LLNL-SM-674579

| ||l Lawrence Livermore

National Laboratory thOM User Gulde and
Design

Author(s)

William Arrighi, Geoffrey Oxberry, Tanya
Vassilevska, Kyle Chand

Lawrence Livermore National Laboratory
P.O. Box 808, Livermore, CA 94551-0808

July 14, 2015

Disclaimer

This document was prepared as an account of work sponsored by an agency of the
United States government. Neither the United States government nor Lawrence
Livermore National Security, LLC, nor any of their employees makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

Lawrence Livermore National Laboratory is operated by Lawrence Livermore National
Security, LLC, for the U.S. Department of Energy, National Nuclear Security
Administration under Contract DE-AC52-07NA27344.

Lawrence Livermore National Laboratory

Table of Contents

)Y 1 1) 2

B IO 0 0 X0 L ot 0) SR 4
2.0 Description of Incremental SVD Algorithms..........ccommmnmmmmssmsesss 4
2.1 Standard Incremental SVD Algorithm ... 4
2.2 Fast Update Incremental AlGorithm ... 5
2.3 Computational DifferencCes......cuimmmmmmmssssa s s————————s 6
2 311 1 1D 0B 1 o 6
3.0 Library Organizationumsmssmsmsmsmsssassssssans 6
1S T 0 1Y 4 7
3.2 Vector and MatrIiX ...ccocvrrcssserssssssessssserssasssssssssssssasssassnsssnssasssens 7
3.3 BasisReader and BasiSWIter......cciorrrniemsssnsessnsssmssssesssnsssssses 7
3.4 Database and HDFDatabasecccccvrerrmrsmnserssssesssssssssssssesssnssassses 8
13 T/ D 2 8
1S T] = 1 o 7/ 8
3.7 INCrementalSVDooiicnirirrnrsssserssssssssssssssssssessssssssssssssssssssnsssssssssasssssssssssssasssnssnssanssasssens 8
3.8 IncrementalSVDStandard and IncrementalSVDFastUpdatecconusmnessmsessnsessnsasans 8
BT BT D T 111 1] =) 8
3.10 StaticSVDSampler and IncrementalSVDSampler ... 9
3.11 SVDBaASISGENEIALOLccccerrerrcersrrsserssssesssrssmssssssssasssssesssssssssssssssassssssssmsssassssnsssassssnnssnsssanense 9
3.12 StaticSVDBasisGenerator and IncrementalSVDBasisGeneratorccoceveersersanssens 9
3.13 Utilities and ParallelBufferc.ccocvrminmnsemsmnsesssssssmssssessssssssssssssssssssssssssssssssssessssssnsssssses 9
4.0 Building the Library ... 9
4.1 RUNNING CONFIGUT ..vvuirmrarimssmsmssmssssnsssasssssssssssssssssssssssssssnssssassssassssassnss 9
4.2 Building the LiDrary ... s 10
4.3 RUNNING the TeStS ...ccvciimnmimnemsmsessmssssnissssisssassssasssssssns 10
0 ' Vo) S (=T 1 TP 10
4.3.2 UNEVEINL_AISTuriitrieercrrererrsnesssnesssssssss s sssassssssssssssnsans 10

T/ SRS T = 1 o 1o (00 0 o <] o 11

5.0 EXample USQEEccuurmsmsumsmsmssmsmssssmsmssasanses 11
5.1 Basis Vector Generation From Full Order Model Simulationcccccvevecensersennannns 11
5.2 Reduced Order Model Construction and Simulationc..cccvrrrcmnsersnnsessssssersnsenes 12

L Lo T 1 14
7.0 Application to Convection-Diffusion Simulation.........cumenm. 14
7.1 Full Order SOIUtIONccvcciverrrrerssssrsenssnssessssssessssssessssssnsssssssssssssnsssssssssnsssassssssnssasssessasssnssn 14
7.2 Reduced Order SOIULIONcccvevrrrsersmsnssersssssessssssessssssnssssssessssssnsssssssssassssssssssnssasssessasssnesn 15
2= (=) W) 1 o = 18

Lawrence Livermore National Laboratory

1.0 Introduction

The libROM library is a collection of C++ classes that implements order reduction
via singular value decomposition (SVD) of sampled state vectors. It implements the
2 parallel SVD algorithms described by Matthew Brand [1] as well as a serial “static”
or non-incremental SVD algorithm. The library also provides a mechanism for
adaptive sampling.

