
The unofficial DM2 format
description

Uwe Girlich
uwe@half-empty.de

v1.0.4, 1/23/2000

This document describes the DM2 file format. This file format is the result of “recording” a
game in Quake II. The extended DM2 version used in the Quake II Relay modification is also
part of this documentation.

Table of Contents
1. Introduction..2

1.1. Recording and Playback..2
1.2. Versions ...2
1.3. Advertising..4

2. File structure ..4
2.1. General remarks ..4
2.2. Block of messages...5
2.3. Auxiliary routines ...6
2.4. Message...8
2.5. Unicast ..8

3. List of all message types ..9
3.1. bad...9
3.2. muzzleflash..9
3.3. muzzlflash2 ...10
3.4. temp_entity..10
3.5. layout...19
3.6. inventory..20
3.7. nop...22
3.8. disconnect..22
3.9. reconnect ...23
3.10. sound ...23
3.11. print ...25
3.12. stufftext..26
3.13. serverdata ..26
3.14. configstring..28

1

The unofficial DM2 format description

3.15. spawnbaseline ...31
3.16. centerprint ...33
3.17. download ...34
3.18. playerinfo ..35
3.19. packetentities...39
3.20. deltapacketentities ...42
3.21. frame ...42

4. Version History and Acknowledgements ...44

1. Introduction

1.1. Recording and Playback
To create a recording of your Quake II play start any map and then use the console command record
name. This records the game play from your point of view into the file demos/name.dm2. demos is a
sub-directory of the current game directory. To stop this recording use stop or even quit the whole game
(quit). To play it back, use the command demomap name.dm2 or simply map name.dm2. This kind of
recording is called “client side recording”.

To create a “server side recording” invoke at the server during a running game the console command
serverrecord name. This records all information of all entities in the whole level but no player
information into the file demos/name.dm2. Quake II can’t play back these server side recordings.

The third variant of DM2 files should be better called RLA files. They are created by the Quake II Relay
server modification. This is a user-made modification to create a special kind of server side demos but
they can be read in again (at the server side) and replayed by any client, who connects to this modified
server. Read more about this interesting modification at http://www.planetquake.com/relay/.

1.2. Versions
In this document I’ll discuss the DM2 format used by Quake II. There are significant differences between
the Quake II test release (engine version 3.00) and the CD retail version (3.05). This difference consists
especially in the reordered message code bytes, so that the “normal codes” have the values 1 to 5 in 3.05.
There are some more differences in the spawnbaseline message. Due to the existence of a sole DM2 file
in the 3.00 format (packed in the PAK file of the test release) and considering the fact, that the test
release can’t even record new ones, I will confine myself to the “new” format, introduced with the CD
retail version 3.05 (protocol version 26).

With 3.15 (protocol version 32) a new kind of DM2 file was introduced: server side recordings. These
are for DM2 editors only, since they contain all information from all entities but no player information
and Quake II isn’t even able to play them back.

In 3.17 (protocol version 33) the server side recordings became easier to parse because serverdata can
now be used to distinguish between client side and server side recordings.

2

The unofficial DM2 format description

Table 1. Covered Quake II versions.

version platform note

3.05 x86 Nov 30 1997
RELEASE

Win32 CD retail

3.06 x86 Dec 9 1997
RELEASE

Win32 first patch

3.07 x86 Dec 27 1997
RELEASE

Win32 interim release

3.08 x86 Dec 28 1997
RELEASE

Win32 another interim release

3.09 x86 Dec 29 1997
RELEASE

Win32 with patch program

3.10 x86 Jan 4 1998
RELEASE

Win32 last before point release

3.10 NON-WIN32 Jan 5
1998 NON-WIN32

Linux first Linux release

3.12 x86 Feb 16 1998
RELEASE

Win32 point release

3.13 x86 Feb 23 1998
RELEASE

Win32 point fix release

3.13 i386 Feb 24 1998
RELEASE

Linux point fix release

3.14 i386 Mar 2 1998
RELEASE

Linux another fix release

3.14 x86 Mar 2 1998
RELEASE

Win32 another fix release

3.14 i386 Mar 3 1998
RELEASE

Linux bug fix release 3.14a

3.15 x86 May 27 1998
Win32 RELEASE

Win32 Mission Pack 1 release

3.15 i386 May 29 1998
Linux

Linux bug fix release 3.15a

3.17 i386 Jun 21 1998
Linux

Linux stable release

3.17 x86 Jun 22 1998
Win32 RELEASE

Win32 stable release

3.18 x86 Aug 19 1998
Win32 RELEASE

Win32 Mission Pack 2 release

3.19 x86 Sep 1 1998
Win32 RELEASE

Win32 bug fix release

3

The unofficial DM2 format description

3.19 x86 Sep 10 1998
Linux

Linux bug fix release

3.20 x86 Oct 9 1998
Linux

Linux final release(equal to
3.20 beta)

3.20 x86 Oct 16 1998
Win32 RELEASE

Win32 final release(equal to
3.20 beta)

1.3. Advertising
As the clever reader may know I’m the author of LMPC, the Little Movie Processing Centre. With this
tool you may

• “decompile” an existing DM2 file (3.05 ... 3.20) to a simple text file and

• “compile” such a (modified) text file back to a binary DM2 file.

With LMPC it is very easy to analyse a DM2 file but you may change it as well and so create a DM2 file
of a Quake II game you never played. The current version of LMPC can be found at my Demo Specs
page (http://demospecs.half-empty.de).

2. File structure

2.1. General remarks
To describe the file structure, which is very complicated, I use C like program fragments and struct

definitions. This simplifies my task a lot.

I invented all used names (messages, variables etc.) for myself, took them from the Quake II binary but
almost all from the many published source code snippets.

All multi-byte structures in DM2 files are “little endian” (VAX or Intel ordered, lowest byte first),

Descriptive sentences in italics are copied from the published game source. There are several different
source packages available from id Software:

• the oldest from december 1997 with the source of the game library and some tools (unpacked in the
directory q2source_12_11):

• general version: ftp://ftp.idsoftware.com/pub/quake2/source/old/q2source_12_11.zip

• the newer one from march 1998 with the source of the game library only:

• Linux version: ftp://ftp.idsoftware.com/pub/quake2/source/old/q2-3.14-source.shar.Z

4

The unofficial DM2 format description

• Windows version: ftp://ftp.idsoftware.com/pub/quake2/source/old/q2-3.14-source.exe

• The newest release from the end of november 1998 with both Mission Packs:

• Plain game (unpacked in the directory q2src320/game/)

• Linux version: ftp://ftp.idsoftware.com/pub/quake2/source/q2src320.shar.Z

• Windows version: ftp://ftp.idsoftware.com/pub/quake2/source/q2src320.exe

• Xatrix Quake II Mission Pack 1: The Reckoning (unpacked in the directory
xatrixsrc320/game/)

• Linux version: ftp://ftp.idsoftware.com/pub/quake2/source/xatrixsrc320.shar.Z

• Windows version: ftp://ftp.idsoftware.com/pub/quake2/source/xatrixsrc320.exe

• Rouge Quake II Mission Pack 2: Ground Zero (unpacked in the directory roguesrc320/game)

• Linux version: ftp://ftp.idsoftware.com/pub/quake2/source/roguesrc320.shar.Z

• Windows version: ftp://ftp.idsoftware.com/pub/quake2/source/roguesrc320.exe

I refer to the files with the full path name (e.g. q2src320/game/q_shared.h).

