
The unofficial DEM format
description

Uwe Girlich
uwe@half-empty.de

v1.0.9, 1/8/1999

This document describes the DEM file format. This file format is the result of “recording” a
game in Quake. This documentation covers the Quake versions 0.91 through 1.09.

Table of Contents
1. Introduction..2

1.1. Recording and Playback..3
1.2. Versions ...3

2. Basics on the used client/server architecture...4
3. Some remarks on the used demo format ...4

3.1. Advertising..5
3.2. Difference to DOOM ..5
3.3. Opportunities of the DEM format ...5
3.4. Problems of the DEM format..5

4. Some general remarks on the recording structure ...6
4.1. Entity ...6

4.1.1. Static Entity ..6
4.1.2. Dynamic Entity...6
4.1.3. Temporary Entity..6

4.2. Life-cycles...6
4.2.1. Armor ...7
4.2.2. (Multi) Player ...7
4.2.3. Medikits, Chthon, etc. ..8

5. Quake font ..8
6. File structure ..9

6.1. CD track ..9
6.1.1. fscanf ...9
6.1.2. step-by-step...10
6.1.3. General hints...10

6.2. Block of Messages ..10

1

The unofficial DEM format description

6.3. Message...11
6.4. Auxiliary routines ...11

7. List of all message types ..13
7.1. bad...13
7.2. nop...13
7.3. disconnect..13
7.4. updatestat ..14
7.5. version ...15
7.6. setview...16
7.7. sound ...16
7.8. time..18
7.9. print ...18
7.10. stufftext..19
7.11. setangle..20
7.12. serverinfo...20
7.13. lightstyle..21
7.14. updatename ...22
7.15. updatefrags ..23
7.16. clientdata ...23
7.17. stopsound ..27
7.18. updatecolors ..28
7.19. particle...29
7.20. damage ..29
7.21. spawnstatic ..30
7.22. spawnbinary ..31
7.23. spawnbaseline ...32
7.24. temp_entity..33
7.25. setpause ...35
7.26. signonum...35
7.27. centerprint ...36
7.28. killedmonster...37
7.29. foundsecret ..37
7.30. spawnstaticsound...38
7.31. intermission...39
7.32. finale..39
7.33. cdtrack ...40
7.34. sellscreen ...40
7.35. cutscene ...41
7.36. updateentity ...41

8. Version History and Acknowledgements ...43

2

The unofficial DEM format description

1. Introduction

1.1. Recording and Playback
Recording a game in Quake is as easy as playing it: you need some console commands to do it well.

To create a single player DEM file start the game as usual and use the console command record name
level [cdtrack]. This starts level with the currently selected skill and writes a record in name.dem. The
recording will be written during all the play and this record file may grow unpredictable. Make sure that
you have some MBytes free disk space. To stop this recording use stop or even quit the whole game
(quit). To play it back, use the commands playdemo name or timedemo name.

To create a multi player DEM file start a “listen” server (recording from a dedicated server doesn’t work)
and use again the record command. This starts the selected level and the player at the server is alone in
this level. Now all the other clients can connect to the server as usual and play what they like
(deathmatch or team). The recording lasts until the player at the listen server uses the disconnect, stop or
quit command. The recording is from the point of view of the player at the listen server (client 1). The
playback works as in the single player case.

1.2. Versions
In this document I’ll discuss the DEM format used by the various versions of Quake.

Table 1. Covered Quake versions

Exe: version platform note

? 0.91 MS-DOS, SVGA, 8bpp

? 0.92 MS-DOS, SVGA, 8bpp

? 0.92 Linux, X11, 8bpp

? 1.00 MS-DOS, SVGA, 8bpp Shareware version

17:38:28 Jul 12 1996 1.01 MS-DOS, SVGA, 8bpp CD retail version

22:32:43 Aug 4 1996 1.01 Linux, X11, 8bpp

22:32:43 Aug 4 1996 1.01 Linux, X11, DGA, 8bpp

15:21:16 Sep 13 1996 1.05beta MS-DOS, SVGA, 8bpp

02:59:04 Sep 30 1996 1.06 MS-DOS, SVGA, 8bpp

16:49:53 Nov 22 1996 1.06 Linux, X11, 8bpp

22:44:36 Jan 17 1997 1.01 Linux, X11, 16bpp leaked source, patched

? 1.07 MS-DOS, SVGA, 8bpp Mission Pack #1

? 1.07 Linux, SVGA, 8bpp

18:28:16 Mar 11 1997 1.08 MS-DOS, SVGA, 8bpp Mission Pack #2

? Mar 21 1997 1.09 Win32, DirectX, 8bpp

15:28:15 Aug 7 1997 1.09 Linux, SVGA, 8bpp

3

The unofficial DEM format description

00:36:23 Oct 14 1997 (X11 Quake 1.00) 1.09 Linux, X11, 8bpp,
16bpp

? Nov 7 1997 1.09 Win32, Glide

14:37:37 Nov 13 1997 (Linux GL 0.97) 1.09 Linux, SVGA, Glide,
16bpp

There is a small change in the Quake DEM format from 1.06 to 1.07. It will be discussed in the section
Section 7.16. A new message was introduced in 1.07 too (see section Section 7.35. In version 1.08 the
temp_entity message changed a bit (see section Section 7.24). In version 1.09 the CD track reading
changed totally (see section Section 6.1).

I actually check my documentation with Linux Registered Quake 1.09 (x/squake) and compare it rarely
with MS-DOS Registered Quake 1.06.

2. Basics on the used client/server architecture
Unlike DOOM and similar games Quake uses a “server” process (or even computer) which “does” all the
game play. The “clients” (at least one) send to the server all input events (keys, mouse etc.) and receive
all necessary information to draw the current picture. This prevents Quake from inconsistencies and the
network load increases linear with the clients and not quadratic.

The communication between server and clients is an asynchronous one. If you don’t press any key, your
computer won’t send any packets to the server. But you receive from time to time (the network is
unpredictable) a packet to describe the state of your client. It is obvious, that these packets must contain
some time stamp information, the positions of all monsters in sight and some player state information
like the current weapon, ammo etc.

And exactly this is the DEM file format: the recording of all packets from the server to that client, who
recorded the game (the first client). I call these packets “blocks of messages” and the single information
(time, position, ammo etc.) “message”. In the original QuakeC code are some comments referring to
“commands” instead of “messages” but I won’t change all my documentation after all.

