
GGZ Gaming Zone Main Protocol Specification

The GGZ Gaming Zone developers

ggz-dev@mail.ggzgamingzone.org

GGZ Gaming Zone Main Protocol Specification
by The GGZ Gaming Zone developers

Copyright © 1999, 2000 Brent Hendricks
Copyright © 2001 - 2006 The GGZ Gaming Zone Developers

Main protocol specification for GGZ Gaming Zone between the GGZ server and GGZ core
clients. This specification documents version 11 of the protocol.

Revision History

Revision $Revision: 8007 $ $Date: 2006-04-27 09:57:33 +0200 (jue, 27 abr 2006) $

Table of Contents
Objectives.. v
1. The Protocol ...1
2. Client-Server Communication Protocol ...3

Logging in ...3
Requesting server information...3
Rooms ..4
Requesting room information ..4
Server updates ..4
Table Management ...5
Chatting with friends...5
Administrative actions ..6
Game Interactions ..6

A. Protocol Reference...9
Messages sent in both directions..9

SESSION...9
PING...9
PONG ...10

Server to client messages...11
ROOM ..11
GAME...12
SERVER ..13
MOTD...14
UPDATE...15
PLAYER..17
TABLE...18
JOIN..20
LEAVE ..20
RESULT ..21
LIST...22
CHAT..23

Client to server messages..24
LOGIN..24
LIST...25
LAUNCH...26
JOIN..26
LEAVE ..27
CHAT..28
ADMIN ..28
PERMADMIN ...29
ENTER..30
CHANNEL ..31

iii

iv

Objectives

The main GGZ protocol is the protocol which is spoken and understood by the GGZ
server ggzd and core clients which are connected to it. It handles player authenti-
cation, chat and game handling. This protocol is called the GGZ Protocol, and is
available in a reference implementation named libggzcore, for core client authors,
written in the C programming language, and its wrappers for C++ and Python.

v

Objectives

vi

Chapter 1. The Protocol

The main protocol has a long history, it started out very simple and then was ex-
tended to add more and more gaming options. From version 5 on, the previous
binary-opcode protocol was replaced by an extensible XML representation, which
is processed with SAX parsers on both the client and the server side. Details of the
protocol follow in the next chapter.

1

Chapter 1. The Protocol

2

Chapter 2. Client-Server Communication Protocol

The client and GGZ server will communicate via the protocol described here. Indi-
vidual games will of course communicate via their own protocol. These messages are
transferred on a separate (direct) connection between game client and game server.
While GGZ games are free to use whatever communication protocol they like, the
GGZ protocol itself is currently encoded in XML.

Interactions are presented here categorically. For a complete reference of client-server
interactions, please see the appendix.

Logging in
When a client first connects to the server, the server will start the SESSION and re-
spond with SERVER, notifying the client of the server type, name and protocol ver-
sion number. If the server is full (ie. no more user logins allowed), it will indicate
this. After establishing a connection to the server, the client may send one of three
commands to login:

• LOGIN is used for normal player logins. The server will respond with a RESULT
tag. There are 3 types: First-time logins (which result in an account to be created
and a password to be assigned), anonymous logins (which don’t require a pass-
word), and registered logins.

Note: Clients may choose to send login requests immediately, not waiting for the
SERVER. This is acceptable, provided the client handle the case where the server
tells that it doesn’t accept any more connections (i.e. is full). It will receive no further
notification that the login has failed.

After a successful login, the server may optionally send a message-of-the-day to the
client via a MOTD tag. This is a text message, possibly with embedded color codes.
For more details, see the part about the MOTD system in the GGZ design specifica-
tion.
Any time after logging in, the client may logout of the server by closing the session,
i.e. by sending the closing part of the SESSION tag. The server will end its SESSION
then, too. Clients should not simply disconnect from the server without logging out
as player data and game statistics may not get written back to the database.

Note: A client may only login once. At the present, if the player wishes to re-login for
some reason (eg. to become anonymous, or to switch accounts), he will have to logout
and then back in again. We may make account-switching possible at a future date, once
we implement player preferences.