And now some QuakeEd compliant coordinate typedef’s:

typedef float vec_t;

typedef vec_t vec3_t[3];

2.2. Block of messages
A DM2 file is a set of “blocks” of “messages”. A block consists of a 4 byte length entry and the actual
messages:

typedef struct {
unsigned long size;
unsigned char messages[size];

} block_t;

#define MAX_MSGLEN 1400

is the maximum message size (real game data in a network packet). The value must be less than or
equal to 1472 to avoid fragmentation of the UDP packets on an Ethernet. The MTU in PPP is much
smaller and QuakeWorld used up to 2.10 also much bigger network packets but the reduced packet
size is for LAN play definitely a great improvement. In server side recordings there is not such a
restriction.

if (serverdata.isdemo != RECORD_SERVER && block.size>MAX_MSGLEN)

5

The unofficial DM2 format description

error("Demo message > MAX_MSGLEN");

Beginning with version 3.05 (protocol version 26) Quake II uses an empty block with a block size of -1
(0xffffffff) as the last block. This remindes (at least) me of the DOOM LMP end byte (0x80).

Between 2 levels of a multi-level recoring there is an empty block with the block size 0. Quake II can’t
replay multi-level recordings.

2.3. Auxiliary routines
Here comes the definition of some small auxiliary routines to simplify the main message description.
get_next_unsigned_char, get_next_signed_char, get_next_short and get_next_long,
get_next_float are basic functions and they do exactly what they are called. Please note: byte, char
or short will be converted to long.

In the following I often use a count variable

int i;

without declaration. I hope this does not confuses you.

int ReadChar
{
return (int) get_next_signed_char;

}

int ReadByte
{
return (int) get_next_unsigned_char;

}

int ReadShort
{
return (int) get_next_short;

}

int ReadLong
{
return (int)get_next_long;

}

float ReadFloat

6

The unofficial DM2 format description

{
return get_next_float;

}

The string reading stops at ’\0’ or after 0x7FF bytes. The internal buffer has only 0x800 bytes available.

char* ReadString
{
char* string_pointer;
char string_buffer[0x800];

string_pointer=string_buffer;
for (i=0 ; i<0x7FF ; i++, string_pointer++) {
if (! (*string_pointer = ReadChar)) break;

}

*string_pointer = ’\0’;
return strdup(string_buffer);

}

vec_t ReadCoord
{
return (vec_t) ReadShort * 0.125;

}

ReadPosition(vec_t* pos)
{
for (i=0 ; i<3 ; i++) pos[i] = ReadCoord;

}

A direction for temporary entities is stored in a single byte. The 162 possible orientations are
precalculated and stored in a template list. Each direction is represented by a normalised vector. The
template list can be found in the source, q2source_12_11/utils3/qdata/anorms.h

I tried to reproduce (for WriteDir) the template list but I didn’t find the algorithm behind it. Take it as it
is: even Quake II uses the list and calculates with dot products the best fitting direction.

ReadDir(vec_t* pos)
{
#define NUMVERTEXNORMALS 162
int code;
float avertexnormals[NUMVERTEXNORMALS][3] = {
#include "q2source_12_11/utils3/qdata/anorms.h"

}
code = ReadByte;
if (code >= NUMVERTEXNORMALS) error("MSF_ReadDir: out of range");

7

The unofficial DM2 format description

pos[0] = avertexnormals[code][0];
pos[1] = avertexnormals[code][1];
pos[2] = avertexnormals[code][2];

}

Note: A signed angle in a single byte. There are only 256 possible direction to look into.

vec_t ReadAngle
{
return (vec_t) ReadChar * 360.0 / 256.0;

}

vec_t ReadAngle16
{
return (vec_t) ReadShort * 360.0 / 65536.0;

}

2.4. Message
This is the message structure:

typedef struct {
unsigned char ID;
unsigned char unicast_client // RLA only
char messagecontents[???];

} message_t;

The length of a message depends on its type (or ID) but it can’t be bigger than MAX_MSGLEN, the size of a
full block.

2.5. Unicast
RLA files (DM2 files with Relay extension) can have special uni-cast messages. This is done to
distinguish between ordinary messages, which go to every client (multi-cast) and messages, which go
only to selected clients. A good example are the playerinfo messages. Every client should get a different
one and in RLA files all these messages are marked with the destination client number:

ID = ReadByte;
if (ID & 0x80) { // the special sign for uni-cast
ID &= ~0x80; // remove it
unicast.use = 1; // but memorize it
unicast.client = ReadByte; // get the uni-cast destination client

}

8

The unofficial DM2 format description

else {
unicast.use = 0; // multi-cast message

}

3. List of all message types
The easiest way to explain a message is to give a short C like program fragment to parse such a message.
It is not really the same code base as in LMPC but it should be very similar. Future version will be based
on the exact same code base to simplify my task.

Each message can be described by its ID or its name.

3.1. bad

ID

0x00

purpose

Something is bad. This message should never appear.

parse routine

error("CL_ParseServerMessage: Illegible server message\n");

3.2. muzzleflash

ID

0x01

purpose

muzzle flashes / player effects.

variables

long entity;

is the player entity with the effect.

9

The unofficial DM2 format description

long value;

is the muzzle flash / player effect. The value should be one of the MZ_ constants (source,
q2src320/game/q_shared.h, 602 - 638). It may be “OR”ed with

#define MZ_SILENCED 128

if the player uses the Silencer.

parse routine

entity = ReadShort;
value = ReadByte;

3.3. muzzlflash2

ID

0x02

purpose

monster muzzle flashes.

variables

long entity;

is the monster entity with the effect.

long value;

is the monster muzzle flash. The value should be one of the MZ2_ constants (source,
q2src320/game/q_shared.h, 640 - 871).

parse routine

entity = ReadShort;
value = ReadByte;

10

The unofficial DM2 format description

3.4. temp_entity

ID

0x03

purpose

Spawns a temporary entity. Temp entity events are for things that happen at a location seperate from
any existing entity. Temporary entity messages are explicitly constructed and broadcast.

variables

Due to the special parse method I use in my LMPC program, I have to use the variables over all
different temporary entities in the same order. This was no real restriction but with game version
3.18 (protocol version 34) came many new types of temporary entities, which reordered their
arguments almost random. So I had to rename some variables and to insert some totally senseless
new ones (like flash_entity instead of entity or type in addition to style). This simply
comes, because these values come now at the other side of origin. The old order was entity,
origin, style but now a style comes sometimes before the origin or an entity comes after
the origin. After I finish the text parse rewrite of LMPC, I will surely remove the additional
senseless new variables.

long entitytype;

is the type of the temporary entity. entitytype should be one of the TE_ constants (source,
q2src320/game/q_shared.h, 876 - 942). They are defined with a typedef enum and not
as #define but who cares?