The library supports the construction of multiple sets of basis vectors, wherein each
set of basis vectors corresponds to a different simulation time interval. Users have
control over the maximum number of basis vectors in a set that, along with the
adaptive sampling control, determines how many sets of basis vectors will be
collected.

The library provides the means to read and write the basis vectors resulting from
the order reduction. Construction of the reduced order model from the basis
vectors must be performed by the application developer and is not a part of the
library.

The library is configured with a configure script and built with the resulting
generated GNU Makefile. There are 3 required external libraries: mpi, lapack, and
hdf5. Details about configuring and building the library are supplied below.

This document is intended to provide an overview of the design of the library and
the theory behind it. Details about the library API and individual classes are
provided through doxygen documentation that may be built along with the library.

2.0 Description of Incremental SVD Algorithms

In this section we will give a brief description of the incremental SVD algorithms and
discuss the advantages of each.

Both algorithms decompose the system, Q, into the product of three matrices:
Q =VsW". V contains the basis vectors for the reduced order model, s contains the

singular values, and WT contains the basis vectors in the row space that we do not
need to track. In the fast update algorithm the left matrix, V, is factored into two
other matrices, U and Uy, so that the basis vectors, V, are V = uu,. The standard

method does not perform this factorization.

2.1 Standard Incremental SVD Algorithm
For the initial sampled simulation state vector, u:

1. s= ||u||
2. V= u/||u||
3. n=1
For each subsequent sampled simulation state vector, u:
1. [=V'u
2. k=|u-Vi|
3. j=u-VD/k

Lawrence Livermore National Laboratory

-

0=
0 k

Compute svd(Q) to form V', s’, W..
If k<linearity tolerance then u is not linearly independent and the system is

diag(s) 1]

updated as:
a. V= V‘/lfn,lzn
b. s=s,
C.

Reorthogonalize V if necessary.
Otherwise the system is updated as:

a, V=[V j]

b. Vv=VvV'
c. s=¢s
d n=n+l
e.

Reorthogonalize V if necessary.

2.2 Fast Update Incremental Algorithm
For the initial sampled simulation state vector, u:

1.

2
3.
4.
5
F

s = lul
U=l
u,=[1]
V=UU,
. n=1
or each subsequent sampled simulation state vector, u:
1. [=V'u
2. k=[u-V|
3. j=(w-VD/k
4 0= diag(s) 1]
0 k
5. Compute svd(Q) to form V', s, W'

6. If k<linearity tolerance then u is not linearly independent and the system
is updated as:

'
a. Up = Up‘/lzn,lzn
'
b' §= sl:n
C.

Reorthogonalize Uy, if necessary.
d. V=UU,

7. Otherwise the system is updated as:
a, U=[U]

U 0
b. U= 7 |V
0 1
c. V=UU,
d s=s

Lawrence Livermore National Laboratory

e. n=n+l

f. Reorthogonalize U and Uy, if necessary.

2.3 Computational Differences
From the descriptions above it is clear that much of the two algorithms are identical.

The major differences occur in how the left singular matrix is updated in steps 6 and
7.

The basis vectors, V, consist of a matrix of d rows and n columns where d is the
dimension of a state vector and n is the number of samples. The dimension of a
state vector is large and n << d. Therefore V is a matrix of many rows and few
columns the rows being distributed across all the processors running the full order
model. Thus, any computations involving V are relatively expensive parallel
operations.