The (listen) server process does the actual recording (file write access). Since every client gets all
information to write the demo himself it was a matter of time until someone wrote a client proxy to
record demos at the client side. I know two of them:

dproxy

written by Kekoa Proudfoot kekoa@graphics.stanford.edu (mailto:kekoa@graphics.stanford.edu).

FAQ-Proxy

written by Juha Kujala jmkujala@cc.jyu.fi (mailto:jmkujala@cc.jyu.fi) and Ilkka Rajala
r151925@proffa.cc.tut.fi (mailto:r151925@proffa.cc.tut.fi). For more information visit FAQ
homepage at http://www.modeemi.cs.tut.fi/quake/.

4

The unofficial DEM format description

3. Some remarks on the used demo format

3.1. Advertising
As the clever reader may know I’m the author of LMPC, the LMP/DMO/DEM/QWD Control Centre.
With this tool you may

• “decompile” an existing DEM file to a simple text file and

• “compile” such a (modified) text file back to a binary DEM file.

With LMPC it is very easy to analyse a DEM file but you can change it as well and so create a DEM file
of a Quake game you never played. The current version of LMPC can be found at my Demo Specs page
(http://demospecs.half-empty.de).

3.2. Difference to DOOM
The recording of a DOOM game consists only of the player input. All the rest is random-number
dependent but totally deterministic and will be recalculated during the playback.

If you change a single action in a LMP file all the rest is garbage because all monsters now behave totally
different and sooner or later (sooner) you run into a wall. This can’t happen in a DEM file. The full
movement of all objects is stored in it.

This confronts us with new opportunities but also new problems.

3.3. Opportunities of the DEM format
With the centerprint message it is possible to include some sub-titles in a recording file to inform the
watchers what will happen next.

The player coordinates and the camera positions may be different. This makes it possible to simulate the
Duke Nukem 3D feature of stationary cameras. The client doesn’t draw the entity with the “viewpoint”.
This is in general the player entity itself but this entity can be changed to anything else with the setview
message. Another problem is the entity selection of the server, which sends to the client only the entities
in sight (of the client). Therefore it is impossible to enlarge the distance between the camera and the
recording player too much. They both have to be on the same side of a wall.

For people with too much spare-time Quake can replace a full 3D modelling system for cartoons or the
like.

The demo file can contain console commands, which the client runs during replay. With this feature it is
possible to write a screen shot after every time stamp in the demo file. This makes it very easy to create a
MPEG movie out of a DEM file.

5

The unofficial DEM format description

3.4. Problems of the DEM format
It is trivial to remove the “godmode ON” and other cheat messages from a recording. All the action
doesn’t change at all. These messages are only text print commands and the client behaviour doesn’t
depend on them.

Fortunately I found a redundancy in the DEM format, which allows to detect a “godmode” cheater:
Every damage message contains the health and armor decrease value. The next status line description (it
contains the health and armor values to be displayed) can so be checked.

4. Some general remarks on the recording structure

4.1. Entity
An entity is an object. This may be the whole level (described by a BSP file), the player (described by a
MDL file), an explosion (described by a SPR file) or the like.

There are different kind of entities.

4.1.1. Static Entity

A static entity doesn’t interact with the rest of the game. These are flames (progs/flame.mdl) and the
like. It will be created by the spawnstatic message. It will never be necessary to reference such an entity.
They don’t get an entity number. The maximum number of static entities is 127.

4.1.2. Dynamic Entity

A dynamic entity is anything which changes its behaviour or its appearance. These are ammunition
boxes, spinning armours, player models and the like. A dynamic entity will be created by the
spawnbaseline message. The maximum number of dynamic entities is 449.

4.1.3. Temporary Entity

A temporary entity will be created by the temp_entity message. A temporary entity is a (as the name
indicates) short time entity.

Quake uses these entities for hits on the wall (point-like entities) or for the Thunderbolt flash (line-like
entities).

For more information on temporary entities look in section Section 7.24.

6

The unofficial DEM format description

4.2. Life-cycles
The Quake objects pass different life phases. The following information is not DEM specific but it may
be of general interest to understand the cooperation of all the messages.

4.2.1. Armor

• To enable the client to display an armor the serverinfo message asks for the “progs/armor.mdl” model
file and the “items/armor1.wav” sound file.

• The armor starts its life with a spawnbaseline message during the initialise phase. The armor is now a
dynamic entity and spins around.

• The corresponding updateentity message appears only, if the camera is near enough to see the armor.

• The player gets it in the play. This results in the sound message “items/armor1.wav” and a print
message “you got armor” and the stufftext message “bf\n” to make a short flash.

• The updateentity message for the armor doesn’t appear ever again: the player got it.

• From this moment the corresponding bit in the items variable in the clientdata message will be 1 and
the armorvalue variable get its maximum (100/150/200). From the items bit follows the colour of
the picture to be drawn in the lower left corner of the status line.

• Now the player may be hit by a grenade. The total damage value (damage=take+save) will be split in
take (health-=take) and save (armorvalue-=save). The save amount depends on the armor type
(none/green/yellow/red): save=0.0/0.3/0.6/0.8*damage. The damage message in the DEM file
tells the reduction of the current armor. With the old clientdata value and the reduction it is easy to
recompute the new clientdata armor value. Any difference betrays the cheating player.

• After some severe hits the armorvalue variable is 0 and the items bit falls back to 0 as well. There
is no armor anymore.

4.2.2. (Multi) Player

The following describes the deathmatch DEM messages of the two players Alice and Bob. Alice records
the game from her -listen 3 server.

• The serverinfo message contains the “maxclients 3” command to show how many clients are (at most)
in this recording.

• During the 1st initialisation phase there are 3 spawnbaseline messages to create the player models. In
the 2nd initialisation phase player 0 gets its name (Alice), colour and frag count (0) . The other 2
players get an empty name string. In the 3rd phase Alice gets again her name and colour. All these
phases are controlled by signonnum messages.

• The game starts. Alice (entity 1) is alone in the game and looks around.

7

The unofficial DEM format description

• Bob connects to Alice’s server and it appears entity 2 (Bob’s player model) a transport end temporary
entity and a print message (“Bob entered the game”) to inform everyone. Then the player 1 (Bob) gets
his updatename and updatecolors message.