There are many different kinds of temporary entities in Quake II:

point entity

is a point like entity like explosions or teleport fog. It needs a position.

#define TE_EXPLOSION1 5

boss, barrels etc. explosion

#define TE_EXPLOSION2 6

barrels explosion

#define TE_ROCKET_EXPLOSION 7

rocket explosion

#define TE_GRENADE_EXPLOSION 8

grenade explosion

#define TE_ROCKET_EXPLOSION_WATER 17

rocket explosion under water

11

The unofficial DM2 format description

#define TE_GRENADE_EXPLOSION_WATER 18

grenade explosion under water

#define TE_BFG_EXPLOSION 20

BFG explosion

#define TE_BFG_BIGEXPLOSION 21

big BFG explosion

#define TE_BOSSTPORT 22

boss teleports away

#define TE_PLASMA_EXPLOSION 28

(new in 3.15, MP1) plasma explosion on touch

#define TE_PLAIN_EXPLOSION 35

(new in 3.18, MP2) flame burst, turret death

#define TE_CHAINFIST_SMOKE 45

(new in 3.18, MP2) this spits out some smoke from the motor. it’s a two-stroke, you
know.

#define TE_TRACKER_EXPLOSION 47

(new in 3.18, MP2) tracker explosion

#define TE_TELEPORT_EFFECT 48

(new in 3.18, MP2) teleport away effect

#define TE_DBALL_GOAL 49

(new in 3.18, MP2) ball disappears after a goal

#define TE_NUKEBLAST 51

(new in 3.18, MP2) nuke explosion

#define TE_WIDOWSPLASH 52

(new in 3.18, MP2) last part of the death of the widow

#define TE_EXPLOSION1_BIG 53

(new in 3.18, MP2) big explosion

#define TE_EXPLOSION1_NP 54

(new in 3.18, MP2) widow explosion

12

The unofficial DM2 format description

impact entity

is a small point like entity, spawned on an impact of a bullet etc. It needs a position (often
a trace end) and a direction from there.

#define TE_GUNSHOT 0

hit with Machine Gun and Chain Gun

#define TE_BLOOD 1

clients and monsters bleed when hit

#define TE_BLASTER 2

hit with Blaster

#define TE_SHOTGUN 4

hit with Shotgun

#define TE_SPARKS 9

hit someone

#define TE_SCREEN_SPARKS 12

hit on an Energy Armor

#define TE_SHIELD_SPARKS 13

hit on a different Energy Armor

#define TE_BULLET_SPARKS 14

hit someone with bullets

#define TE_GREENBLOOD_new 26

(new in 3.15, MP1) a “gekk” bleeds green. Note: the value 26 stood from game
version 3.12 to 3.14 (protocol version 31) for TE_PLASMATRAIL and was a line
entity.

#define TE_GREENBLOOD_old 27

(from 3.12 to 3.14) not used. Note: the value 27 stands from game version 3.15
(protocol version >= 32) on for TT_BLUEHYPERBLASTER and is a line entity.

#define TE_BLASTER2 30

(new in 3.18, MP2) hit by green monster blaster shot

#define TE_MOREBLOOD 42

(new in 3.18, MP2) more blood with chainfist

#define TE_HEATBEAM_SPARKS 43

(new in 3.18, MP2) heat beam water impact

13

The unofficial DM2 format description

#define TE_HEATBEAM_STEAM 44

(new in 3.18, MP2) heat beam impact

#define TE_FLECHETTE 55

(new in 3.18, MP2) touch a flechette

line entity

is a 2 dimensional entity. It needs an origin and an end position.

#define TE_RAILTRAIL 3

trail of the Rail Gun (blue)

#define TE_BUBBLETRAIL 11

shot with a bullet through water

#define TE_BFG_LASER 23

(new in 3.12) BFG laser

#define TE_PLASMATRAIL 26

(from 3.12 to 3.14) not used. Note: the value 26 stands from game version 3.15
(protocol version >= 32) on for TE_GREENBLOOD_new and is an impact entity.

#define TE_BLUEHYPERBLASTER 27

(new in 3.15, MP1) not used. Note: the value 27 stood from game version 3.12 to
3.14 (protocol version 31) for TE_GREENBLOOD_old and was an impact entity.

#define TE_DEBUGTRAIL 34

(new in 3.18, MP2) debug use, trail drawing

#define TE_BUBBLETRAIL2 41

(new in 3.18, MP2) bubbles above heat beam

#define TE_ELECTRIC_SPARKS 46

(new in 3.18, MP2) hit on something mechanical

special entity

is a entity which doesn’t fit into the other categories.

#define TE_SPLASH 10

creates a particle splash effect

#define TE_LASER_SPARKS 15

laser hits a wall

14

The unofficial DM2 format description

#define TE_PARASITE_ATTACK 16

parasite attack

#define TE_MEDIC_CABLE_ATTACK 19

medic cable attac

#define TE_GRAPPLE_CABLE 24

(new in 3.12) used in CFT

#define TE_WELDING_SPARKS 25

(new in 3.12) ionripper fire, fixbot melder fire

#define TE_TUNNEL_SPARKS 29

(new in 3.15, MP1) trigger effect

#define TE_FLAME 32

(new in 3.18, MP2) flame thrower, Quake II can’t parse this

#define TE_LIGHTNING 33

(new in 3.18, MP2) tesla weapon

#define TE_FLASHLIGHT 36

(new in 3.18, MP2) player with torch

#define TE_FORCEWALL 37

(new in 3.18, MP2) force wall

#define TE_HEATBEAM 38

(new in 3.18, MP2) heat beam

#define TE_MONSTER_HEATBEAM 39

(new in 3.18, MP2) monster fires a heat beam

#define TE_STEAM 40

(new in 3.18, MP2) Creates a steam effect (particles w/ velocity in a line).

#define TE_WIDOWBEAMOUT 50

(new in 3.18, MP2) part of the death of the widow

bad entity

is a entity which is not used anymore.

#define TE_RAILTRAIL2 31

(new in 13.18, MP2) not used, Quake II can’t parse this

15

The unofficial DM2 format description

long dest_entity;

is the entity, where an effect ends.

long entity;

is the entity, which spawned the effect.

long nextid;

is a special value to chain multiple TE_STEAM effects. The last one has here the value -1.

long count;

is a number for multi-particle temporary entities.

vec3_t start;

is the start of the unparsable temporary TE_FLAME entity.

vec3_t dest_origin;

is the origin of an entity, where the temporary entity ends.

long type;

is an additional type value for the temporary TE_WIDOWBEAMOUT entity. number for
multi-particle temporary. It may be 20001 or 20002 (source,
roguesrc320/game/m_widow.c, 831 - 842).

vec3_t origin;

is the origin of the temporary entity.

long flash_entity;

is the entity, which spawned the temporary TE_FLASHLIGHT entity.

vec3_t trace_endpos;

is the end position of the line like temporary entity.

vec3_t pos1, pos2, pos3, pos4;

are additional positions for bigger enitities.

vec3_t movedir;

is the moving direction for the temporary entity.

long style;

is an additional style value. In the special TE_SPLASH temporary entity it should be one of the
SPLASH_ constants (source, q2src320/game/q_shared.h, 944 - 950).

long plat2flags;

are used for the TE_STEAM temporary entity.