The same is true of the matrix, U, of the fast update algorithm. However, the matrix
Up is a small square matrix with n rows and columns.

Comparing step 6a for each algorithm one can see that in the standard method this
is a parallel operation on V while in the fast update method this is a simple, local
operation. However the fast update method adds the computation of V in step 6d,
which is a parallel operation. So computationally this is something of a wash.

Comparing the standard method’s step 7a-b with the fast update method’s steps 7a-
c we see that 7b of the standard method involves a parallel operation on V as does
7c of the fast update method. The other steps are simple, local operations. So again
computationally the two algorithms are something of a wash.

Where the fast update method has a potential advantage is in the number of
reorthogonalization steps that it requires relative to the standard algorithm. This is
especially relevant for the reorthogonalization of V and U both of which are
distributed. As Brand[1] points out, U and Uy, may maintain their orthogonality
better than V. If this hold true then the fast update method may have a
computational advantage in that it must reorthogonalize a large distributed matrix
less often than the standard method.

In the later discussion on the application of this library to form a specific reduced
order model we will show data indicating that this advantage may not always exist
in practice.

2.4 Summary

The library provides both methods and users are free to use whichever one they
wish. There may be a slight computational advantage to the fast update method but
that advantage may not exist for all problems.

3.0 Library Organization

This section describes the classes in the library and their intended use. API
specifics are addressed in the doxygen documentation.

Lawrence Livermore National Laboratory

3.1 Overview

Overall, one can think of the library as having 2 purposes: creation of basis vectors
from a simulation, and consumption of those basis vectors to form a reduced order
model. The bulk of the library is devoted the first of these tasks while only a small
subset is needed to support the second.

The StaticSVD, IncrementalSVD, IncrementalSVDStandard, and
IncrementalSVDFastUpdate classes are all directly related to the creation of basis
vectors. They implement various SVD-centric basis vector creation algorithms.
Applications feed these algorithms state vectors and basis vectors are the result.

The StaticSVDSampler and IncrementalSVDSampler classes are also directly related
to creation of basis vectors. In both cases the algorithms compute the next
simulation time at which a sample is needed and are able to answer the query of
whether a sample should be taken at a requested simulation time.

StaticSVDBasisGenerator and IncrementalSVDBasisGenerator wrap a basis vector
creation algorithm with its corresponding sampling algorithm. This provides an
application with a single point of interaction should one want to use the library’s
sampling algorithms. It is possible for an application to write their own sampling
algorithm in which case it is free to use the basis vector creation algorithm classes
directly instead of one of these wrappers.

BasisReader is the one class directly related to the consumption of basis vectors. Its
purpose is to allow applications constructing reduced order models from basis
vectors to read the generated basis vectors.

The following sections give a thumbnail description of each class in the library.
More detailed information about each class is provided in the doxygen
documentation.

3.2 Vector and Matrix

These are the core classes that provide the necessary parallel linear algebra for the
library. Vector encapsulates the notion of a vector distributed over multiple
processors. Each processor owns some number of components of the vector. There
is no requirement that the vector be distributed evenly among the processors.
Matrix encapsulates the notion of a matrix distributed over multiple processors.
Each processor owns some number of rows of the matrix. All processors contain the
same number of columns. As with Vector, there is no requirement that the matrix
be distributed evenly among the processors.

3.3 BasisReader and BasisWriter

Basis vectors are written to a Database file on disk by BasisWriter and read from a
Database file on disk by BasisWriter. BasisReader provides the means for an
application to read the basis vectors that have been created. Users request the basis
vectors applicable to a specific simulation time. An application will directly use
BasisReader. BasisWriter is essentially an internal class and users of the library do
not need to interact with it directly. Whenever the basis vectors for an interval of
simulation time is complete the library directs that they be written to the Database
file via the BasisWriter.

Lawrence Livermore National Laboratory

BasisReader returns basis vectors in the form of a Matrix. Once an application has
the basis vectors it is expected that it will form the reduced order model from this
Matrix using Matrix’s API. The only interaction with BasisReader is to get the basis
vectors for the current time.