Warning
Although it is not explicitly disallowed by the server, clients are discour-
aged from allowing players to logout while at a game table. The client
should send the appropriate LEAVE request first.

3

Chapter 2. Client-Server Communication Protocol

Requesting server information
After logging in, there are several pieces of information about the server which the
client may request:

• To request a list of game types which the server supports, the client should as
for the game list via the tag LIST. The server will then send the client the list of
supported games via a RESULT tag which encloses a LIST. Only games which are
supported by both the particular client and the server may be played.

• To request a list of the game rooms present on the server, clients should send a LIST
tag with the room parameter. The server will then send back a LIST (again, within
a RESULT tag) with the desired information.

• If the server has a message-of-the-day, it will send it to the client upon login (see the
section on logging in). The client may request to see it again, however, by sending
MOTD. If there is a message-of-the-day, the server will send it via MOTD. If it does
not exist, the server will ignore the request.

Some infomration about the server may change while the player is logged in. If this
occurs, the server will send an update notification.

Rooms
Most of the real action on a GGZ server occurs in rooms. Each room supports a partic-
ular game type, and provides a place for players to chat back and forth with friends.
When a client first logs in, the player is not in a specific room, but in limbo. In order
to chat with other players or join a table, the player must enter a specific room.

Changing rooms is done via ENTER. The server will respond to the room-change
request with RESULT. There is no equivalent command to leave a room since leaving
the room takes place automatically when a player joins some other room (We can’t
have players in two places at once, now can we?).

Requesting room information
Once the player has entered a room, he or she will no doubt want to know who else
is there and if there are any games being played.

• To request a list of the players in the current room and what tables the are at, a client
may send LIST with type ’player’. The server will respond with a list of PLAYER
tags.

• Similarly, to request a list of the game tables in the room, the client should send
LIST of type ’table’. The server will respond via a list of TABLE tags.

Rooms are busy places with players entering and leaving, and tables being launched
and destroyed. To keep the client from having to continually resend list requests, the
server will send periodic updates.

Server updates
While the player is logged in, information about the server may change, espeically
if that information pertains to the players or tables in a perticular room. Rather than

4

Chapter 2. Client-Server Communication Protocol

insist that the client send a new list request periodically, the server will send update
messages to the client:

• If the the room list changes in any way, the server will send out a room UPDATE
to each of the clients. Note that currently there is no mechanism to change the
rooms on the fly, so this message will never occur. However, it is probable that this
functionality will be added in the future.

• If another player enters or leaves the room, the server will send an UPDATE of type
’player’ to all of other players in that room. A player will never receive a player
update about himself.

• If the server’s list of supported games types changes, it will send a game type
UPDATE to each of the clients. Note that currently there is no mechanism to change
game types on the fly, so this message will never occur. However, it is probable that
this functionality will be added in the future.

• Whenever the list of tables in a room changes, each player in the room will receive
an UPDATE message of type ’player’. This will occur whenever a table is launched
or destroyed, a player joins or leaves, or the table’s state has changed.

Note: It should be noted that these messages are asynchronous, are are sent by the
server automatically without having been requested by the client.

Table Management
In order to play or watch a game with other players logged into GGZ, a player must
be at a table. This is accomplished via one of two interactions:

• To join a player or spectator to an existing table, the client should send JOIN. The
server will respond with RESULT, notifying the client if the attempt to join was
successful.

• To launch a new table, clients must send the LAUNCH tag. The server will respond
with RESULT, notifying the client of the status of the table launch.

Note: Currently the server will automatically attempt to join the the player to the newly
launched table. The result of this join will be sent to the client via a RESULT, even though
the client did not explicitly request a join. This behaviour may change in future version of
the server

At the end of a game session, the server will automatically remove all players from
the table. Should a player wish to leave a table before the completion of the game,
however, the client may send a LEAVE. The server will then send back RESULT.
Note that not all game types will support leaving in mid-game. Such games can be
left when passing the ’force’ parameter, however it ends for all other players then,
too.

Chatting with friends
What fun would playing games be if you can’t taunt your opponents or laugh with
your friends? Similar to the "Taunt" feature provided with NetSpades, the GGZ

5

Chapter 2. Client-Server Communication Protocol

server provides the ability to send messages to other players via the server. The
following interactions describe how this messaging is accomplished.

