

An ECMA-55 Minimal BASIC Compiler

Targeting x86-64 Linux

by

John Gatewood Ham

Slides last updated on November 19, 2017.

Motivation
● BASIC was designed for teaching
● BASIC behavior is very close to real CPU behavior
● No free BASIC for 64bit Linux that accepts the Minimal

BASIC dialect existed. Now Jorge Giner Cordero's
excellent bas55 interpreter also exists.

● BASIC was designed to be compiled, although on
microcomputers most people used interpreters

● Most production compilers are so complex only a genius
student can understand them; a simpler compiler is needed
to teach people about compilers in a first course

● Most people today use JIT and bytecode – the art of actually
compiling all the way down to assembly is becoming a lost
skill and is a problem for operating system and compiler
development in the future

BASIC's Tarnished Reputation

Today, BASIC has a bad reputation which is
largely due to Dijkstra's famous criticisms. Those
unfair criticisms, combined with the vendors of
microcomputers no longer including BASIC for
free, led to the end of the language popularity.

In computers with 64KB or less of total RAM,
making everything global and coding in a
machine-code style makes sense. GOTO is not
intrinsically evil – today's current CPUs all use
unconditional branches, and every C and C++
compiler emits those branches.

10 REM NUMERIC INTEGRATION
20 DEF FNF(X)=COS(X)
30 LET A=0
40 LET B=1
50 LET N=100000
70 LET D=(B-A)/N
80 LET S=0
90 FOR I=A TO B STEP D
100 LET S=S+D*FNF(I)
110 NEXT I
120 PRINT S,SIN(B)-SIN(A)
130 END

ECMA-55 Minimal BASIC
Numeric Integration
Left Riemann Sum

This is a fairly
typical type of
program that
would be written
in BASIC for a
freshman
calculus or
numerical
analysis course.

.LLINE0100:
 movabsq $.LCURLINENO, %rax
 movq $100, (%rax)
 floatmem_to_floatreg I,%xmm0,'I'
 movabsq $FNF,%rax
 callq *%rax
 floatmem_to_floatreg D,%xmm1,'D'
 binary_multiply %xmm1,%xmm0
 floatmem_to_floatreg S,%xmm0,'S'
 binary_add %xmm0,%xmm1
 floatreg_to_floatmem %xmm0,S

Actually it is quite
involved at the machine
level, and most of the
complexity is for error
handling. C does not
support exception
checked arithmetic at
all. This is the reason
why the standard
advice to “just look at the
output of gcc or clang”
was not very helpful
when learning to
generate arithmetic
expression code for
this compiler.

The use of macros makes the code
easier to read, yet imposes no penalty at
runtime. This allows putting the ugly
complexity of exception handling for
overflow, underflow, etc. in the macros
and keeping the main code much simpler
to follow.

This is the code generated for line 100 of the previous example
program.

Very complex
rules for READ
and INPUT
require rather a
correspondingly
complex finite
state machine.

Implementation

● Hand-coded deterministic finite state machine scanner
● Hand-coded top-down, recursive descent parser
● Pre-loaded symbol table with binary search lookups
● Abstract Syntax Tree intermediate representation generated

by parser
● Semantic analyzer using AST
● Arithmetic expression constant folding pass using AST
● Code generated from AST
● Written in standard C99 and GNU as (AT&T dialect)
● Scalar SSE2 floating point math with full exception checking

(optionally scalar AVX floating point can be used)

Implementation II

● Now includes bottom-up tree pass as an alternative to
top-down code generation pass.

● Now includes dag generation for common sub-
expression elimination for arithmetic expressions.

● Assembly code is now in separate flat files to make it
easy to read and modify.

● Now scanner mmap()'s the BASIC source file and
avoids making copies of the buffer.

The Runtime Library

● Naoki Shibata's SLEEF for elementary functions

● Bob Jenkins' ISAAC-64 for RND and
RANDOMIZE

● David Gay's dtoa, g_fmt, and strtod functions for
conversion between ASCII and floating point

● INPUT subsystem

● PRINT/TAB support

Arithmetic Expressions

● SIMD math used since Intel claims x87 support is
deprecated and going away. This means generated
code requires a CPU with SSE2 support. All known
64bit AMD64/x86-64 CPUs except Xeon Phi have
the necessary features, but runtime checks for them
are included in the generated programs just in case.

● Full exception support required by the standard
implemented using assembly macros to keep
generated code easy to read.

● Constant folding in arithmetic expressions is
implemented, preserving required exceptions.

