an accumulation of er-
rors. As far as we surveyed, no good way is known for
reducing the argument for evaluating inverse trigono-
metric functions. In this paper, a new way of argument
reduction for evaluating the arc tangent function utiliz-
ing the half-angle formula (14) of the cotangent function
is proposed.

o~ (=D"
tanz =) 2l 12
arctan x 2 o011 (12)
™
to = = tan (5 —x) 13
coty =.—— =tan(g —z (13)
cotg =cotx+V1+cot’w (14)

Let d be the argument and § = arctand. Thus, d =
tan @ holds. For simplicity, we now assume d > 0 and
0 <0 < m/2. From (13), the following equation holds.

tan(E—O):1

3 pi (15)

Thus, if d < 1, the argument can be reduced by evalu-
ating the arc tangent function on the argument of 1/d
instead of d, and subtracting the result from 7/2. Thus,
we can now assume d > 1 and 7/4 < 6 < 7/2. In or-
der to reduce the argument d = tan 6, we can use (14)
to enlarge cot§ = 1/tan 6. Please note that cotx/2 is
larger than cotx if 0 < z < 7/2. For example, assume
that we are evaluating arctan 2, and ¢ is a number such
that 2 = tan ¢. We first apply (13) to get cot ¢ = 1/2.
Next, we apply (14) to get cot ¢/2 = 1/2++/1 + (1/2)2,
and apply (13) to get tan¢/2 = 1/(1/2+ /5/4). Note
that 1/(1/2 + 1/5/4) is less than 2, thus we reduced
the argument. Then, we evaluate several terms of (12)
for the arc tangent of 1/(1/2 + \/5/4), which is ¢/2.
Finally, we multiply 2 to the result to get ¢ = arctan 2.

By applying (14) two times and summing the first
eleven terms of Taylor series, we can evaluate the arc
tangent function with sufficient accuracy.

The arc sine and the arc cosine functions can be
evaluated using the following equation.

arcsin x = arctan

(16)

1—=x

2

arccos ¢ = arctan % (17)
However, these equations produce cancellation errors if
|| is close to 1. These errors can be avoided by modify-
ing the above equations as follows. Note that no cancel-
lation error is produced by subtracting x from 1 in these
equations. A working C code for the proposed method
is shown in Fig. 3.

X

arcsin z = arctan ————— (18)
(1+2z)(1 -2
(1+2z)(1-2)
arccos r = arctan ~———————= (19)
x
#include <math.h>
#define M_PI 3.14159265358979323846
#define N 2
double xatan (double d) {
double x, y, z = fabs(d);
if (z < 1.0) x = 1.0/z; else x = z;
int i; // Applying cotangent half angle formula
for(i = 0:i < N;i++) { x = x + sqrt(l+x*x); }

x = 1.0 / x;

y = 0; // BEvaluating Taylor series
for (i=10;i>=0;i——) {
y = y*x*x 4+ pow(—1, i)/(2xi+1);

i

y *= x * pow(2, N);

if (z > 1.0) y = M_PI/2 — y;
return d < 0 ? —y : y;
}

double xasin (double d) {

return xatan(d / sqrt((1+d)*(1—d)));
}
double xacos(double d

) 1
return xatan(sqrt((14+d)*(1—d))/d) +
(d <0 ? MPI : 0);
}

Fig. 3 Working C code for evaluating inverse trigonometric func-
tions

3.3 Exponential Function

The proposed method for evaluating the exponential
function consists of two steps. As the first step, the
argument d is reduced to within 0 and log, 2. Then, as
the second step, the exponential function is evaluated
on the reduced argument s.

For the first step, in order to evaluate exp d, we first
find s and an integer ¢ in (20) so that 0 < s < log, 2.

d=s+q-log,2 (20)

Here, we have the same problem as we had in the case of
the trigonometric functions. In order to find the value
of s, we have to multiply ¢ by log, 2 and subtract it

from d, where we have a cancellation error when d is
close to a multiple of log, 2. In order to prevent this,
the value of log, 2 is split into two parts in a similar
way as in the case of the trigonometric functions, and
each part is multiplied by ¢ and subtracted from d in
turn.