• When a player wishes to send a chat message, the client should send a CHAT.
Different types of chat messages are distinguished by the chat sub-opcodes The
server will respond with the status of the chat operation via CHAT

• When a player receives a chat message from another player, the server will send
CHAT to the client. The chat sub-opcodes distinguish between the various chat
operations

Sub-opcodes for chat messages are as follows:

• GGZ_CHAT_NORMAL signifies a "typical" chat message which is sent to all play-
ers in the current room.

• GGZ_CHAT_BEEP is a special message with no text content, which is sent to a
specific player. A typical client response to the receipt of this message would be to
emit a beep.

• GGZ_CHAT_PERSONAL is a private message directed to a single player.

Warning
To discourage cheating, private messages may not be sent or re-
ceived while the player is at a game table.

Administrative actions
Since not everyone behaves well during chatting and playing, especially not on large
anonymous networks, some help is available to privileged players for taming those
who tend to be griefers.

• Players can be silenced (gagged) with or without letting them know, which is a
temporary measure. They can also be kicked off a server or even banned forever.
In order to initiate an administrative action against a player, an ADMIN message
is to be sent by the client. It will contain the name of the affected player, probably
a reason for the action, and the admin sub-opcode which identifies the action. In
response, the server will return a RESULT with action being set to "admin".

Sub-opcodes for admin actions are as follows:

• GGZ_ADMIN_GAG silences the player. This works effectively like a global ignore
list so that everyone but the player himself will not be bothered by his messages.

• GGZ_ADMIN_UNGAG is the inverse of GGZ_ADMIN_GAG.

• GGZ_ADMIN_KICK kicks a player from the server, i.e. closes the connection of
the affected person.

6

Chapter 2. Client-Server Communication Protocol

Game Interactions
Since protocol version 7, direct connections have been in place. Therefore, no separate
tags to embed them are needed anymore.

7

Chapter 2. Client-Server Communication Protocol

8

Appendix A. Protocol Reference

We now list a complete reference of messages which get passed to and from the GGZ
server. This listing conforms to protocol version 11.

Three types of data are exchanged between the client and the server:

• char: a 1-byte signed char

• int: a 4-byte signed integer in network byte order

• string: a multibyte null-terminated string preceded by its length (including null-
termination) as an integer.

Interactions take one of three forms: server messages, client requests, and server re-
sponses. Each interaction is prefaced by an opcode identifying it (some interactions
consist solely of the opcode). The opcode (stored as an enumerated value) is sent as
an int.

Messages sent in both directions

SESSION

Name
SESSION — Session start

Synopsis

<SESSION> ... </SESSION>

Description
Session start tag sent from server or client

Message Data
None

Usage
The SESSION tag is sent from the server to the client upon a successful connection. It
does neither guarantee a successful login nor does it indicate if the client and server
version match. It is also sent by the client, when attempting to login, or when request-
ing a direct connection between game client and game server.

9

Appendix A. Protocol Reference

PING

Name
PING — Lag measurement challenge

Synopsis

<PING ID=’_id_’/>

Data Type Example

ID string 1h3k5lmfs

Description
Periodically sent request

Message Data

ID

Unique identifier for this ping; it is sent back in the pong.

Usage
The PING tag is sent periodically from the server to all clients in order to obtain their
response (the PONG tag) for lag calculation. It may also be sent by the client to the
server at any time to determine the client’s own lag time.

PONG

Name
PONG — Lag measurement response

Synopsis

<PONG/>

Data Type Example

ID string 1h3k5lmfs

Description
Response to lag measurement challenge

10

Appendix A. Protocol Reference

Message Data

ID

Unique identifier for this pong - the same string that was sent in the ping.

Usage
The PONG should be sent immediately in response to the PING tag. The resulting
round-trip time can be measured to determine the player’s lag. When the server
sends the ping, the lag measurement is tracked and reported to all players in the
room (including that player). But for a lagging client - or one that is not in a room -
this is not helpful. Thus the client can also send a ping to determine its own latency.