• Alice doesn’t hesitate and runs for him and shoots him with the Shotgun. During every shot the
clientdata message reduces the ammo count, the angles[0] command shows the wobble of Alice’s
screen and the weaponframe command selects the corresponding weapon frames. There is a sound
message to start the weapons/guncock.wav file. Entity 1 gets its attack_state command. Alice hits
Bob and so appear many particle messages (blood). Every Shotgun shot contains 6 parts. This means
the shot can create anything from 6 particles (full hit) and 0 temporary entities (type 2: wall hits) to 0
particles and 6 temporary entities. If there was at least one particle Bob creates a sound message to
start player/pain?.wav.

• Alice kills Bob. This creates the sound message to start player/death1.wav. Then comes the
updatefrags message to give Alice 1 frag and a print message to inform everyone “Bob chewed on
Alice’s boomstick”. A new entity will be created on the fly with an updateentity message to display
Bob’s backpack.

• Bob is dead, his entity 2 model remains in the death frame.

• After some seconds he starts again by pressing SPACE. He reappears in a totally different part of the
level. The dead body transforms from entity 2 to entity 4 (maxclients+1) and a temporary entity
(transport end) informs about his return. He is out of sight from the point of Alice’s view. This means
there is no entity 2 updateentity message.

• Bob runs to Alice’s room. He goes through a slipgate and appears with 4 temporary entities (type 11:
transport end) and the entity 2 in her room.

• Bob shoots and kills Alice. The scenario is the same as above. Only the damage messages appear now
too, because Alice was hit.

• Bob uses the say console command (say this sucks) and in the DEM file appears a print message
“\001Bob: this sucks”.

• Bob disconnects from Alice’s server. This results in a print message “Bob left the game with 1 frags”
and updatename and updatecolor messages to remove client 2 (or player 1). It is a bit strange but there
are 2 updatefrags messages: player 1 gets first 0 frags (this I understand) and then again 1 frag (this I
don’t understand at all).

• Entity 2 represents now the dead player 1.

• Alice spins around (it is possible even if you are dead) and the two dead bodies from Bob are totally
white because they represent player 1 and he got (as he left) the updatecolor message with the standard
colours 0 and 0. She is alone, restarts again her play, goes to the level end slipgate and get the ranking
screen (intermission message) with only one player (Alice). Then she stops the recording. The DEM
file ends with a disconnect message.

4.2.3. Medikits, Chthon, etc.

May be included later, if someone volunteers. Reading the QuakeC source is much easier.

8

The unofficial DEM format description

5. Quake font
A string may contain any 8 bit characters except ‘\377’ and it ends with ‘\000’. The special characters
‘\n’ and ‘\r’ have their normal meaning.

The Quake font is an extended ASCII font (7 bit) which contains in the upper half a similar font but with
a different colour.

If the first character of a string for the print message is ‘\001’, the Quake client plays the intercom sound
misc/talk.wav and prints all following characters of the string with the highest bit set. Bit 7 bit will be
set with ‘\002’ at the first position of the string as well but this does not play the intercom sound. The
special characters ‘\n’ and ‘\r’ are not affected by the meta characters ‘\001’ and ‘\002’.

I used a simple DEM file (http://demospecs.half-empty.de/misc/qfont.html) to print all 252 ASCII
characters.

6. File structure
To describe the file structure, which is very complicated, I use C like program fragments and struct

definitions. This simplifies my task a lot.

I invented all used names (messages, variables etc.) for myself, took them from the Quake binary,
QuakeEd but almost all from the QuakeC source.

6.1. CD track
Beside all the beauty in DEM files, there is a real mess called CD track at the very beginning of a DEM
file.

All DEM files should start with an ASCII string of the CD track number which was given to the record
console command. The string should be terminated by ‘\n’.

There are two totally different variants, how Quake reads this first bit in: the old fscanf-variant and the
new step-by-step variant introduced with version 1.09.

6.1.1. fscanf

Quake reads the CD track bit with something like

FILE *fp;

int cdtrack;

fscanf(fp,"%i\n",&cdtrack);

This makes it possible (read the fscanf(3) man page!) to terminate the CD track string with any (positive)
number of any whitespaces (‘ ’, \t,\r,\n). You shouldn’t come across anything more complicated than "4"
or "-1" (default CD track of the level).

9

The unofficial DEM format description

Because of the possibility of multiple whitespaces at the end, Quake can’t playback DEM files, where the
first byte of the blocksize of the first block (see next section) can be interpreted as a whitespace. Quake
wont playback such a file at all! This often happens with recordings of the levels start and hip1m3.

The fscanf approach made it possible to create DEM files without any CD track at all at the beginning.
The fscanf call return 0 instead of 1 but who cares? The only thing to take into account is that the first
byte of this DEM file have to be no ASCII number or whitespace or minus sign. So fscanf can’t find
the integer number and reads nothing. The track value is undefined.

6.1.2. step-by-step

Newer Quake versions try to overcome the multiple whitespace problem of the fscanf variant and read
the track “by hand”.

The CD track parsing code goes as follows:

FILE *fp;
int cdtrack=0;
int sign=0;
unsigned char number;

while((number = ReadByte(fp)) != ’\n’) {
if (number == ’-’)
sign=1;

else
track = track*10 + number - ’0’;

}
if (sign)
track=-track;

This code is much better but it can’t detect files without any CD track header (like finesc5.dem from
the Eschaton movie). The other thing is that it interprets “1-\n” as -1 but the old fscanf variant will be
totally confused.

6.1.3. General hints

My LMPC program tries to read any kind of DEM file, so you have the possibility to change and even
remove a CD track. To be most compatibe, use only numbers and a minus sign at the beginning.

To find out the method, which your copy of Quake uses for CD track parsing use the Quake CD track
parsing analyser (http://demospecs.half-empty.de/misc/cd.html). This is a multi-variant DEM file, which
can be parsed by both variants but with different results.

If you didn’t give a CD track number to the record console command the CD track string is “-1\n”. This
means almost all DEM files start with “-1\n”. If you gave a CD track but it is not a number at all the
string is “0\n”.

All the rest of the DEM file consists of “blocks” of “messages”.

10

The unofficial DEM format description

6.2. Block of Messages
At first some QuakeEd-like coordinate typedef’s:

typedef float vec_t;

typedef vec_t vec3_t[3];

This is the block structure:

typedef struct {
long blocksize;
vec3_t angles;
char messages[blocksize];

} block_t;

A block of messages starts with a size. Then 3 angles follow which describe the camera viewing
direction. All the rest of a block are bytes which form one or more messages.