16

The unofficial DM2 format description

long wait;

is a timeout value (in milliseconds) for the TE_STEAM temporary entity.

parse routine

entitytype = ReadByte;
switch (entitytype) {
// version problems
// case TE_PLASMATRAIL:
case TE_GREENBLOOD_new:
if (serverversion >= 32) // game version >= 3.15
goto impact_entity;

else
goto line_entity;

break;
// case TE_GREENBLOOD_old:
case TE_BLUEHYPERBLASTER:
if (serverversion >= 32) // game version >= 3.15
goto line_entity;

else
goto impact_entity;

break;
// point entity
case TE_EXPLOSION1:
case TE_EXPLOSION2:
case TE_ROCKET_EXPLOSION:
case TE_GRENADE_EXPLOSION:
case TE_ROCKET_EXPLOSION_WATER:
case TE_GRENADE_EXPLOSION_WATER:
case TE_BFG_EXPLOSION:
case TE_BFG_BIGEXPLOSION:
case TE_BOSSTPORT:
case TE_PLASMA_EXPLOSION:
case TE_PLAIN_EXPLOSION:
case TE_CHAINFIST_SMOKE:
case TE_TRACKER_EXPLOSION:
case TE_TELEPORT_EFFECT:
case TE_DBALL_GOAL:
case TE_NUKEBLAST:
case TE_WIDOWSPLASH:
case TE_EXPLOSION1_BIG:
case TE_EXPLOSION1_NP:
ReadPosition(origin);

break;
// impact entity
case TE_GUNSHOT:
case TE_BLOOD:
case TE_BLASTER:
case TE_SHOTGUN:
case TE_SPARKS:

17

The unofficial DM2 format description

case TE_SCREEN_SPARKS:
case TE_SHIELD_SPARKS:
case TE_BULLET_SPARKS:
// case TE_GREENBLOOD_new:
// case TE_GREENBLOOD_old:
case TE_BLASTER2:
case TE_MOREBLOOD:
case TE_HEATBEAM_SPARKS:
case TE_HEATBEAM_STEAM:
case TE_ELECTRIC_SPARKS:
case TE_FLECHETTE:
impact_entity:
ReadPosition(origin);
ReadDir(movedir);

break;
// line entity
case TE_RAILTRAIL:
case TE_BUBBLETRAIL:
case TE_BFG_LASER:
// case TE_PLASMATRAIL:
// case TE_BLUEHYPERBLASTER:
case TE_DEBUGTRAIL:
case TE_BUBBLETRAIL2:
line_entity:
ReadPosition(origin);
ReadPosition(trace_endpos);

break;
// special entity
case TE_SPLASH:
case TE_LASER_SPARKS:
case TE_WELDING_SPARKS:
case TE_TUNNEL_SPARKS:
count = ReadByte;
ReadPosition(origin);
ReadDir(movedir);
style = ReadByte;

break;
case TE_PARASITE_ATTACK:
case TE_MEDIC_CABLE_ATTACK:
case TE_HEATBEAM:
case TE_MONSTER_HEATBEAM:
entity = ReadShort;
ReadPosition(origin);
ReadPosition(trace_endpos);

break;
case TE_GRAPPLE_CABLE:
entity = ReadShort;
ReadPosition(origin);
ReadPosition(trace_endpos);
ReadPosition(pos1);

break;
case TE_FLAME: // Quake2 can’t parse this!
entity = ReadShort;

18

The unofficial DM2 format description

count = ReadShort;
ReadPosition(start);
ReadPosition(origin);
ReadPosition(pos1);
ReadPosition(pos2);
ReadPosition(pos3);
ReadPosition(pos4);

break;
case TE_LIGHTNING:
dest_entity = ReadShort;
entity = ReadShort;
ReadPosition(dest_origin);
ReadPosition(origin);

break;
case TE_FLASHLIGHT:
ReadPosition(origin);
flash_entity = ReadShort;

break;
case TE_FORCEWALL:
ReadPosition(origin);
ReadPosition(trace_endpos);
style = ReadShort;

break;
case TE_STEAM:
nextid = ReadShort;
count = ReadByte;
ReadPosition(origin);
ReadDir(movedir);
style = ReadByte;
plat2flags = ReadShort;
if (nextid != -1)
wait = ReadLong;

break;
case TE_WIDOWBEAMOUT:
type = ReadShort;
ReadPosition(origin);

break;
case TE_RAILTRAIL2: // senseless, I know
default:
error("CL_ParseTEnt: bad type");

break;
}

3.5. layout

ID

0x04

19

The unofficial DM2 format description

purpose

This message displays the Field Computer (“cmd help”, bound to F1). It contains the summary
screen (Deathmatch Scoreboard or single player secrets, goals etc.). It stores the message only on
the client siede. The actual display will be triggered by the playerinfo message with a special stats
command.

variable

char text[MAX_MSGLEN];

is the summary screen text with some kind of control characters. The control language is very
simple. Read some examples in the source, q2src320/game/p_hud.c, functions
DeathmatchScoreboardMessage and HelpComputer.

parse routine

text = ReadString;

3.6. inventory

ID

0x05

purpose

Tells the clients its inventory.

variable

int inventory[MAX_ITEMS];

is the player’s inventory array.

#define MAX_ITEMS 256

is the number different items in the inventory.

The inventory concept of Quake II is very open and expandable. In an global array (source,
q2src320/game/g_items.c, 1115 - 2097)

gitem_t itemlist[];

is the list of all possible things a player can pickup and carry around. This array will be filled at
compile time. In the inventory array are stored how many of each thing of the itemlist a
players carries. The server tells the meaning of each index with configstring messages. I give

20

The unofficial DM2 format description

the original table for itemlist. Every modification can change it totally and it changed
indeed from 3.05 to 3.12.

Table 2. Standard inventory entries.

value purpose

0 not used

1 Body Armor

2 Combat Armor

3 Jacket Armor

4 Armor Shard

5 Power Screen

6 Power Shield

7 Blaster

8 Shotgun

9 Super Shotgun

10 Machinegun

11 Chaingun

12 Grenades

13 Grenade Launcher

14 Rocket Launcher

15 HyperBlaster

16 Railgun

17 BFG10K

18 Shells

19 Bullets

20 Cells

21 Rockets

22 Slugs

23 Quad Damage

24 Invulnerability

25 Silencer

26 Rebreather

27 Environment Suit

28 Ancient Head

29 Adrenaline

30 Bandolier

31 Ammo Pack

32 Data CD

33 Power Cube

34 Pyramid Key

21

The unofficial DM2 format description

35 Data Spinner

36 Security Pass

37 Blue Key

38 Red Key

39 Commander’s Head

40 Airstrike Marker

41 Health

parse routine

for (i=0 ; i<MAX_ITEMS ; i++) inventory[i] = ReadShort;

3.7. nop

Quake II ID

0x06

purpose

Do nothing.

parse routine

none

3.8. disconnect

Quake II ID

0x07

purpose

Diconnect from the server.

parse routine

print("Server disconnected\n");

22

The unofficial DM2 format description

3.9. reconnect

Quake II ID

0x08

purpose

Reconnect to the server.

parse routine

print("Server disconnected, reconnecting\n");

3.10. sound

Quake II ID

0x09

purpose

Plays a sound.

variables

long mask;

is a bit mak to reduce the network traffic.

long soundnum;

is the index in the precache sound table.

float vol;

is the volume of the sound (0.0 off, 1.0 max).