Each processor writes it’s contribution to the set of basis vectors to it's own
Database file. The user specifies the base or root name of the Database file. Each
processors file is of the form root_name.pid where “pid” is a 6-digit processor ID.
Hence processor 0 will produce the Database file root_name.000000.

3.4 Database and HDFDatabase

These classes are essentially internal and users of the library do not need to interact
with them directly. They encapsulate the details of how the basis vectors are stored
on disk. BasisReader and BasisWriter interact with these classes.

Database is an abstract base class that defines the interface to files containing basis
vectors. It supports reading and writing of the types of data needed by the library
and is not designed to support all possible data types.

HDFDatabase implements the interface of Database for HDF5 files. Currently the
library only supports the HDF?5 file format for basis vectors.

3.5SVD
SVD is an abstract base class that defines the interface of a generic SVD-centric basis
vector creation algorithm.

3.6 StaticSVD

StaticSVD implements what we call the “static” as opposed to the incremental SVD
basis vector creation algorithm. By “static” we mean that the basis vectors are
computed in one step after sampling of state vectors is complete. Itis an inherently
serial algorithm and is provided mainly for prototyping or for comparison with the
parallel incremental algorithms.

3.7 IncrementalSVD

IncrementalSVD is an abstract base class that defines the internal interface of the
incremental SVD basis vector creation algorithm. It implements the pure virtual
member functions of class SVD in terms of the internal interface of the incremental
algorithm.

3.8 IncrementalSVDStandard and IncrementalSVDFastUpdate
IncrementalSVDStandard and IncrementalSVDFastUpdate implement the interface
defined by IncrementalSVD according to the 2 algorithms described by Matthew
Brand [1]. Both algorithms are parallel.

3.9 SVDSampler

SVDSampler is an abstract base class defining the interface for sampling of state
vectors.

Lawrence Livermore National Laboratory

3.10 StaticSVDSampler and IncrementalSVDSampler

StaticSVDSampler implements the interface of SVDSampler as a simple user
controlled uniform sampling scheme for the Static SVD method of basis vector
creation. IncrementalSVDSampler implements that interface as a user controlled
adaptive sampling scheme for the Incremental SVD methods of basis vector
creation.

3.11 SVDBasisGenerator
SVDBasisGenerator is an abstract base class defining the interface to a basis vector
creation algorithm and corresponding sampling algorithm.

3.12 StaticSVDBasisGenerator and IncrementalSVDBasisGenerator
StaticSVDBasisGenerator implements the interface of SVDBasisGenerator for the
“static” (serial, non-incremental) method and wraps StaticSVD and
StaticSVDSampler. IncrementalSVDBasisGenerator implements this interface for
the incremental methods and wraps
IncrementalSVDStandard/IncrementalSVDFastUpdate and IncrementalSVDSampler.
As mentioned above, this allows a single point of interaction for applications
wishing to use both the library’s basis vector creation and sampling algorithms.

3.13 Utilities and ParallelBuffer

These are both intended to be internal classes although Utilities contains some
features that may be of use to an application. The Utilities class provides static
methods for error reporting and string manipulation. Utilities.h contains macros for
checking assertions and aborting due to an error that an application may find useful.
ParallelBuffer is used by Utilities and is purely an internal class.

4.0 Building the Library

Building the library is accomplished in 2 steps. First one needs to run the supplied
configure script that generates a GNU Makefile. Then one must run “make” on the
generated Makefile to compile the code and create the library. Doxygen
documentation may then be generated if desired. The supplied tests may be run to
verify a successful build.

4.1 Running configure
There are several required pieces of information that must be supplied to configure.
In addition there are several options that may be requested.

The required information is:

* The C++ compiler. It may be specified either by setting the CXX environment
variable or with the —-with-CXX configure option.