Minimal BASIC Control Flow

● GOTO for unconditional branch

● IF with a line number target (but no ELSE) for conditional
branch

● FOR loops with index variable and NEXT are the only looping
construct, with optional STEP.

● Rules to prevent jumping into a loop are complex to enforce but
a scope concept makes detecting many error cases possible.

● ON expr GOTO line,line,... for multi-way branch using

a jump table.

Compiler Assembly Output

● AT&T UNIX-style assembly code operands are
backwards from Intel documentation, and very
little easily useful example code exists on the
Internet.

● Uses large model for simplicity.
● Uses macros for arithmetic operators.
● Linux AMD64 ABI requires register-based

parameter passing.

Generated Executables

● The generated assembly is assembled with as,
linked with ld, and a static executable is
generated.

● Console I/O calls the kernel directly, so no C
standard library (libc) is required by the
generated code.

● SLEEF and ISAAC-64 are included in the
executable, so no C standard library (libm) is
required by the generated code.

● Good style for stand-alone environments.

Automated Testing

● A test harness written in GNU make and GNU bash shell
using standard UNIX tools.

● Verifies compile output of every test
● Verifies runtime output of every test that can be run
● Supports programs with different 32/64 bit output
● Source for all 208 NBS tests is included
● 207 of 208 tests pass as of 2014/04/02, but test #131

cannot be automatically tested since it uses RANDOMIZE
● More than 60 additional tests

Features

● -P option to pretty-print programs
● -R option to renumber programs (implies -P)
● -X option to enable extensions
● -w option to enable full double precision output and

132 column output mode (wide mode)
● Fully implements recommended uninitialized variable

detection
● Generates fatal exception with line number at runtime

if a NaN is generated.

Extensions

● Short-circuiting AND, OR, and NOT for conditional
expressions.

● EXIT FOR statement for breaking out of a FOR
loop early.

● Lower-case character support in quoted strings
and REM statements.

● Add support for < <= >= > to string comparison.
● Add LEN function to get string length.

Future Work
● Add DWARF debugging support
● Support an alternative output style that uses the more

common RIP-relative addressing and the small code
model

● Use AVX math instructions with the 3 operand style
● Add better string support, file handling, etc.
● Optimization!

Benefits

● Students can program in traditional BASIC to get a
better understanding of early computer
programming and how a CPU works.

● Much simpler than something like Java or C++ for
a first exposure to programming.

● People who want to implement true compilers (all
the way to assembly) for procedural, iterative
languages can start easily with this compiler.

● Simple overall structure, easy to understand, small
(less than 36,000 total lines of code, and much of
that is runtime library).

Benefits II

● People who want to know how to code AMD64/x86-64
assembly, including floating point exception handling, can
look at the simple output of this compiler and learn from it.

● Reasonable teaching compiler – people can add or modify
statements, runtime library functions, long variable names,
or target another processor.

● Uses an abstract syntax tree to separate parsing,
semantic analysis, and code generation.

● Written in standard C99; no exotic languages (lisp, etc.)
required.

● Small code base, 100% FOSS.

Conclusion

Today many people get into computer science but
never learn how the CPU works. This results in a
shortage of people who can do low-level
programming which is required to generate
compilers, work on operating systems, and to
achieve good performance that takes full
advantage of hardware. It also makes learning
how to debug things like a bad compiler or linker a
lot more difficult since people without this
knowledge cannot read assembly at all, and have
no idea what correct output should be.

The decline of students learning about implementing
compilers is largely due to the impossibly steep
learning curve required to get involved with today's
production-level open source compilers, the poor
documentation of non-trivial AMD64/x86-64 floating
point assembly programming, and the fact that the
literature available for low-level programming on x86
architecture is almost exclusively for 32bit and
integers. Hopefully this project will help more
people get involved in creating low-level code for
x86-64 so they can help create the next generation
of programmer tools and operating systems.

Conclusion II

Resources
Compiler overview page:

http://buraphakit.sourceforge.net/BASIC.shtml

SourceForge project page:

http://sourceforge.net/projects/buraphakit

The bas55 project page:

http://jorgicor.sdfeu.org/bas55/

Some of Edsger W. Dijkstra's famous BASIC criticisms:

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD498.html

EWD claims BASIC causes “mental mutilation”

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD898.html

EWD claims “teaching of BASIC should be rated as a criminal offense: it mutilates the mind beyond recovery”

http://buraphakit.sourceforge.net/BASIC.shtml
http://sourceforge.net/projects/buraphakit
http://jorgicor.sdfeu.org/bas55/
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD498.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD898.html