Server to client messages

ROOM

Name
ROOM — List entry describing one room

Synopsis

<ROOM ID="id" NAME="name" GAME="game" PLAYERS="players">
<DESC>desc</DESC> </ROOM>

Data Type Example

ID int 0

NAME string TicTacToe

GAME int 4

PLAYERS int 14

DESC string Sample TTT room

Description
A list entry describing one room at a GGZ server

Message Data

ID

Unique identifier for this room

11

Appendix A. Protocol Reference

NAME

Room name

GAME

The identifier of the game associated with this room

PLAYERS

The number of players currently in the room. This value is sent in the room
list and may be periodically updated. However this information is not updated
immediately, so the client’s knowledge may become stale. For the current room
the client should use the list of players in the room as a more accurate value.

DESC

Verbose room description (sent only if requested)

Usage
A list of room tags is sent when requesting the list of available rooms on a server,
typically done after logging in.

GAME

Name
GAME — List entry describing one game type

Synopsis

<GAME ID="id" NAME="name" VERSION="version"> <PROTOCOL
ENGINE="engine" VERSION="version"/> <ALLOW PLAYERS="players"
BOTS="bots" SPECTATORS="spectator"/> <ABOUT AUTHOR="author"
URL="url"/> <DESC>desc</DESC> </GAME>

Data Type Example

ID int 0

NAME string TicTacToe

VERSION string 0.2

ENGINE string TicTacToe

PLAYERS string 4

BOTS string 1..3

SPECTATORS string true

AUTHOR string Anonymous Coward

URL string http://www.ggzgamingzone.org/gameclients/

DESC string My first game

12

Appendix A. Protocol Reference

Description
A list entry describing one game at a GGZ server, which may be used in one or more
rooms.

Message Data

ID

Unique identifier for this game

NAME

The name of the game

VERSION

Game server program version, and game server/client communication protocol
version

ENGINE

Generalized game type, which is used for frontend selection

PLAYERS

The number of players allowed in this game, in the form of a list of individual
numbers and/or a single range of numbers, separated by spaces. For instance ’1
2 3 5..10’ includes both a list and a range.

BOTS

The number of AI bots allowed at a table of this game. The form is that of a
number list (the same as for the PLAYERS element). Zero bots is always allowed
and will not be listed.

SPECTATORS

Whether spectators are allowed or not, either ’true’ or ’false’.

AUTHOR

Name of the author or author team

URL

Pointer to the project homepage of the game server

DESC

Description for the game type offered by this server

Usage
After the client requested the list of games, a LIST containing some game entries is
sent from the server to the client.

13

Appendix A. Protocol Reference

SERVER

Name
SERVER — Server identification

Synopsis

<SERVER ID="id" NAME="name" VERSION="version" STATUS="status">
<OPTIONS CHATLEN="chatlen"/> </SERVER>

Data Type Example

ID string GGZ-0.0.6

NAME string Harry’s GGZ server

VERSION int 6

STATUS string ok

CHATLEN int 512

Description
An identification message from the server

Message Data

ID

Server identification string (including version number)

VERSION

Integer version number

NAME

Descriptive name of that server

STATUS

Current server status, can be either ’ok’ or ’full’

CHATLEN

Maximum length of chat messages

Usage
The SERVER tag is sent from the server to the client right after the SESSION tag. It
must be examined by the client to determine whether a login is possible or not.

14

Appendix A. Protocol Reference

MOTD

Name
MOTD — Server Message of the day

Synopsis

<MOTD PRIORITY="priority" URL="url"> <![CDATA[...]]> </MOTD>

Data Type Example

PRIORITY string normal

URL string http://...

Description
Message of the day (MOTD) from the Server

Message Data

PRIORITY

MOTD priority used to determine whether to display it or not

URL

Web page containing a HTML MOTD, or empty to display text MOTD

Data (CDATA)

All lines of the MOTD, separated by the newline character

Usage
The MOTD tag is sent from the server to the client upon successful login (ie. after the
RESULT tag belonging to a LOGIN request)

UPDATE

Name
UPDATE — Notification that the list of players or the list of tables in a room has
changed, or the list of rooms or game types on a server.