* The location of the HDF5 installation. It is specified with the —--with-hdf5
configure option. Note that the location that you provide must be the
directory where the lib and include directories for the hdf5 installation are
found.

* The location of the lapack library. It is specified with the —--with-lapack
configure option.

Lawrence Livermore National Laboratory

* Ifthe C++ compiler wraps MPI then no further MPI related information is
needed by configure. If this is not the case, then information about MPI must
be supplied:

o —-with-mpi-include defines the location of mpi.h

o —-with-mpi-libs is a space delimited list of the necessary MPI libraries
(e.g. “nsl socket mpi”).

o --with-mpi-lib-dirs is a space delimited list of the directories
containing the libraries specified via —-with-mpi-libs (e.g. “/usr/lib
/usr/local/mpi/lib”).

o --with-mpi-flags is a space delimited list of any other flags necessary
to link with MPI.

Some of the more pertinent options are:

* --enable-opt builds an optimized version of the code.

* --enable-debug builds a version of the code with symbols (-g) that may be
used by a debugger. Note that this is orthogonal to —-enable-opt. The code
may be built with both —-enable-opt and --enable-debug.

* --enable-check-assertions turns on assertion checking throughout the
library. The default is for this to be off. It is on when -enable-debug is
specified. This should remain off for an optimized build of the library.

* You may need to specify —-with-doxygen if your doxygen executable is in a
non-standard location.

4.2 Building the Library

The configure script generates a GNU Makefile. The command “make” builds the
library according to this Makefile. The command “make all” builds the library and
the tests. The command “make dox” builds the doxygen documentation.

4.3 Running the Tests

There are 3 tests and baseline results supplied with the library. All tests are parallel
and should be launched with the appropriate command for your platform (mpirun,
srun, etc.). Redirect results to a file and diff the file against the appropriate baseline.
For example:

mpirun -np 3 ./smoke_test >& test_out

diff test_out BASELINES/smoke_3proc.out

4.3.1 smoke_test

This test is a very simple test of IncrementalSVDFastUpdate and
IncrementalSVDSampler. It enables the option to print debugging information from
the basis generation algorithm. The test samples 2 hard coded state vectors,
generates the basis vectors, and prints the matrix of singular values and the basis
vectors. The total dimension of the system is 6 and the state vector is evenly
distributed among the processors. Therefore this test may only be runon 1, 2, 3, or
6 processors.

4.3.2 uneven_dist

This test is very similar to smoke_test except that the state vector is not evenly
distributed among the processors. As with smoke_test the total dimension of the
system is 6. Therefore this test may be run on no more than 6 processors.

Lawrence Livermore National Laboratory

4.3.3 random_test

This is a test of both the static and incremental fast update algorithms and samplers.
[t also enables the option to print debugging information from the algorithms. In
addition to the singular values and state vectors it also prints the product of the
transpose of the basis vectors from the static algorithm with the basis vectors from
the incremental algorithm. This product should be a unitary matrix.

The total dimension of the system is 100 and the state vectors are evenly distributed
among the processors. Therefore this test may be runon 1, 2, 4, 5, 10, 20, 25, 50, or
100 processors. There are 8 linearly independent state vectors and 2 that are
linearly dependent. The state vectors are filled with randomly generated numbers
but the numbers are generated in such a way that the distributed state vectors are
identical for any number of processors. Therefore the singular values and state
vectors should be the same for any number of processors except for differences
arising from the parallel numerics.

5.0 Example Usage

The following 2 sections describe in general terms how to use libROM to create
basis vectors from a simulation and how to use those basis vectors to create a
reduced order model simulation.

5.1 Basis Vector Generation From Full Order Model Simulation

In order to generate basis vectors for a reduced order model from a full order
simulation one must first construct the necessary SVDBasisGenerator. Then in the
main simulation loop solution samples are taken as necessary. At the end of the
main simulation loop the SVDBasisGenerator is told to end sampling. This example
snippet demonstrates how this might be done.