The messages in a block are the same messages as in the server to client network protocol. The block
header is different and the camera angles are missing in the network protocol. For more information on
the network protocol look in The Unofficial Quake Specs at the official Quake-editing support site,
http://www.gamers.org/dEngine/quake/spec/.

Please note the missing camera angles in the network protocol. In an actual game every Quake client
“knows” its viewing direction for itself and gets from the server only the position.

6.3. Message
This is the message structure:

typedef struct {
unsigned char ID;
char messagecontent[???];

} message_t;

The length of a message depends on its type (or ID).

6.4. Auxiliary routines
Here comes the definition of some small auxiliary routines to simplify the main message description.
get_next_unsigned_char, get_next_signed_char, get_next_short and get_next_long are
basic functions and they do exactly what they are called. Please note: byte, char or short will be
converted to long. Second note: all multi-byte structures in the DEM file are Intel ordered.

In the following I often use a count variable

int i;

without declaration. I hope this does not confuses you.

11

The unofficial DEM format description

long ReadByte
{
return (long) get_next_unsigned_char;

}

long ReadChar
{
return (long) get_next_signed_char;

}

long ReadShort
{
return (long) get_next_short;

}

long ReadLong
{
return get_next_long;

}

Note: A signed angle in a single byte. There are only 256 possible direction to look into.

vec_t ReadAngle
{
return (vec_t) ReadChar / 256.0 * 360.0;

}

vec_t ReadCoord
{
return (vec_t) ReadShort * 0.125;

}

The string reading stops at ’\0’ or after 0x7FF bytes. The internal buffer has only 0x800 bytes available.

char* ReadString
{
char* string_pointer;
char string_buffer[0x800];

string_pointer=string_buffer;

12

The unofficial DEM format description

for (i=0 ; i<0x7FF ; i++, string_pointer++) {
if (! (*string_pointer = ReadChar)) break;

}

*string_pointer = ’\0’;
return strdup(string_buffer);

}

7. List of all message types
The easiest way to explain a message is to give a short C like program fragment to parse such a message.
It is not really the same code base as in LMPC but it should be very similar. Each message can be
described by its ID or its name.

7.1. bad

ID

0x00

purpose

Something is bad. This message should never appear.

parse routine

none

7.2. nop

ID

0x01

purpose

No operation.

parse routine

none

13

The unofficial DEM format description

7.3. disconnect

ID

0x02

purpose

Disconnect from the server. Stops the game.

parse routine

none

7.4. updatestat

ID

0x03

purpose

Updates directly any values in the player state.

variables

long index;

is the index in the playerstate array.

Table 2. updatestat indices

index variable

0 health

1 ??? (not used)

2 weaponmodel

3 currentammo

4 armorvalue

5 weaponframe

6 ammo_shells

7 ammo_nails

8 ammo_rockets

9 ammo_cells

10 weapon

14

The unofficial DEM format description

11 total_secrets

12 total_monsters

13 found_secrets

14 killed_monsters

15 ???

.

.

.

31 ???

Normal DEM files use index 11 to 14 only.

long value;

is the new value.

long playerstate[32];

is the internal array to describe the player state. Many other messages change (indirectly) some
values in it.

parse routine

index = ReadByte;
if (index > 0x1F) {
error("svc_updatestat: %i is invalid", index);

}
value = ReadLong;
playerstate[index] = value;

7.5. version

ID

0x04

purpose

This message defines the version of the server. I never found such a message in a DEM file. It may
be absorbed by the serverinfo message.

15

The unofficial DEM format description

variables

long serverprotocol;

is the version number of the server. It should be 0x0F in Quake.

parse routine

serverprotocol = ReadLong;
if (serverprotocol != 0x0F) {
error("CL_ParseServerMessage: Server is protocol %i instead of %i\n",

serverprotocol, 0x0F);
}

7.6. setview

ID

0x05

purpose

Sets the camera position to the origin of this entity.

variables

long entity;

is the entity with the camera.

parse routine

entity = ReadShort;

7.7. sound

ID

0x06

16

The unofficial DEM format description

purpose

This message starts the play of a sound at a specific point.

variables

long mask;

is a bitmask to reduce the amount of data.

float vol;

is the volume of the sound (0.0 off, 1.0 max)

float attenuation;

is the attenuation of the sound.

Table 3. Sound attenuations

value QuakeC purpose

0 ATTN_NONE i. e. player’s death sound
doesn’t get an attenuation

1 ATTN_NORM the normal attenuation

2 ATTN_IDLE for idle monsters

3 ATTN_STATIC for spawnstaticsound
messages

long channel;

is the sound channel. There are 8 possible sound channels for each entity in Quake but the
game uses 5 only.

Table 4. Sound channels

value QuakeC purpose

0 CHAN_AUTO selects a channel
automatically

1 CHAN_WEAPON weapon use sounds

2 CHAN_VOICE pain calls

3 CHAN_ITEM item get sounds

4 CHAN_BODY jump and fall sounds

long entity;

is the entity which caused the sound.

17

The unofficial DEM format description

long soundnum;

is the sound number in the sound-table.

vec3_t origin;

is the origin of the sound.

parse routine

long entity_channel; // combined variable

mask = ReadByte;
vol = mask & 0x01 ? (float) ReadByte / 255.0 : 1.0;
attenuation = mask & 0x02 ? (float) ReadByte / 64.0 : 1.0;
entity_channel = ReadShort;
channel = entity_channel & 0x07;
entity = (entity_channel >> 3) & 0x1FFF;
soundnum = ReadByte;
for (i=0 ; i<3 ; i++) origin[i] = ReadCoord;

7.8. time

ID

0x07

purpose

This is the time stamp of a block of messages. A time message should appear in every game block.

variables

float time;

is the time in seconds from the beginning of the current level (not of the recording).

parse routine

time = ReadFloat;

18

The unofficial DEM format description

7.9. print

ID

0x08

purpose

The client prints the text in the top left corner of the screen. There is space for 4 lines. They scroll
up and the text disappears. The text will be printed on the console as well.

variables

char* text;

is the text to be displayed. The text contains something like “You get 5 shells”.