For the second step, we can use (21) for reducing the
argument, and then evaluate the terms of the Taylor
series (22).

exp 2r = (exp x)? (21)
= " 2 23
exngﬁzl+m+§+§+m (22)

However, we have a problem if we simply use these two
equations. If s is close to 0, the difference between the
first term, which is 1, and the other terms in (22) is too
large and produces rounding errors. In order to avoid
this problem, the proposed method finds the value of
exp s — 1 instead of exps. Let h(x) be expz — 1, and
we derive the following equation from (21) and (22):

h(2e) = (2 + h(z)) - h(z) (23)
W)= %T (24)
n=1 """

By summing the first eight terms of (24), applying
(23) four times, and then adding 1 to the result, we can
evaluate the exponential function on the argument of
s with sufficient accuracy. By incorporating the result
from the first step, we get the final result by multiplying
the result by 27 as shown in (25). Calculation of 27 from
q can be performed by substituting 1023 + ¢ for the
exponent of 1, utilizing the properties of the IEEE 754
standard.

A working C code for the proposed method is shown
in Fig. 4.

exp(s + ¢ - log, 2) = (exps) - exp(q - log, 2)
= (exps) - 29 (25)

3.4 Logarithmic Function

In order to evaluate the logarithmic function, we can
use the series shown as (26) which converges faster than
the Taylor series[20].

e’} 2n+1
1 r—1
logzx:2g 2n+1<x—|—1> (26)
n=0

#include <math.h>

#define M_LN2 0.6931471805599453094172321214581766 // log, 2

// loge 2 split into two parts

#define L2U .69314718055966295651160180568695068359375
#define L2L .28235290563031577122588448175013436025525412068e—12

#define N 4

double xexp(double d) {

int q = (int)(d / M.LN2), i;
double s = d — q % L2U — q * L2L, t;
s = s * pow(2, —N); // Argument reduction

ting Taylor series

// Ev
t =
t =

for (i=0;i<N;it+) { t = (24+t)*t; }

return (t + 1) * pow(2, q);

s/40320 + 1.0/5040)%s 4+ 1.0/720)*s + 1.0/120)x*s;
(t + 1.0/24)%s + 1.0/6)*s + 1.0/2)%s + 1)*s;

Fig. 4 Working C code for evaluating exponential function

The proposed method consists of two steps. The first
step is reducing argument by splitting the original argu-
ment into its mantissa and exponent. The second step is
to evaluate (26) on the mantissa part as the argument.

As the first step, we split the original argument d
into its mantissa m and an integer exponent e where
0.5 <m < 1, as shown in (27), utilizing the property of
the IEEE 754 standard. Since (26) converges fast if its
argument is close to 1, we multiply 2 to m and subtract
1 from e if m is smaller than ﬁ/2 Then m is in the
range of \@/2 <m< V2.

x=m-2° (27)

As the second step, we simply evaluate the first 10
terms of the series of (26) to evaluate logm. We can get
the value of log d by adding elog 2 to the value of logm
to get the final result, as shown in (28).

A C code for this method is shown in Fig. 5

log(m - 2%) = logm + log 2°
= logm + elog 2 (28)

4 Evaluation

The proposed methods were tested to evaluate accu-
racy, speed, and code size. The tests were performed on
a PC with Core i7 920 2.66GHz. The system is equipped
with 3 GB of RAM and runs Linux (Ubuntu Jaunty
with 2.6.28 kernel, IA32). The proposed methods were

implemented in C language with Intel SSE2 intrinsics?.

2 An intrinsic is a function known by the compiler that directly
maps to a sequence of one or more assembly language instruc-
tions.

#include <math.h>

double xlog (double d) {

int e, i;

double m = frexp (d, &e);

if (m < 0.7071) { m = 2; e——; }

double x = (m-1) / (m+1), y = 0;
for(i=19;i>=1;i—=2) { y = y*x*x + 2.0/i; }

return exlog (2) + xx*xy;

Fig. 5 Working C code for evaluating logarithmic function

We used gce 4.3.3 with -msse2 -mfpmath=sse -0 op-
tions to compile our programs.

4.1 Accuracy

The accuracy of the proposed methods was tested by
comparing the results produced by the proposed meth-
ods to the accurate results produced by 256 bit pre-
cision calculations using the MPFR Library[12]. We
checked the accuracy by evaluating the functions on
the argument of each value in a range at regular inter-
vals, and we measured the average and maximum error
in ulp. We measured the evaluation accuracy within a
few ranges for each function. The ranges and the mea-
surement results are shown in Tables 1, 2, 3, 4 and 5.
Please note that because of the accuracy requirements
of IEEE 754 standard, these results do not change be-
tween platforms comform to the standard.

The evaluation error did not exceed 6 ulps in every
test. The average error of 0.28 ulp to 0.67 ulp can be
considered to be good, since even if accurate numbers
are correctly rounded, we have 0.25 ulp of average error.