// Solve du/dt = rhs

// Create the basis generator.
CAROM: : IncrementalSVDBasisGenerator basis_generator (dim,
linearity tol,
skip linearly dependent,
do fast update,
initial dt,
samples per time interval,
sampling tol,
max_ time between samples,
basis file name);

// Set initial conditions, etc.

// Simulation main loop.
while (simulation not done) {
// Generate rhs.

// Sample the state vector if needed.

if (basis_generator.isNextSample (simulation time)) {
basis generator.takeSample (state vector, simulation time, dt);
basis generator.computeNextSampleTime (state vector,

Lawrence Livermore National Laboratory

rhs vector,
simulation time);

}

// Advance the solution.

}

// Tell basis generator that all samples have been collected.
basis generator.endSampling();

// Remainder of full order simulation.

5.2 Reduced Order Model Construction and Simulation

The details of the construction of any specific reduced order model depend on the
nature of the equation being solved and will therefore not be discussed here. This
code snippet shows how one would use the BasisReader to obtain the basis vectors
for different simulation times and use a reduced order model constructed from
these vectors to execute a reduced order simulation.

// Construct the BasisReader and get the basis vectors for the initial
// simulation time.

CAROM: :BasisReader reader (basis file name);

const CAROM: :Mstrix* basis = reader.getBasis (simulation time);

//Construct the reduced order model from the basis vectors.

// Set initial conditions on full order solution, u.

// Project the full order solution, u, into the reduced order solution,
// a, by q(i) = sum(3) (basis(j, 1i)*u(3)).
getProjectedSolution (basis, u, q);

// Reduced order model simulation main loop.
while (simulation not done) {
// See if it is time to switch to a new set of basis vectors.
if (reader.isNewBasis (simulation time) {
// Lift the current reduced order solution, g, back into the full
// order solution, u, by u(i) = sum(j) (basis (i, J)*g(j)).
getLiftedSolution (basis, g, u);

// Get the basis vectors for this simulation time.
delete basis;
basis = reader.getBasis(simulation time);

// Construct the reduced order model from the new basis vectors.

// Project the full order solution, u, back into the reduced
// order solution, g, by g(i) = sum(j) (basis(j, 1i)*u(j)).
getProjectedSolution (basis, u, q);

// If it 1s time to write out the solution, 1lift the reduced order
// solution, g, into the full order solution, u, and write it.
if (time_to write) {

// Lift current reduced order solution, g, back into the full

Lawrence Livermore National Laboratory

// order solution, u, by u(i) = sum(j) (basis (i, J)*g(j)).
getLiftedSolution (basis, g, u);

// Write u.

}

// Advance the reduced order solution.

}

// Remainder of reduced order simulation.

// Clean up.
delete basis;

void

getProjectedSolution (
const Matrix* basis,
const StateTypeé& u,
StateType& q)

// Project the full order solution, u, back into the reduced order

// solution, g, by g(i) = sum(j) (basis(j, 1i)*u(j)).
for (int col = 0; col < basis->numColumns(); ++col) {
double local inner product = 0.0;
for (int row = 0; row < basis->numRows (); ++row) {

local inner product += basis->item(row, col) *u(row);
}
double global inner product;
MPI Allreduce(&local inner product,
&global inner product,
1,
MPI DOUBLE,
MPI_SUM,
MPI COMM WORLD) ;
g(col) = global inner product;

}

void

getLiftedSolution (
const Matrix* basis,
const StateType& g,
StateType& u)

// Lift solution by u(i) = sum(j) (basis(i, J)*g(j)).
for (int row = 0; row < basis->numRows (); ++row) {
double local inner product = 0.0;
for (int col = 0; col < basis->numColumns(); ++col) {

local inner product += basis->item(row, col)*g(col);
}
double global inner product;
MPI Allreduce(&local inner product,
&global inner product,
1,
MPI DOUBLE,
MPI_SUM,
MPI COMM WORLD) ;
u(row) = global inner product;