Synopsis

15

Appendix A. Protocol Reference

<UPDATE TYPE="type" ACTION="action" ROOM="room" FROMROOM="from"
TOROOM="to">

Data Type Example

TYPE string player

ACTION string add

ROOM int 1

FROMROOM int 2

TOROOM int 3

Description
Notification from the server that the list of players in the current room has been mod-
ified since the last update, or that a table has been added, removed or changed its
state, or that a room or game type has been added or removed.

Message Data

TYPE

Update type. Can be ’player’ or ’table’ for room updates, or ’room’ or ’game’ for
server updates.

ACTION

Action to do. Can be ’add’, ’delete’, ’lag’, ’perms’, or ’stats’ for players; ’add’,
’delete’, ’join’, ’leave’, ’status’, ’desc’, or ’seat’ for tables; ’add, ’delete’, ’close’, or
’players’ for rooms. No game updates are possible at this time.

ROOM

Room to which the update applies. Only used for types ’player’ and ’table’.

FROMROOM

Room the player is coming from. Only used for type ’players’ with action ’add’.
The room may be -1 indicating "no room".

TOROOM

Room the player is going to. Only used for type ’players’ with action ’delete’.
The room may be -1 indicating "no room".

Usage
An UPDATE tag is sent from the server to the client if the list of players, tables, rooms
or games has changed since the last update. It is not sent upon initial entry to a room
or server; the information is originally sent in a LIST. An update is sent when the
information of that type changes.

The UPDATE tag contains one or more tags of type PLAYER, TABLE, ROOM, or
GAME. The information included in the subtags depends on the ACTION attribute
of the update. For instance a "table" "desc" update would include only the description
of the table, while a "player" "add" update includes the full information about the
player. A full list of these dependencies is not available at this time.

16

Appendix A. Protocol Reference

PLAYER

Name
PLAYER — List entry describing one player.

Synopsis

<PLAYER ID=’id’ TYPE=’type’ TABLE=’table’ PERMS=’perms’ LAG=’lag’
WINS=’wins’ LOSSES=’losses’ TIES=’ties’ FORFEITS=’forfeits’ RATING=’rating’
RANKING=’rating’ HIGHSCORE=’highscore’/>

Data Type Example

ID string Grubby

TYPE string guest

TABLE int -1

PERMS int/hex 0x0000000F

LAG int 1

WINS int 7

LOSSES int 3

TIES int 1

RATING int 1500

RANKING int 3

HIGHSCORE long 49807

Description
List entry containing the description of one player

Message Data

ID

Unique identifier of this player

TYPE

Player type (can be ’guest’, ’normal’, ’admin’ or ’bot’)

TABLE

ID number of table at which player is "sitting"; -1 or not present if the player is
not at a table.

PERMS

Player permission set - an integer bitfield giving which permissions the player
has, according to the enumeration in ggz_common.h.

17

Appendix A. Protocol Reference

LAG

Lag value of the player, which ranges from zero (ideal connection) to five (slow
connection).

WINS

The number of wins the player has. This will be a non-negative integer, if present.
It will not be present if the player has no stats of this type (for whatever reason).
WINS, LOSSES, TIES, and FORFEITS will all be either present or not present (as
a group).

LOSSES

The number of losses the player has - a non-negative integer. See WINS.

TIES

The number of ties the player has - a non-negative integer. See WINS.

FORFEITS

The number of forfeits (abandoned games) the player has - a non-negative inte-
ger. See WINS.

RATING

If present, it represents the player’s rating. This is generally done on an ELO
scale, although the parameters may differ from those used for Chess. It will not
be given if the player has no rating.

RANKING

If present, provides the absolute ranking of the player. This will be a positive
integer. It will not be given if the player has no ranking.

HIGHSCORE

If present, provides the highest score the player has achieved at the current
game. It will not be given if there is no available highscore for this player.

Usage
The PLAYER is contained in a list sent from the server to the client in response to
LIST request tag of type ’player’. It may also be contained within the UPDATE tag
send from the server when player information changes. If sent as part of a LIST then
the information will be complete - and any omissions are intentional. If sent as part
of an UPDATE then only some attributes will be present.