Table 1 Average and maximum error for trigonometric functions (ulp)

[Range [interval H sin avg [sin max H cos avg | cos max H tan avg | tan max
0<z<m7/4 le-7 0.402 2.97 0.278 1.78 0.580 4.74
-10<z <10 le-6 0.378 3.80 0.370 3.94 0.636 5.14
0 <z <20000 le-3 0.373 3.53 0.373 3.52 0.636 5.61

10000 < z < 10020 le-6 0.374 3.79 0.373 3.35 0.639 5.86

Table 2 Average and maximum error for arc tangent functions (ulp)

Range interval H arctan avg | arctan max
-1<z<1 le-7 0.628 4.91
0<2<20 le-6 0.361 4.68

Table 3 Average and maximum error for arc sine and arc cosine functions (ulp)

l Range [interval H arcsin avg [arcsin max H arccos avg [arccos max]
[-1<2<1] 1le7 [0665 | 598 [0434 [515 |

Table 4 Average and maximum error for exponential function (ulp)

l Range [interval H exp avg | exp max
0<z<1 le-7 0.295 1.97
—-10<z<10 le-6 0.299 1.93

Table 5 Average and maximum error for logarithmic function (ulp)

Range [interval H log avg | log max
0<z<1 le-7 0.430 2.54
0 <z <1000 le-4 0.286 2.65

Table 6 Time taken for pair of evaluations (sec.)

Core i7 2.66GHz (IA32) Core 2 2.53GHz (x86.-64)
Proposed [FPU | MPFR || Proposed [FPU [MPFR

sin—+cos 3.29¢-8 7.92e-8 | 3.53e-5 3.51e-8 8.87e-8 | 2.80e-5

sin 3.29e-8 7.04e-8 | 1.33e-5 3.51e-8 8.83e-8 | 1.08e-5
cos 3.29e-8 7.04e-8 | 2.14e-5 3.51e-8 8.92e-8 | 1.68e-5
tan 3.68e-8 1.82e-7 | 1.68e-5 4.12e-8 1.65e-7 | 1.33e-5

arctan 4.72e-8 1.82e-7 | 2.11e-5 4.98e-8 1.61e-7 | 1.33e-5
arcsin 6.64e-8 N/A 3.81e-5 7.35e-8 N/A 2.69e-5
arccos 6.73e-8 N/A 3.92e-5 7.68e-8 N/A 2.73e-5
exp 2.45e-8 N/A 1.59e-5 2.85e-8 N/A 1.33e-5
log 2.14e-8 4.59e-8 | 1.19e-5 2.69e-8 4.88e-8 | 8.14e-6

Table 7 Number of instructions and size of subroutines

[[sin+cos+tan [arctan+-arcsin+arccos [exp [log]
Number of instructions 94 94 52 49
Subroutine size (byte) 426 416 253 | 254

4.2 Speed

In this test, we compared the speed of the proposed
methods for evaluating the functions to those of an FPU
and the MPFR Library[12]. Besides the Core i7 system
mentioned above, we conducted the speed test on a PC
with Core 2 Duo E7200 2.53GHz with 2GB of RAM
running Linux x86_64 (Debian Squeeze) with a 2.6.26
kernel. There was no register spill in our methods. In
these tests, we used the gettimeofday function to mea-
sure the time for each subroutine to execute 100 million
times in a single thread. In order to measure the time
for an FPU to evaluate each function, we wrote subrou-
tines with an inline assembly code for executing the cor-
responding FPU instruction. These FPU subroutines
execute two corresponding FPU instructions per call,
since the subroutines for the proposed methods evalu-
ate the target function on the argument of each element
in a SIMD register, which contains two double precision
numbers. For sin+cos measurement, we measured the
time for an FPU to execute the sincos instruction to
evaluate the sine and cosine functions simultaneously.
For the MPFR Library, we set 53 bit as its precision,
and measured the time for each subroutine to execute
1 million times. The measured times in second for each
subroutine to perform one pair of evaluations on the
two systems are shown in Table 6.

The execution speed of the subroutines of the pro-
posed methods was more than twice as fast as the equiv-
alent FPU instructions.

4.3 Code Size

We measured the number of instructions and code size
for each subroutines of our methods by disassembling
the executable files for an TA32 system using gdb and
counting these numbers in the subroutines. Please note
that each instruction in the subroutines is executed ex-
actly once per call, since they do not contain conditional
branches. The results are shown in Table 7.

5 Conclusion

We proposed efficient methods for evaluating elemen-
tary functions in double precision without table look-
ups, scattering from, or gathering into SIMD registers,
or conditional branches. The methods were implemented
using the Intel SSE2 instruction set to check the accu-
racy and speed. The average and maximum errors were
less than 0.67 ulp and 6 ulps, respectively. The speed
was faster than the FPUs on Intel Core 2 and Core i7
Processors.