Lawrence Livermore National Laboratory

6.0 Scaling

In this section we will present the results of a weak scaling study of the fast update
algorithm. For this study each processor generated 10 state vectors each containing
10,000 random doubles. Each processor constructed a different set of random
values. The time to take all 10 samples and to compute the next sample time was
measured. These 2 operations are exactly what one would need to insert into the
main loop of a simulation in order to construct the basis vectors. Scaling results for
up to 8192 processors on sierra, an Intel Xeon EP X5660 based Linux cluster with 12
cores per node, 1856 nodes, and an InfiniBand QDR interconnect were obtained The
results are shown in Figure 1 below.

Weak Scaling @ 10 samples

0.05

o
o
=

o
o
@®

o
o
N

@=(m=»10000 values/proc

run time (sec.)

o
o
=

o

0 2000 4000 6000 8000 10000
processors

Figure 1

7.0 Application to Convection-Diffusion Simulation

In this section we will compare a full order simulation with a corresponding
reduced order model simulation constructed from basis vectors generated by
libROM. The simulation is of the convection-diffusion equation on a square. The
governing equation is:

In this example a=b=1.0 and v=0.1.

7.1 Full Order Solution

The full order solution was run for 200 time steps with a fixed dt of 0.001. A
Dirichlet boundary condition of u=0 was used. The incremental fast update
algorithm and incremental sampler with the following parameters were used to
generate the basis vectors:

Lawrence Livermore National Laboratory

linearity_tol=1.0e-6

skip_linearly_dependent=false

samples_per_time_interval=200

max_time_between_samples=100.0 (unlimited)

The sampling tolerance was varied from 1.0e-1 to 1.0e-6. The solution was saved at
t=0, t=0.04, t=0.08, t=0.12, t=0.16, and t=0.199. The solution at t=0.199 is shown in
Figure 2.

Figure 2

7.2 Reduced Order Solution

The reduced order solution was then constructed from the resulting basis vectors
for each of the values of the sampling tolerance. The reduced order solution was
saved at the same times as the full order solution. The L, and L, norms were

computed for the ensemble of saved solutions. The norms as a function of the
sampling tolerance are presented in Figures 3 and 4 below.

Lawrence Livermore National Laboratory

12 error vs. sampling tol

7 6 -5 4 3 2 -1 ~
— f 4.9
: /
) o)
o [
2 '/ 5.2

log(sampling tol) h
Figure 3
I-inf error vs. sampling tol

7 6 5 4 -3 2 1 (l)
,:\ D
© .
;:: =1
-0}

St 4
.E 1.0
% =2
=
log(sampling tol) N
Figure 4

One can see that the asymptotic limit of the error is reached when the sampling
tolerance is ~10-2. Further decreasing the tolerance provides no improvement in
the error.

The number of samples as a function of the sampling tolerance was also measured.

In addition, the number of reorthogonalizations as a function of sampling tolerance
was measured. These results are show in Figure 5.

Lawrence Livermore National Laboratory

Fast Update Incremental

80
70
60
50
40 e=bm 4 of samples

30
20 =i of
10 reorthogonalizations
— 0
-8 -6 -4 -2 0
log(sampling tol)

Figure 5

The number of reorthogonalizations is consistently one less than the number of
samples. Only the first sample, which by definition does not incur a
renormalization, is not renormalized.

For comparison, the standard incremental method was used with the same
parameters as were used for the fast update method. There was no difference in the
L, or L_norms. In addition, the number of samples and number of

reorthogonalizations was the same as for the fast update method. Hence, at least for
this problem, there is no performance advantage to the fast update method when
compared to the standard method.

Lawrence Livermore National Laboratory

References

[1] MATTHEW BRAND, Incremental singular value decomposition of uncertain data
with missing values, in Computer VisionECCV 2002, Springer, 2002, pp. 707-720.

Lawrence Livermore National Laboratory