TABLE

Name
TABLE — List entry containing one table

18

Appendix A. Protocol Reference

Synopsis

<TABLE ID="id" GAME="game" STATUS="status" SEATS="seats">
<DESC>desc</DESC> <SEAT NUM="num" TYPE="type">player</SEAT> ...
</TABLE>

Data Type Example

ID int 0

GAME int 0

STATUS int 1

SEATS int 2

DESC string An empty table

NUM int 0

TYPE string player

PLAYER string Grubby

Description
The TABLE tag describes one table with all its properties

Message Data

ID

Unique identifier of this table in this room

GAME

Associated game. Only used in updates with action ’add’.

STATUS

Current status of the table. Only used within updates with action ’status’ or
’add’.

SEATS

Number of seats on this table.

DESC

Description of the table. Only sent when table is being added to the list, i.e. in
updates with action ’add’.

NUM

Number of a seat.

TYPE

Type of a seat, which can be ’open’, ’player’, ’reserved’ or ’bot’.

PLAYER

Player name in case the type is either ’player’ or ’reserved’. It is also included if
a ’bot’ seat is reserved for a named bot.

19

Appendix A. Protocol Reference

Usage
TABLE tags are sent in a list from the server to the client in response to LIST when
LIST is of type ’table’, and in UPDATE tags of type ’table’.

JOIN

Name
JOIN — Message to indicate you’ve joined a table

Synopsis

<JOIN TABLE=’table’ SPECTATOR=’spectator’/>

TABLE integer 1

SPECTATOR boolstring false

Description
Tells the client that they have joined a table. Currently each client and each player can
only be at one table at a time. The join will be initiated when the client sends either
a JOIN request to join an existing table or a LAUNCH request to launch a new table
(and subsequently join it).

Message Data

TABLE

The index of the table that has been joined. This will be a non-negative integer
corresponding to the index sent in the TABLE tag.

SPECTATOR

Either "true" if the player is a spectator or "false" if they are a normal player. This
is generally determined based upon the client’s JOIN request.

Usage
JOIN is sent from the server to the client to inform the player they’ve joined a table.
The client should take any necessary actions.

20

Appendix A. Protocol Reference

LEAVE

Name
LEAVE — Message to indicate you’ve left a table

Synopsis

<LEAVE REASON=’reason’ PLAYER=’player’/>

REASON string normal

PLAYER player jdorje

Description
Tells the client that they have left a table. This may be initiated by the player sending
the server a LEAVE request, by the game server exiting when the game is over, by
the player being booted from the table, or by the game server aborting. In any of the
cases the client should make sure the game client exits normally.

Message Data

REASON

The reason the player left the table, currently one of "normal", "boot",
"gameover", or "gameerror".

PLAYER

The name of the (remote) player responsible for the leave. This is currently only
provided for the "boot" leave, where it gives the name of the player who initiated
the boot.

Usage
LEAVE is sent from the server to the client to tell of a table leave. The client should
take any necessary actions.

RESULT

Name
RESULT — General message to indicate the result of a request

Synopsis

<RESULT ACTION="action" CODE="code"/>

21

Appendix A. Protocol Reference

Data Type Example

ACTION string list

CODE string ok

Description
Server response to any request, embedding the answer data

Message Data

ACTION

The request type this result is referring to. Actions include ’motd’, ’list’, ’enter’,
’chat’, ’launch’, ’join’, ’leave’, ’reseat’, ’update’, ’protocol’, ’channel’, ’login’, and
’pong’.

CODE

Result indicator: either ’ok’ or an error string. Errors may include ’usr lookup’,
’bad options’, ’room full’, ’table full’, table empty’, launch fail’, ’join fail’, ’no ta-
ble’, ’leave fail’, ’leave forbidden’, ’already logged in’, ’not logged in’, ’not in
room’, ’at table’, ’in transit’, ’no permission’, ’bad xml’, ’seat assign fail’, ’no
channel’, or ’too long’. The client should behave sanely when it receives an un-
recognized error.