References

1. L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Es-
pasa, E. Grochowski, T. Juan, and P. Hanrahan : ¢ Larrabee:
A many-core x86 architecture for visual computing,” Proc.
of ACM SIGGRAPH 2008, pp. 1-15, 2008.

2. K. Barker, K. Davis, A. Hoisie, D. Kerbyson, M. Lang, S.
Pakin and J. Sancho : “Entering the petaflop era: the archi-
tecture and performance of Roadrunner,” Proc. of the 2008
ACM/IEEE conference on Supercomputing, pp. 1-11, 2008.

3. M. Gschwind, H. Hofstee, B. Flachs, M. Hopkins, Y. Watan-
abe and T. Yamagzaki : “Synergistic Processing in Cell’s Mul-
ticore Architecture,” IEEE Micro, Vol. 26, No. 2, pp. 10-24,
2006.

4. “Tesla C2050 and Tesla C2070 Computing Processor Board,”
http://www.nvidia.com/docs/I0/43395/BD-04983-001_
v01l.pdf

5. S. Thakkar and T. Huff : “Internet Streaming SIMD Exten-
sions,” Computer, Vol. 32, No. 12, pp. 26-34, 1999.

6. Approximate Math Library 2.0, http://www.intel.com/
design/pentiumiii/devtools/AMaths.zip.

7. Simple SSE and SSE2 optimized sin, cos, log and exp, http:
//gruntthepeon.free.fr/ssemath/.

8. L. Nyland and M. Snyder: “Fast Trigonometric Functions
Using Intel’s SSE2 Instructions,” Tech. Report.

9. Linux Kernel Version 2.6.30.5, http://www.kernel.org/.

10. GNU C Library Version 2.7, http://www.gnu.org/software/
libc/.

11. R. Brent : “Fast Algorithms for High-Precision Computation
of Elementary Functions,” Proc. of 7th Conference on Real
Numbers and Computers (RNC 7), pp. 7-8, 2006.

12. The MPFR Library, http://www.mpfr.org/.

13. J. Detrey, F. Dinechin and X. Pujul : “Return of the hard-
ware floating-point elementary function,” Proceedings of the
18th IEEE Symposium on Computer Arithmetic, pp. 161—
168, 2007.

14. I. Koren and O. Zinaty : “Evaluating Elementary Functions
in a Numerical Coprocessor Based on Rational Approxima-
tions,” IEEE Transactions on Computers, Vol. 39, No. 8,
pp-1030-1037, 1990.

15. M. Ercegovac, T. Lang, J. Muller and A. Tisserand : “Recip-
rocation, Square Root, Inverse Square Root, and Some El-
ementary Functions Using Small Multipliers,” IEEE Trans-
actions on Computers, Vol. 49, No. 7, pp. 628-637, 2000.

16. E. Goto, W.f. Wong, “Fast Evaluation of the Elementary
Functions in Single Precision,” IEEE Transactions on Com-
puters, Vol. 44, No. 3, pp. 453-457, 1995.

17. D. Scarpazza and G. Russell : “High-performance regular
expression scanning on the Cell/B.E. processor,” Proc. of the
23rd international conference on Supercomputing, pp. 14-25,
2009.

18. M. Rehman, K. Kothapalli and P. Narayanan : “Fast and
scalable list ranking on the GPU,” Proc. of the 23rd inter-
national conference on Supercomputing, pp. 235-243, 2009.

19. D. Goldberg : “What every computer scientist should know
about floating-point arithmetic,” ACM Computing Surveys,
Vol. 23, No. 1, pp. 548, 1991.

20. M. Abramowitz and I. Stegun : “Handbook of Mathemat-
ical Functions: with Formulas, Graphs, and Mathematical
Tables,” Dover Publications, 1965.

http://www.nvidia.com/docs/IO/43395/BD-04983-001_v01.pdf
http://www.nvidia.com/docs/IO/43395/BD-04983-001_v01.pdf
http://www.intel.com/design/pentiumiii/devtools/AMaths.zip
http://www.intel.com/design/pentiumiii/devtools/AMaths.zip
http://gruntthepeon.free.fr/ssemath/
http://gruntthepeon.free.fr/ssemath/
http://www.kernel.org/
http://www.gnu.org/software/libc/
http://www.gnu.org/software/libc/
http://www.mpfr.org/

	Introduction
	Related Works
	Proposed Method
	Evaluation
	Conclusion