23

The unofficial DM2 format description

float attenuation;

is the attenuation of the sound. attenuation should have one of the ATTN_ constants (source,
q2src320/game/q_shared.h, 966 - 970).

#define ATTN_NONE 0

full volume the entire level

#define ATTN_NORM 1

the normal attenuation

#define ATTN_IDLE 2

for idle monsters

#define ATTN_STATIC 3

diminish very rapidly with distance

float timeofs;

is the offset in seconds between the frame start and the sound start. It is 0 in the entire source.

long channel;

is the sound channel. There are 8 possible sound channels for each entity in Quake II (0-7) but
it uses 5 only. channel should be one of the CHAN_ constants (source,
q2src320/game/q_shared.h, 953 - 960).

#define CHAN_AUTO 0

selects a channel automatically

#define CHAN_WEAPON 1

weapon use sounds

#define CHAN_VOICE 2

pain calls

#define CHAN_ITEM 3

item get sounds

#define CHAN_BODY 4

jump and fall sounds

long entity;

is the entity which caused the sound. The maximum value of entity is

#define MAX_EDICTS 1024

.

24

The unofficial DM2 format description

vec3_t origin;

is the origin of the sound.

parse routine

long entity_channel; // combined variable

mask = ReadByte;
soundnum = ReadByte;
vol = (mask & 0x01) ? ((float)ReadByte / 255.0) : (1.0);
attenuation = (mask & 0x02) ? ((float)ReadByte / 64.0) : (1.0);
timeofs = (mask & 0x10) ? ((float)ReadByte * 0.001) : (0.0);
if (mask & 0x08) {
entity_channel = ReadShort;
entity = (entity_channel >> 3);
channel = entity_channel & 0x07;
if (entity > MAX_EDICTS) {
error("CL_ParseStartSoundPacket: ent = %i", entity);

}
} else {
channel = 0;
entity = 0;

}
if (mask & 0x04) {
ReadPosition(origin);

}

3.11. print

Quake II ID

0x0A

purpose

Prints a text at the top of the screen.

variables

long level;

is the priority level. level should be one of the following:

#define PRINT_LOW 0

pickup messages

25

The unofficial DM2 format description

#define PRINT_MEDIUM 1

death messages

#define PRINT_HIGH 2

critical messages

#define PRINT_CHAT 3

chat messages

char string[MAX_MESSAGE_SIZE];

is the the text to be displayed.

parse routine

level = ReadByte;
if (level == PRINT_CHAT) sound("misc/talk.wav");
string = ReadString;

3.12. stufftext

Quake II ID

0x0B

purpose

The client transfers the text to the console and runs it.

variables

char* text;

is the command, which the client has to execute.

parse routine

text = ReadString;

26

The unofficial DM2 format description

3.13. serverdata

Quake II ID

0x0C

purpose

Set some global info.

variables

long serverversion;

is the protocol version coming from the server.

Table 3. Quake II values for PROTOCOL_VERSION.

game protocol

3.00 25

3.05 26

3.06 26

3.07 27

3.08 27

3.09 28

3.10 30

3.12 31

3.13 31

3.14 31

3.15 32

3.17 33

3.18 34

3.19 34

3.20 34

long key;

some kind of key. Will be used again later in a stufftext message for the login hand-shake.

long isdemo;

indicates the demo type. Possible values are:

#define RECORD_NETWORK 0x00

data actually over the wire (proxy)

27

The unofficial DM2 format description

#define RECORD_CLIENT 0x01

recorded on the client side. Containes information in the direct neighborhood of the
recording player.

#define RECORD_SERVER 0x02

recorded on the server side. Containes all information on all entities in the level. These
files tend to become very large. They can’t be played back by Quake II directly. This
value appears in 3.17 but server side recordings work from 3.15 on. This variable is
sometimes called attractloop for whatever reason.

#define RECORD_RELAY 0x80

recorded with the Relay modificiation at the server side. These files can’t be played back
only with the Relay modification.

char* game;

is the game directory (may be empty, which means baseq2).

long client;

is the client id.

char* mapname;

is the name of the map.

int compatible;

compatibility with the CD retail version 3.05 (protocol 26). How to set this? ??FIXME??

parse routine

log("Serverdata packet received.\n");
serverversion = ReadLong;
if (!compatible) {
if (serverversion != PROTOCOL_VERSION)
error("Server returned version %i, not %i", serverversion, PROTOCOL_VERSION);

}
}
key = ReadLong;
isdemo = ReadByte;
game = ReadString;
client = ReadShort;
mapname = ReadString;

28

The unofficial DM2 format description

3.14. configstring

Quake II ID

0x0D

purpose

config strings are a general means of communication from the server to all connected clients. Each
config string can be at most MAX_QPATH characters.

variables

int index;

is the number of the config string. The following constants (source,
q2src320/game/q_shared.h, 1069 - 1092) determine where to find something in the full
array of config strings.

#define CS_NAME 0

is the name of the level.

#define CS_CDTRACK 1

is the audio CD track for this level.

#define CS_SKY 2

is the sky texture.

#define CS_SKYAXIS 3

is the sky axis in the %f %f %f format.

#define CS_SKYROTATE 4

is the rotation speed in the format %f.

#define CS_STATUSBAR 5

is the start of the list of display program strings for the statusbar.

#define CS_MAXCLIENTS 30

is the current maximum number of clients on a server.

#define CS_MAPCHECKSUM 31

is the map checksum for catching cheater maps.

#define CS_MODELS 32

is the start of the precache model table.

29

The unofficial DM2 format description

#define MAX_MODELS 256

is the maximum number of the precache model table.

#define CS_SOUNDS (CS_MODELS+MAX_MODELS)

(288) is the start of the precache sound table.

#define MAX_SOUNDS 256

is the maximum number of the precache sound table.

#define CS_IMAGES (CS_SOUNDS+MAX_SOUNDS)

(544) is the start of the image list.

#define MAX_IMAGES 256

is the maximum numer of the images.

#define CS_LIGHTS (CS_IMAGES+MAX_IMAGES)

(800) is the start of the light styles list.

#define MAX_LIGHTSTYLES 256

is the maximum number of the light styles.

#define CS_ITEMS (CS_LIGHTS+MAX_LIGHTSTYLES)

(1056) is the start of the items list.

#define MAX_ITEMS 256

is the maximum number of items in the inventory list.