All font specials are explained in section Section 5.

parse routine

text = ReadString;

7.10. stufftext

ID

0x09

purpose

The client transfers the text to the console and runs it.

variables

char* text;

is the command, which the client has to execute. These are commands like “bf\n” to make a
flash after you took something.

parse routine

text = ReadString;

19

The unofficial DEM format description

7.11. setangle

ID

0x0A

purpose

This message set the camera orientation.

variables

vec3_t angles;

is the new camera orientation.

parse routine

for (i=0 ; i<3 ; i++) angles[i] = ReadAngle;

7.12. serverinfo

ID

0x0B

purpose

This message is usually the first messages in a DEM file and after a level change. It loads model and
sound files.

variables

long serverversion;

is the protocol version of the server. Quake uses the version value 15 and it is not likely, that
this will change.

20

The unofficial DEM format description

long maxclients;

is the maximum number of clients in this recording. It is 1 in single player recordings or the
number after the -listen command line parameter.

long multi;

is 0 in single player recordings and 1 in multi player recordings. It actually toggles the ranking
screen at the end of a level.

char* mapname;

is the name of the level.

char* precache_models[MAX_MODELS+1];

is the model-table. It will be filled up with model names. Many other messages contain an
index in this array. The first used index is 1. MAX_MODELS has the value 255.

long nummodels;

is the number of models in the model-table.

char* precache_sounds[MAX_MODELS+1];

is the sound-table. It will be filled up with sound names. Many other messages contain an
index in this array. The first used index is 1. MAX_SOUNDS has the value 255.

long numsounds;

is the number of sounds in the sound-table.

parse routine

serverversion = ReadLong;
if (serverversion != PROTOCOL_VERSION) {
error("Server returned version %i, not %i", serverversion, PROTOCOL_VERSION);

}
maxclients = ReadByte;
multi = ReadByte;
mapname = ReadString;
nummodels = 0;
do {
if (++nummodels > MAX_MODELS) error("Server sent too many model_precache");
precache_models[nummodels] = ReadString;

} while (*precache_models[nummodels]);
numsounds = 0;
do {
if (++numsounds > MAX_SOUNDS) error("Server sent too many sound_precache");
precache_sounds[numsounds] = ReadString;

} while (*precache_sounds[numsounds]);

21

The unofficial DEM format description

7.13. lightstyle

ID

0x0C

purpose

This message defines a light style.

variables

long style;

is the light style number.

char* string;

is a string of letters “a” .. “z”, where “a” means black and “z” white. All effects from nervous
flashing: “az” to slow dimming: “zyxwvu ... edcba” can so be described.

parse routine

style = ReadByte;
string = ReadString;

7.14. updatename

ID

0x0D

purpose

This message sets the player name.

variables

long player;

is the internal player number (client 1 has the player entity 0).

char* netname;

is the new player name.

22

The unofficial DEM format description

parse routine

player = ReadByte;
netname = ReadString;

7.15. updatefrags

ID

0x0E

purpose

This message updates the frag count of a specific player.

variables

long player;

is the internal player number (client 1 has the player entity 0).

long frags;

is the new frag count for this player.

parse routine

player = ReadByte;
frags = ReadShort;

7.16. clientdata

ID

0x0F

purpose

This message updates the status line and the camera coordinates.

23

The unofficial DEM format description

variables

long mask;

is a bitmask to show which values are coming.

float view_ofs_z;

is an additional viewing offset because the camera is at the origin of the entity and not at the
eyes (is -8 if the player is death).

float punchangle_x;

is an additional offset of the first angle.

vec3_t angles;

indicates the camera direction change.

vec3_t vel;

indicates the camera velocity.

long items;

contains a bit mask for the inventory.

Table 5. items bits

bit value QuakeC purpose

0 0x00000001 IT_SHOTGUN Shotgun (should be
always 1)

1 0x00000002 IT_SUPER_SHOTGUNDouble-barrelled
Shotgun

2 0x00000004 IT_NAILGUN Nailgun

3 0x00000008 IT_SUPER_NAILGUNPerforator

4 0x00000010 IT_GRENADE_LAUNCHERGrenade Launcher

5 0x00000020 IT_ROCKET_LAUNCHERRocket Launcher

6 0x00000040 IT_LIGHTNING Thunderbolt

7 0x00000080 IT_EXTRA_WEAPONextra weapon (there is
no extra weapon)

8 0x00000100 IT_SHELLS Shells are active

9 0x00000200 IT_NAILS Nails are active

10 0x00000400 IT_ROCKETS Grenades are active

11 0x00000800 IT_CELLS Cells are active

24

The unofficial DEM format description

12 0x00001000 IT_AXE Axe (should be
always 1)

13 0x00002000 IT_ARMOR1 green Armor

14 0x00004000 IT_ARMOR2 yellow Armor

15 0x00008000 IT_ARMOR3 red Armor

16 0x00010000 IT_SUPERHEALTH Megahealth

17 0x00020000 IT_KEY1 silver keycard (or
runekey or key)

18 0x00040000 IT_KEY2 gold keycard (or
runekey or key)

19 0x00080000 IT_INVISIBILITY Ring of Shadows

20 0x00100000 IT_INVULNERABILITYPentagram of
Protection

21 0x00200000 IT_SUIT Biosuit

22 0x00400000 IT_QUAD Quad Damage

23 0x00800000 unknown unknown (is 0)

24 0x01000000 unknown unknown (is 0)

25 0x02000000 unknown unknown (is 0)

26 0x04000000 unknown unknown (is 0)

27 0x08000000 unknown unknown (is 0)

28 0x10000000 unknown Rune 1

29 0x20000000 unknown Rune 2

30 0x40000000 unknown Rune 3

31 0x80000000 unknown Rune 4

You can find the default value for items in the parse routine: 0x4001. It looks like a
programmer’s mistake because this means Shotgun any yellow Armor. It should be 0x1001:
Shotgun and Axe.

long weaponframe;

is the frame of the weapon model.

long armorvalue;

is the current armor.

long weaponmodel;

is the model number of the weapon in the model-table.

long health;

is the current health.

25

The unofficial DEM format description

long currentammo;

is the current number of the current ammunition.

long ammo_shells;

is the current number of shells.

long ammo_nails;

is the current number of nails.

long ammo_rockets;

is the current number of rockets.

long ammo_cells;

is the current number of cells.

long weapon;

contains a bit mask for the current weapon.

Table 6. weapon bits

bit value QuakeC weapon

? 0x00 not available Axe

0 0x01 IT_SHOTGUN Shotgun

1 0x02 IT_SUPER_SHOTGUNDouble-barrelled
Shotgun

2 0x04 IT_NAILGUN Nailgun

3 0x08 IT_SUPER_NAILGUNPerforator

4 0x10 IT_GRENADE_LAUNCHERGrenade Launcher

5 0x20 IT_ROCKET_LAUNCHERRocket Launcher

6 0x40 IT_LIGHTNING Thunderbolt

7 0x80 IT_EXTRA_WEAPONextra weapon (there is
no extra weapon)

float version;

is the Quake version. Up to Quake 1.06 the bit 0x0200 in the mask variable indicated an used
items entry. From 1.07 on the bit will be ignored and the items entry is compulsory. An old
Quake client (<=1.06) can not play back the recording of a new Quake (>=1.07) because the
unused bit is from 1.07 on always 0. The most compatible variant is to set the bit 0x0200 and
include an items entry. This is the standard behaviour of LMPC. Even newer version of Quake
(only checked with Linux Quake 1.09) set always the bit 0x0200 in the mask variable and
send always the items entry.

26

The unofficial DEM format description

parse routine

long uk_bit_b10, uk_bit_b11; // unknown

mask = ReadShort;
view_ofs_z = mask & 0x0001 ? (float) ReadChar : 22.0;
punchangle_x = mask & 0x0002 ? (float) ReadChar : 0.0;
angles[0] = mask & 0x0004 ? (vec_t) ReadChar : 0.0;
vel[0] = mask & 0x0020 ? (vec_t) ReadChar : 0.0;
angles[1] = mask & 0x0008 ? (vec_t) ReadChar : 0.0;
vel[1] = mask & 0x0040 ? (vec_t) ReadChar : 0.0;
angles[2] = mask & 0x0010 ? (vec_t) ReadChar : 0.0;
vel[2] = mask & 0x0080 ? (vec_t) ReadChar : 0.0;
if (version<=1.06)
items = mask & 0x0200 ? ReadLong : 0x4001;

else
items = ReadLong;

uk_bit_b10 = mask & 0x0400 ? 1 : 0; // bit 10
uk_bit_b11 = mask & 0x0800 ? 1 : 0; // bit 11
weaponframe = mask & 0x1000 ? ReadByte : 0;
armorvalue = mask & 0x2000 ? ReadByte : 0;
weaponmodel = mask & 0x4000 ? ReadByte : 0;
health = ReadShort;
currentammo = ReadByte;
ammo_shells = ReadByte;
ammo_nails = ReadByte;
ammo_rockets = ReadByte;
ammo_cells = ReadByte;
weapon = ReadByte;

7.17. stopsound

ID

0x10

purpose

Stops a sound. It looks for a sound started with a sound message with the same channel and
entity.

variables

long channel;

is the sound channel.

27

The unofficial DEM format description

long entity;

is the entity which caused the sound.

parse routine

long entity_channel; // combined variable

entity_channel = ReadShort;
channel = entity_channel & 0x07;
entity = (entity_channel >> 3) & 0x1FFF;

7.18. updatecolors

ID

0x11

purpose

Updates the colours of the specified player.

variables

long player;

is the internal player number (client 1 has player entity 0).

long colors;

is the combined colour of this player.

long shirtcolor;

is the colour of the shirt (0 <= shirtcolor <= 15).

long pantscolor;

is the colour of the pants (0 <= pantscolor <= 15).

parse routine

player = ReadByte;
colors = ReadByte;
shirtcolor = (colors>>4) & 0x0F;
pantscolor = colors & 0x0F;

28

The unofficial DEM format description

7.19. particle

ID

0x12

purpose

This starts particles flying around. This happens, if a barrel explodes or blood particles fly after
being hit by an axe, shells or nails.

variables

vec3_t origin;

is the origin of the particles.

vec3_t vel;

is the velocity of the particles.

long color;

is the colour of the particles (chunk 0, blood 73, barrel 75 and thunderbolt 225).

long count;

is the number of the particles.

parse routine

for (i=0 ; i<3 ; i++) origin[i] = ReadCoord;
for (i=0 ; i<3 ; i++) vel[i] = (vec_t) ReadChar * 0.0625;
count = ReadByte;
color = ReadByte;

7.20. damage

ID

0x13

purpose

Tells how severe was a hit and from which point it came.

29

The unofficial DEM format description

variables

long save;

will be subtracted from the current armor.

long take;

will be subtracted from the current health.

vec3_t origin;

is the origin of the hit. It points to the weapon of a monster or player (not the origin of the
monster entity) or it is (0,0,0) if the damage was caused by drowning or burning.

parse routine

save = ReadByte;
take = ReadByte;
for (i=0 ; i<3 ; i++) origin[i] = ReadCoord;

7.21. spawnstatic

ID

0x14

purpose

This message creates a static entity and sets the internal default values.

variables

long StaticEntityCount;

is the number of already started static entities. The maximum number is 127.

long default_modelindex;

is the model number in the model-table.

long default_frame;

is the frame number of the model.

30

The unofficial DEM format description

long default_colormap;

is the colormap number to display the model.

long default_skin;

is the skin number of the model. This is used for things with different skins (like players or
armors).

vec3_t default_origin;

is the origin of the entity.

vec3_t default_angles;

is the orientation of the entity.

#define MAX_STATIC_ENTITIES 127

is the maximum number of static entities in a given level.

parse routine

int data1, data2, data3;

if (StaticEntityCount > MAX_STATIC_ENTITIES) error("Too many static entities");
StaticEntityCount++;
default_modelindex = ReadByte;
default_frame = ReadByte;
default_colormap = ReadByte;
default_skin = ReadByte;
for (i=0 ; i<3 ; i++) {
default_origin[i] = ReadCoord;
default_angles[i] = ReadAngle;

}

7.22. spawnbinary

ID

0x15

purpose

This is OBSOLETE. It should never occur in DEM files.

parse routine

error ("CL_ParseServerMessage: Illegible server message\n");

31

The unofficial DEM format description

7.23. spawnbaseline

ID

0x16

purpose

This message creates a dynamic entity and sets the internal default values.

variables

long entity;

is the number of the entity.

long default_modelindex;

is the model number in the model-table.

long default_frame;

is the frame number of the model.

long default_colormap;

is the colormap number to display the model.

long default_skin;

is the skin number of the model. This is used for things with different skins (like players or
armors).

vec3_t default_origin;

is the origin of the entity.

vec3_t default_angles;

is the orientation of the entity.