#define CS_PLAYERSKINS (CS_ITEMS+MAX_ITEMS)

(1312) is the start of the player skin list.

#define MAX_CLIENTS 256

is the maximum number of players.

#define CS_GENERAL (CS_PLAYERSKINS+MAX_CLIENTS)

(1568) is the start of the general config strings list.

#define MAX_GENRAL (MAX_CLIENTS*2)

(512) is the maximum number of general config strings.

#define MAX_CONFIGSTRINGS (CS_GENERAL+MAX_GENERAL)

(2080) is the maximum number of config strings.

char string[MAX_QPATH];

is the corresponding config string.

#define MAX_QPATH 64

30

The unofficial DM2 format description

is the maximum length of a config string.

parse routine

index = ReadShort;
if (index > MAX_CONFIGSTRINGS) error("configstring > MAX_CONFIGSTRINGS");
string = ReadString;

3.15. spawnbaseline

ID

0x0E

purpose

Spawns a new entity.

variables

long mask;

is a bit-mask to reduce the network traffic.

long entity;

is the number of the entity.

vec3_t origin;

is the origin.

vec3_t angles;

is the orientation.

vec3_t old_origin;

is the old origin for lerping. It is used for client-side prediction and interpolation calculations.
To compress a DM2 file, just leave it out, if the last frame had a origin entry for the entity in
question. It is used with cl_nodelta 1 only. From 3.17 on old_origin is used for player
entities only.

long modelindex;

is the model index.

31

The unofficial DM2 format description

long modelindex2;

is weapons, CTF, flags, etc.

long modelindex3;

is weapons, CTF, flags, etc.

long modelindex4;

is weapons, CTF, flags, etc.

long frame;

is the frame of the model.

long skin;

is the number of the skin for the model.

long vwep;

is the number of visual weapon skin for the model.

long effects;

Effects are things handled on the client side (lights, particles, frame animations) that happen
constantly on the given entity. An entity that has effects will be sent to the client even if it has a
zero index model. The bit-mask effects holds the EF_ constants (source,
q2src320/game/q_shared.h, 530 - 569).)

long renderfx;

are some special render flags. The bit-mask renderfx holds the RF_ constants (source,
q2src320/game/q_shared.h, 571 - 591).

long solid;

for client side prediction, 8*(bits 0-4) is x/y radius 8*(bits 5-9) is z down distance, 8(bits10-15)
is z up

long sound;

for looping sounds, to guarantee shutoff

long event;

impulse events -- muzzle flashes, footsteps, etc events only go out for a single frame, they are
automatically cleared each frame event should have one of the following values (source,
q2src320/game/q_shared.h, 1098 - 1112):

typedef enum
{

EV_NONE, // 0
EV_ITEM_RESPAWN, // 1
EV_FOOTSTEP, // 2
EV_FALLSHORT, // 3
EV_FALL, // 4

32

The unofficial DM2 format description

EV_FALLFAR, // 5
EV_PLAYER_TELEPORT // 6

} entity_event_t;

parse routine

mask = ReadByte;
if (mask & 0x00000080) mask |= (ReadByte << 8);
if (mask & 0x00008000) mask |= (ReadByte << 16);
if (mask & 0x00800000) mask |= (ReadByte << 24);
entity = (mask & 0x00000100) ? ReadShort : ReadByte;
if (mask & 0x00000800) modelindex = ReadByte;
if (mask & 0x00100000) modelindex2 = ReadByte;
if (mask & 0x00200000) modelindex3 = ReadByte;
if (mask & 0x00400000) modelindex4 = ReadByte;
if (mask & 0x00000010) frame = ReadByte;
if (mask & 0x00020000) frame = ReadShort;
if (mask & 0x00010000) {
if (mask & 0x02000000) skin = ReadLong;
else skin = ReadByte;

}
else {
if (mask & 0x02000000) skin = ReadShort;

}
vwep = skin >> 8;
skin &= 0xFF;
if (mask & 0x00004000) {
if (mask & 0x00080000) effects = ReadLong;
else effects = ReadByte;

}
else {
if (mask & 0x00080000) effects = ReadShort;

}
if (mask & 0x00001000) {
if (mask & 0x00040000) renderfx = ReadLong;
else renderfx = ReadByte;

}
else {
if (mask & 0x00040000) renderfx = ReadShort;

}
if (mask & 0x00000001) origin[0] = ReadCoord;
if (mask & 0x00000002) origin[1] = ReadCoord;
if (mask & 0x00000200) origin[2] = ReadCoord;
if (mask & 0x00000400) angles[0] = ReadAngle;
if (mask & 0x00000004) angles[1] = ReadAngle;
if (mask & 0x00000008) angles[2] = ReadAngle;
if (mask & 0x01000000) ReadPosition(old_origin);
if (mask & 0x04000000) sound = ReadByte;
event = (mask & 0x00000020) ? ReadByte : 0;
if (mask & 0x08000000) solid = ReadShort;

33

The unofficial DM2 format description

3.16. centerprint

ID

0x0F

purpose

Prints the specified text at the centre of the screen. There is only one text line with a maximum of 40
characters. To print more than this one line, use ‘\n’ in a single centerprint message for a new line.
Every text line (the first 40 characters) will be centred horizontally.

variables

char* text;

is the text to be displayed.

parse routine

text = ReadString;

3.17. download

ID

0x10

purpose

Download a file (sound, model etc.) from the server. It needs at least version 3.15 to transfer any
data. There is no position information in the packet, so the client can’t rearrange packets, which
arrive in the wrong order. Therefore all download network packets are reliable packets and they need
the usual acknowledgement. The client itself starts the whole thing, if something is missing and
asks the server for it. I’m not sure, if such blocks may actually do something useful in a DM2 file.

variables

long size;

is the number of bytes transferred in the current packet.

long percent;

is the total amount sended in percent.

34

The unofficial DM2 format description

char* downloadbuffer;

is a buffer for downloaded files.

char* filename;

is the name for the downloaded file.

FILE* fp;

is the file pointer for the downloaded file.

parse routine

size = ReadShort;
percent=ReadByte;
if (size == -1) {
error("File not found.\n");

}
if (serverdata.serverversion >= 32) { // game version >= 3.15
if (percent == 0) {
fp = fopen(filename, "wb");

}
for (i=0 ; i<size ; i++) {
downloadbuffer[i] = ReadByte;

}
fwrite(fp, size, 1, downloadbuffer);
if (percent != 100) {
servercommand("nextdl"); // ask for the next part

}
else {
fclose(fp);

}
}

3.18. playerinfo

ID

0x11

purpose

Player info. Have to come directly after a frame message in client recording. There is no such
message in server side recordings since there is no special player who does the recording.

35

The unofficial DM2 format description

variables

long mask;

is a bit mask to reduce the network traffic.

long mask2;

is a bit mask to reduce the network traffic.

long pm_type;

is important for client side prediction and should be one of the PM_ constants (source,
q2src320/game/q_shared.h, 440 - 451).

vec3_t origin;

is the origin.

vec3_t velocity;

is the velocity.

byte pm_flags;

ducked, jump_held, etc and should be one of the PMF_ constants (source,
q2src320/game/q_shared.h, 453 - 460).

byte pm_time;

is unknown (each unit = 8 ms).

short gravity;

is the gravity (800, cvar sv_gravity).

vec3_t delta_angles;

add to command angles to get view direction, changed by spawns, rotating objects, and
teleporters

vec3_t viewangles;

for fixed views

vec3_t viewoffset;

add to pmovestate->origin

vec3_t kick_angles;

add to view direction to get render angles set by weapon kicks, pain effects, etc

vec3_t gunangles;

direction of weapon

36

The unofficial DM2 format description

vec3_t gunoffset;

offset of weapon

int gunindex;

model index of weapon

int gunframe;

frame of weapon

float blend[4];

rgba full screen effect

long fov;

horizontal field of view. Since the field of view is no client side variable (as it is in Quake), it is
much easier to create zoom effects in movies.

int rdflags;

refdef flags, should be one of the RDF_ constants (source, q2src320/game/q_shared.h, 593
- 600).

short stats[MAX_STATS];

fast status bar updates Each entry in this array stays for something on the statusbar. The value
of an icon entry is the image index defined in a configstring message. A value of 0 on an icon
entry switches the icon off. (source, q2src320/game/q_shared.h, 973 - 993)

#define MAX_STATS 32

maximum number of things in the status bar

#define STAT_HEALTH_ICON 0

health icon image

#define STAT_HEALTH 1

health value

#define STAT_AMMO_ICON 2

ammo icon image

#define STAT_AMMO 3

ammo value

#define STAT_ARMOR_ICON 4

armour icon

#define STAT_ARMOR 5

armour value

37

The unofficial DM2 format description

#define STAT_SELECTED_ICON 6

icon image of the selected weapon

#define STAT_PICKUP_ICON 7

icon image of a recently gotten thing

#define STAT_PICKUP_STRING 8

configstring index to describe the recently gotten thing, 0 = string off

#define STAT_TIMER_ICON 9

icon image of timed object (Quad Damage, Invulnerability etc.)

#define STAT_TIMER 10

timer value for a timed object (in seconds)

#define STAT_HELPICON 11

help icon: 0 off, 1 on

#define STAT_SELECTED_ITEM 12

item number of the selected weapon

#define STAT_LAYOUTS 13

layout activator: 0 off, 1 display help/summary screen, 2 display inventory

#define STAT_FRAGS 14

client score value

#define STAT_FLASHES 15

flash the backgrounds behind the status numbers, cleared each frame, 1 = health, 2 =
armor, 0 = off

#define STAT_CHASE 16

chase target skin number (number in configstring list)

#define STAT_SPECTATOR 17

0 = normal play, 1 = spectator

parse routine

mask = ReadShort;
if (mask & 0x0001) pm_type = ReadByte;
if (mask & 0x0002)
ReadPostion(origin);

if (mask & 0x0004)
ReadPosition(velocity);

38

The unofficial DM2 format description

if (mask & 0x0008) teleport_time = ReadByte;
if (mask & 0x0010) pm_flags = ReadByte;
if (mask & 0x0020) gravity = ReadShort;
if (mask & 0x0040) {
delta_angles[0] = ReadAngle16;
delta_angles[1] = ReadAngle16;
delta_angles[2] = ReadAngle16;

}
if (mask & 0x0080) {
viewoffset[0] = ReadChar / 4.0;
viewoffset[1] = ReadChar / 4.0;
viewoffset[2] = ReadChar / 4.0;

}
if (mask & 0x0100) {
viewangles[0] = ReadAngle16;
viewangles[1] = ReadAngle16;
viewangles[2] = ReadAngle16;

}
if (mask & 0x0200) {
kick_angles[0] = ReadChar / 4.0;
kick_angles[1] = ReadChar / 4.0;
kick_angles[2] = ReadChar / 4.0;

}
if (mask & 0x1000) gunindex = ReadByte;
if (mask & 0x2000) {
gunframe = ReadByte;
gunoffset[0] = ReadChar / 4.0;
gunoffset[1] = ReadChar / 4.0;
gunoffset[2] = ReadChar / 4.0;
gunangles[0] = ReadChar / 4.0;
gunangles[1] = ReadChar / 4.0;
gunangles[2] = ReadChar / 4.0;

}
if (mask & 0x0400) {
blend[0] = ReadByte / 255.0;
blend[1] = ReadByte / 255.0;
blend[2] = ReadByte / 255.0;
blend[3] = ReadByte / 255.0;

}
if (mask & 0x0800) fov = ReadByte;
if (mask & 0x4000) rdflags = ReadByte;
mask2 = ReadLong;
for (i=0;i<32;i++) if (mask2 & (0x00000001 << i)) stats[i] = ReadShort;

3.19. packetentities

ID

0x12

39

The unofficial DM2 format description

purpose

Entity updates. Have to come in a client side recording directly after a playerinfo message and in a
server side recording directly after a frame message. This message is in fact a list of spawnbaseline
messages. Look there for a longer variable description. The list ends with entity==0.

variables

long mask;

is used to reduce the network traffic.

long entity;

is the number of the entity.

long remove;

indicates a disappearing entity.

vec3_t origin;

is the origin.

vec3_t angles;

is the orientation.

vec3_t old_origin;

old origin (for client side prediction).

long modelindex;

is the model index.

long modelindex2;

is weapons, CTF, flags, etc.

long modelindex3;

is weapons, CTF, flags, etc.

long modelindex4;

is weapons, CTF, flags, etc.

long frame;

is the frame of the model.

long skin;

is the number of the skin for the model.

40

The unofficial DM2 format description

long vwep;

is the number of visual weapon skin for the model.

long effects;

is the entity effect.

long renderfx;

are some special render flags.

long solid;

for client side prediction, 8*(bits 0-4) is x/y radius 8*(bits 5-9) is z down distance, 8(bits10-15)
is z up

long sound;

for looping sounds, to guarantee shutoff

long event;

impulse events -- muzzle flashes, footsteps, etc events only go out for a single frame, they are
automatically cleared each frame

parse routine

for (;;) {
mask = ReadByte;
if (mask & 0x00000080) mask |= (ReadByte << 8);
if (mask & 0x00008000) mask |= (ReadByte << 16);
if (mask & 0x00800000) mask |= (ReadByte << 24);
entity = (mask & 0x00000100) ? ReadShort : ReadByte;
if (entity >= MAX_EDICTS) error("CL_ParsePacketEntities: bad number:%i",entity);
if (entity == 0) break;
remove = (mask & 0x00000040) ? 1 : 0;
if (mask & 0x00000800) modelindex = ReadByte;
if (mask & 0x00100000) modelindex2 = ReadByte;
if (mask & 0x00200000) modelindex3 = ReadByte;
if (mask & 0x00400000) modelindex4 = ReadByte;
if (mask & 0x00000010) frame = ReadByte;
if (mask & 0x00020000) frame = ReadShort;
if (mask & 0x00010000) {
if (mask & 0x02000000) skin = ReadLong;
else skin = ReadByte;