#define MAX_ENTITIES 449

is the maximum number of entities in a given level.

parse routine

entity = ReadShort;
if (entity > MAX_ENTITIES) error("CL_EntityNum: %i is an invalid number", entity);

32

The unofficial DEM format description

default_modelindex = ReadByte;
default_frame = ReadByte;
default_colormap = ReadByte;
default_skin = ReadByte;
for (i=0 ; i<3 ; i++) {
default_origin[i] = ReadCoord;
default_angles[i] = ReadAngle;

}

7.24. temp_entity

ID

0x17

purpose

This message creates a temporary entity.

variables

long entitytype;

is the type of the temporary entity. There are two kinds of temporary entities in Quake.
TE_EXPLOSION2 and TE_BEAM was introduced with the Mission Pack # 2 (Quake version
1.08).

point entity

is a small point like entity.

Table 7. point entities

value QuakeC purpose

0 TE_SPIKE unknown

1 TE_SUPERSPIKE superspike hits (spiketraps)

2 TE_GUNSHOT hit on the wall (Axe,
Shotgun)

3 TE_EXPLOSION grenade/missile explosion

4 TE_TAREXPLOSION explosion of atarbaby

7 TE_WIZSPIKE wizard’s hit

8 TE_KNIGHTSPIKE hell knight’s shothit

10 TE_LAVASPLASH Chthon awakes and
fallsdead

33

The unofficial DEM format description

11 TE_TELEPORT teleport end

12 TE_EXPLOSION2 other explosion

large entity

is a 2 dimensional entity.

Table 8. line entities

value QuakeC purpose

5 TE_LIGHTNING1 flash of theShambler

6 TE_LIGHTNING2 flash of theThunderbolt

9 TE_LIGHTNING3 flash in e1m7 to killChthon

13 TE_BEAM grappling hook

long entity;

is the entity which created the temporary entity.

vec3_t origin;

is the origin of the entity.

vec3_t trace_endpos;

is the destination of the large temporary entity.

long color;

is the colour of the temporary entity.

long range;

is the range for a TE_EXPLOSION2 explosion.

parse routine

entitytype = ReadByte;
switch (entitytype) {
case TE_SPIKE:
case TE_SUPERSPIKE:
case TE_GUNSHOT:
case TE_EXPLOSION:
case TE_TAREXPLOSION:
case TE_WIZSPIKE:
case TE_KNIGHT_SPIKE:
case TE_LAVASPLASH:
case TE_TELEPORT:

34

The unofficial DEM format description

for (i=0 ; i<3 ; i++) origin[i] = ReadCoord;
break;
case TE_LIGHTNING1:
case TE_LIGHTNING2:
case TE_LIGHTNING3:
case TE_BEAM:

entity = ReadShort;
for (i=0 ; i<3 ; i++) origin[i] = ReadCoord;
for (i=0 ; i<3 ; i++) trace_endpos[i] = ReadCoord;

break;
case TE_EXPLOSION2:

for (i=0 ; i<3 ; i++) origin[i] = ReadCoord;
color = ReadByte;
range = ReadByte;

break;
default:
error("CL_ParseTEnt: bad type");

break;
}

7.25. setpause

ID

0x18

purpose

Set the pause state. The time stands still but all entities get their update messages.

variables

long pausestate;

is 1 to start the pause and 0 to stop it.

parse routine

pausestate = ReadByte;
if (pausestate) {
// pause is on

}
else {
// pause is off

}

35

The unofficial DEM format description

7.26. signonum

ID

0x19

purpose

This message selects the client state.

variables

long signon;

is the client state.

Table 9. signon values

value purpose

1 after model/sound precache, start spawning
entities (“prespawn”)

2 start initialising light effects

3 start 3D rendering

parse routine

signon = ReadByte;

7.27. centerprint

ID

0x1A

purpose

Prints the specified text at the centre of the screen. There is only one text line with a maximum of 40
characters. To print more than this one line, use ‘\n’ for a new line. Every text line (the first 40
characters) will be centred horizontally.

All font specials are explained in section Section 5.

36

The unofficial DEM format description

variables

char* text;

is the text to be displayed.

parse routine

text = ReadString;

7.28. killedmonster

ID

0x1B

purpose

This message indicates the death of a monster.

variables

long killed_monsters;

is the number of killed monsters. It may be displayed with the console command showscores.

parse routine

killed_monsters++;

7.29. foundsecret

ID

0x1C

purpose

This message receives a client, if the player enters a secret area. It comes usually with a print
message.

37

The unofficial DEM format description

variables

long found_secrets;

is the number of found secrets. It may be displayed with the console command showscores.

parse routine

found_secrets++;

7.30. spawnstaticsound

ID

0x1D

purpose

This message starts a static (ambient) sound not connected to an entity but to a position.

variables

vec3_t origin;

is the origin of the sound.

long soundnum;

is the sound number in the sound-table.

float vol;

is the volume (0.0 off, 1.0 max)

float attenuation;

is the attenuation of the sound.

Table 10. Sound attenuation

value QuakeC purpose

0 ATTN_NONE i. e. player’s death sound
doesn’t get an attenuation

1 ATTN_NORM the normal attenuation

2 ATTN_IDLE attenuation for idle monsters

38

The unofficial DEM format description

3 ATTN_STATIC attenuation for
spawnstaticsound messages

parse routine

for (i=0 ; i<3 ; i++) origin[i] = ReadCoord;
soundnum = ReadByte;
vol = (float) ReadByte / 255.0;
attenuation = (float) ReadByte / 64.0;

7.31. intermission

ID

0x1E

purpose

Displays the level end screen. Depending on the multi command in the serverinfo message this is
either the single player summary screen or the multi player ranking screen.

parse routine

none

7.32. finale

ID

0x1F

purpose

Displays the episode end screen and some text.

variables

char* text;

is the episode end text.

39

The unofficial DEM format description

parse routine

text = ReadString;

7.33. cdtrack

ID

0x20

purpose

This message selects the audio CD track numbers.

variables

long fromtrack;

is the start track.

long totrack;

is the last track. Both values are equal at the start of a game but become 2 and 3 at the end of an
episode.

parse routine

fromtrack = ReadByte;
totrack = ReadByte;

7.34. sellscreen

ID

0x21

purpose

Displays the help and sell screen.

40

The unofficial DEM format description

parse routine

none

7.35. cutscene

ID

0x22

purpose

This message appeared firstly with the Mission Pack #1 (Quake version 1.07). It is similar to finale
as it displays an end screen and some text.

variables

char* text;

is the text.

parse routine

text = ReadString;

7.36. updateentity

ID

>=0x80

purpose

This is the general entity update message. For every entity (potentially) in sight the server sends
such a message. The message contains only the values, which changed since the creation (or
spawning) of the entity (with spawnstatic, spawnbaseline).