}
else {
if (mask & 0x02000000) skin = ReadShort;

}
vwep = skin >> 8;
skin &= 0xFF;
if (mask & 0x00004000) {
if (mask & 0x00080000) effects = ReadLong;

41

The unofficial DM2 format description

else effects = ReadByte;
}
else {
if (mask & 0x00080000) effects = ReadShort;

}
if (mask & 0x00001000) {
if (mask & 0x00040000) renderfx = ReadLong;
else renderfx = ReadByte;

}
else {
if (mask & 0x00040000) renderfx = ReadShort;

}
if (mask & 0x00000001) origin[0] = ReadCoord;
if (mask & 0x00000002) origin[1] = ReadCoord;
if (mask & 0x00000200) origin[2] = ReadCoord;
if (mask & 0x00000400) angles[0] = ReadAngle;
if (mask & 0x00000004) angles[1] = ReadAngle;
if (mask & 0x00000008) angles[2] = ReadAngle;
if (mask & 0x01000000) ReadPosition(old_origin);
if (mask & 0x04000000) sound = ReadByte;
event = (mask & 0x00000020) ? ReadByte : 0;
if (mask & 0x08000000) solid = ReadShort;

}

3.20. deltapacketentities

ID

0x13

purpose

Entity updates. May come after a packetentities block. It isn’t really necessary since packetentities
handles itself all the delta encoding.

parse routine

unknown ??FIXME??

3.21. frame

ID

0x14

42

The unofficial DM2 format description

purpose

Sequence numbers to cope with UDP packet loss, delta encoding and portal border crossings. Start
of the playerinfo and packetentities messages.

In server side recordings this message contains only the current frame number.

In Relay recordings, this message looks like the client side frame message but it contains also the
list of connected clients.

variables

long seq1;

is the sequence number of the current packet or frame. Since the Quake II server uses a fixed
time gap of 100ms (10Hz) between game state changes seq1 / 10 is the time in seconds
since the server started.

long seq2;

is the sequence number of the delta reference frame. The reference holds for both following
playerinfo and packetentities messages. The Quake II server has a table with some old entity
states and get from each client the sequence number of frames, which arrived correctly at the
client side. So the server can decide which most currently sended old frame should be used
now as the delta encoding reference frame. seq2 is -1 to reference to the spawnbaseline values.

long count;

is the number of bytes in the areas array.

#define MAX_MAP_AREAS 256

is the maximum number of areas in a map.

unsigned char areas[MAX_MAP_AREAS / 8];

is the array which defines the areas to be rendered. Each bit in the areas array stays for one
area in the map.

long frame;

is the frame number in server side recordings and similar to seq1. I may rename it even to
seq1 in a future revision.

long connected_count

is the number of connected clients in the connected array. It is used in Relay recordings only.

unsigned char connected[MAX_CLIENTS]

is the array, which contains the numbers of the connected clients. It is used in Relay recordings
only.

43

The unofficial DM2 format description

parse routine

long uk_b1;

if (serverdata.isdemo == RECORD_CLIENT ||
serverdata.isdemo == RECORD_NETWORK ||
serverdata.isdemo == RECORD_RELAY) {

seq1 = ReadLong;
seq2 = ReadLong;
if (serverdata.serverversion != 26) uk_b1 = ReadByte;
count = ReadByte;
for (i=0;i<count;i++) areas[i] = ReadByte;
if (serverdata.isdemo == RECORD_RELAY) {
connected_count = ReadByte;
for (i=0;i<connected_count;i++) connected[i] = ReadByte;

}
}
if (serverdata.isdemo == RECORD_SERVER) {
frame = ReadLong;

}

4. Version History and Acknowledgements

0.0.1, 13 December, 1997

• First version (working paper) completed.

• Only based on the published game source.

• Never ever published.

0.0.2, 23 December, 1997

• Old 3.00 ID codes included.

• Version info included.

• All simple ID codes ok.

• packetentities, deltapacketentities, playerinfo missing.

• spawnbaseline is very difficult.

• Never published.

44

The unofficial DM2 format description

0.0.3, 27 December, 1997

• Old 3.00 ID codes removed. Nobody wants to know them.

• spawnbaseline is ok now.

• playerinfo ok.

• packetentities should be ok.

• ReadDir for temp_entity ok.

• deltapacketentities missing.

• Never published.

0.0.4, 28 December, 1997

• SGML-Tools 1.0.2 used for formatting.

• Some minor tweaks.

0.0.5, 1 January, 1998

• SGML-Tools 1.0.2 formatting problems solved.

• Long #define tables removed.

• More references to the source.

0.0.6, 12 March, 1998

• Some details better. Many thanks to Kekoa Proundfoot (kekoa@graphics.stanford.edu
(mailto:kekoa@graphics.stanford.edu)).

• PlanetQuake is the new home.

• Compatible with Quake II up to version 3.14.

• SGML-Tools 1.0.5 used.

1.0.0, 17 June, 1998

• Thanks to Ben Swartzlander (swartz@rice.edu (mailto:swartz@rice.edu)) for the config string
index 30.

• Changed some command names (sound volume, server protocol version, config string, print text).

• Changed the coordinates in playerinfo to standard coordinates.

• Most changes in variable types and names were necessary to reduce the total number of tokens in
the Quake and Quake II text parser of LMPC.

45

The unofficial DM2 format description

• Compatible with Quake II up to 3.15a.

1.0.1, 15 July, 1998

• server side recording information included.

• Compatible with Quake II up to 3.17.

• Some hints on old_origin updates and sequence numbering.

• SGML-Tools 1.0.7 used.

1.0.2, 16 August, 1998

• More block size hints.

• Visual Weapon (VWep) support.

• Small cosmetic corrections.

• Some hints to multi-level recordings.

1.0.3, 8 January, 1999

• Missing auxiliary function ReadCoord included.

• More versions analysed.

• Compatible with Quake II up to 3.20 with Mission Packs 1 and 2.

• New published source code incorporated.

• SGML-Tools 1.0.9 used.

• General clean-up.

1.0.4, 23 January, 2000

• New DM2 format variant for Quake II Relay modification included.

• Thanks to Conor Davis (cedavis@planetquake.com (mailto:cedavis@planetquake.com)) for the
information about the Quake II Relay project.

46

	Table of Contents
	1. Introduction
	1.1. Recording and Playback
	1.2. Versions
	1.3. Advertising

	2. File structure
	2.1. General remarks
	2.2. Block of messages
	2.3. Auxiliary routines
	2.4. Message
	2.5. Unicast

	3. List of all message types
	3.1. bad
	3.2. muzzleflash
	3.3. muzzlflash2
	3.4. tempentity
	3.5. layout
	3.6. inventory
	3.7. nop
	3.8. disconnect
	3.9. reconnect
	3.10. sound
	3.11. print
	3.12. stufftext
	3.13. serverdata
	3.14. configstring
	3.15. spawnbaseline
	3.16. centerprint
	3.17. download
	3.18. playerinfo
	3.19. packetentities
	3.20. deltapacketentities
	3.21. frame

	4. Version History and Acknowledgements