41

The unofficial DEM format description

variables

long mask;

is a bit mask to reduce the amount of data to be sent. Only the changed parts (with respect to
the initial state) get their bit and their values.

long entity;

is the entity number.

long modelindex;

is the model number in the model-table.

long frame;

is the frame number of the model.

long colormap;

is the colormap number to display the model.

long skin;

is the skin number of the model. This is used for things with different skins (like players or
armors).

long effects;

contains a bit mask for special entity effects.

Table 11. Possible effects values

bit value QuakeC purpose

0 0x01 EF_BRIGHTFIELD not used

1 0x02 EF_MUZZLEFLASH attack state of most
entities

2 0x04 EF_BRIGHTLIGHT not used

3 0x08 EF_DIMLIGHT Quad Damage,
Pentagram of
Protection, Enforcer’s
laser

vec3_t origin;

is the origin of the entity.

vec3_t angles;

is the orientation of the entity.

42

The unofficial DEM format description

long new;

is 1 if the entity gets some really new values (modelindex etc.)

parse routine

mask = ID & 0x07F;
if (mask & 0x0001) mask |= (ReadByte) << 8;
entity = mask & 0x4000 ? ReadShort : ReadByte;
modelindex = mask & 0x0400 ? ReadByte : default_modelindex;
frame = mask & 0x0040 ? ReadByte : default_frame;
colormap = mask & 0x0800 ? ReadByte : default_colormap;
skin = mask & 0x1000 ? ReadByte : default_skin;
effects = mask & 0x2000 ? ReadByte : default_effects;
origin[0] = mask & 0x0002 ? ReadCoord : default_origin[0];
angles[0] = mask & 0x0100 ? ReadAngle : default_angles[0];
origin[1] = mask & 0x0004 ? ReadCoord : default_origin[1];
angles[1] = mask & 0x0010 ? ReadAngle : default_angles[1];
origin[2] = mask & 0x0008 ? ReadCoord : default_origin[2];
angles[2] = mask & 0x0200 ? ReadAngle : default_angles[2];
new = mask & 0x0020 ? 1 : 0;

8. Version History and Acknowledgements

0.0.1, 7 July, 1996

• First version (working paper) completed.

• Many thanks to Steffen Winterfeldt (Steffen.Winterfeldt@itp.uni-leipzig.de
(mailto:Steffen.Winterfeldt@itp.uni-leipzig.de)) for his unbelievable reverse engineering work.
He worked out all the structure information.

0.0.2, 8 July, 1996

• Stupid spawnstatic error corrected.

0.0.3, 9 July, 1996

• I finally understood the multi player recordings.

• More info on sound, particle, spawnstaticsound.

43

The unofficial DEM format description

0.0.4, 14 July, 1996

• Many new values decoded.

• Tables for weapons and status line.

• More general remarks.

0.0.5, 16 July, 1996

• Many new values decoded.

• Variables entry in the message description.

• Life-cycles.

1.0.0, 28 July, 1996

• QuakeC source is published. Many things get their right names now.

• Life-cycles for multi player.

• This version is the first reliable one.

1.0.1, 29 July, 1996

• Almost all identifier names match now the QuakeC names.

• Grammar check by SW.

1.0.2, 30 July, 1996

• Serious semantic mistake corrected (spawn/update).

• Some minor layout improvements.

1.0.3, 17 November, 1996

• I (finally) checked registered Quake: nothing special.

• effects and punchangle_x get their proper names.

1.0.4, 8 February, 1997

• Info on Quake font included.

• CD track header format finally corrected.

44

The unofficial DEM format description

• Info on dproxy and FAQ-Proxy included.

1.0.5, 28 July, 1997

• Info on 1.06/1.07 problem included.

• Source is SGML-Tools 0.99.10 based.

1.0.6, 12 March, 1998

• SGML-Tools 1.0.5 used.

• First few Hexen II infos.

• New home is PlanetQuake.

• CD track section rewritten.

• Thanks to Stefan Schwoon (ssch0098@rz.uni-hildesheim.de
(mailto:ssch0098@rz.uni-hildesheim.de)) for his hints on some 1.07 and 1.08 changes.

1.0.6, 12 March, 1998

• CD track section again beautyfied.

1.0.7, 15 July, 1998

• stopsound is OK now.

• SGML-Tools 1.0.7 used.

1.0.8, 6 September, 1998

• All Hexen II infos removed. It was never totally correct and I was never really interested in
making it right.

1.0.9, 8 January, 1999

• typo corrected.

45

	Table of Contents
	1. Introduction
	1.1. Recording and Playback
	1.2. Versions

	2. Basics on the used client/server architecture
	3. Some remarks on the used demo format
	3.1. Advertising
	3.2. Difference to DOOM
	3.3. Opportunities of the DEM format
	3.4. Problems of the DEM format

	4. Some general remarks on the recording structure
	4.1. Entity
	4.1.1. Static Entity
	4.1.2. Dynamic Entity
	4.1.3. Temporary Entity

	4.2. Lifecycles
	4.2.1. Armor
	4.2.2. (Multi) Player
	4.2.3. Medikits, Chthon, etc.

	5. Quake font
	6. File structure
	6.1. CD track
	6.1.1. fscanf
	6.1.2. stepbystep
	6.1.3. General hints

	6.2. Block of Messages
	6.3. Message
	6.4. Auxiliary routines

	7. List of all message types
	7.1. bad
	7.2. nop
	7.3. disconnect
	7.4. updatestat
	7.5. version
	7.6. setview
	7.7. sound
	7.8. time
	7.9. print
	7.10. stufftext
	7.11. setangle
	7.12. serverinfo
	7.13. lightstyle
	7.14. updatename
	7.15. updatefrags
	7.16. clientdata
	7.17. stopsound
	7.18. updatecolors
	7.19. particle
	7.20. damage
	7.21. spawnstatic
	7.22. spawnbinary
	7.23. spawnbaseline
	7.24. tempentity
	7.25. setpause
	7.26. signonum
	7.27. centerprint
	7.28. killedmonster
	7.29. foundsecret
	7.30. spawnstaticsound
	7.31. intermission
	7.32. finale
	7.33. cdtrack
	7.34. sellscreen
	7.35. cutscene
	7.36. updateentity

	8. Version History and Acknowledgements