Usage
RESULT is sent from the server to the client in response to LIST, ENTER, LAUNCH,
JOIN, LEAVE, CHAT, ADMIN, PERMADMIN, and LOGIN requests. Note that in
some of these cases (e.g. LIST) the response to the request will be contained within
the RESULT, whereas in others it will not. The logic on which is which is reasonable,
but nonetheless the lack of consistency may be confusing.

LIST

Name
LIST — Server response to request for list of rooms or list of games

Synopsis

<LIST TYPE="type" ROOM="room"> </LIST>

Data Type Example

TYPE string room

ROOM int 1

22

Appendix A. Protocol Reference

Description
Server response to request for list of rooms or game types

Message Data

TYPE

Type of list, either ’room’, ’game’, ’table’ or ’player’

ROOM

The room to which this list belongs. Only used for ’table’ and ’player’.

Usage
The LIST is sent from the server to the client in response to the client request named
LIST, and may contain either TABLE or PLAYER or GAME or ROOM entries.

CHAT

Name
CHAT — Server response to chat message request

Synopsis

<CHAT TYPE="type" FROM="from"> <![CDATA[...]]> </CHAT>

Data Type Example

TYPE string private

FROM string Grubby

Description
Server response to player chat request

Message Data

TYPE

Type of chat message, which can be one of "normal", "announce", "beep", "pri-
vate", or "table".

FROM

Player from which this message originates

23

Appendix A. Protocol Reference

Usage
The CHAT response tag is sent from the server to client to handle chat message re-
quests via the CHAT tag.

Client to server messages

LOGIN

Name
LOGIN — Client requested login or registration

Synopsis

<LOGIN TYPE="type"> <NAME>name</NAME>
<PASSWORD>password</PASSWORD> <EMAIL>email</EMAIL>
</LOGIN>

Data Type Example

TYPE string guest

NAME string Gandalf

PASSWORD string xxxx

EMAIL string player@ggzcommunity.org

Description
Client requested login or registration

Message Data

TYPE

Type of login, which can be one of "normal", "guest" or "first"

NAME

Login name

PASSWORD

Player password, which is only used for registered ("normal") players, or (op-
tional) for the registration ("first")

EMAIL

Player email address for password retrieval, only used for the registration
("first")

24

Appendix A. Protocol Reference

Usage
The LOGIN tag is sent from the client to the server to request a player login. The re-
quest may come after SERVER. The client must have started the SESSION in advance.
The server will respond to the request with a RESULT tag. There are three ways to
use this tag: To login as a guest player (only name needed), to login as a registered
player (name and password needed), or to register for the first time (name needed,
password and email optional). If no password is given for the registration, the server
will assign one.

LIST

Name
LIST — Client request for list of rooms or games on the server, or of tables or
players in a room

Synopsis

<LIST TYPE="type" FULL="full"/>

Data Type Example

TYPE string room

FULL boolstring true

Description
Client request for list of rooms or game types on the server, or (when in a room) for
list of tables or list of players

Message Data

TYPE

The type may be ’room’ for the room list, and ’game’ to receive the game types
list. Likewise, ’player’ and ’table’ are used to retrieve room information.

FULL

Verbosity flag. Set to ’false’ for short room descriptions, ’true’ for full descrip-
tions. This is only used for the ’room’ type.

Usage
The <LIST> tag is sent from the client to the server to request a list of rooms, game
types, tables or players. The server will respond with the appropriate RESULT tag
which contains a LIST. This request is only valid once the player has successfully
logged in for ’room’ and ’game’ types (ie. after the login RESULT), and only after the
player has entered a room (for ’table’ and ’player’ types).

25

Appendix A. Protocol Reference

LAUNCH

Name
LAUNCH — Client request for new table launch

Synopsis

<LAUNCH> ...
</LAUNCH>

Data Type Example

No data

Description
Client request for new table launch

Usage
The LAUNCH tag request a table to be launched in the current room. Therefore, each
LAUNCH request contains one tag of type TABLE. The server will respond with a
RESULT tag, followed by an UPDATE of type ’table’ upon success.

JOIN

Name
JOIN — Client request to join a table

Synopsis

<JOIN TABLE="table" SPECTATOR="spectator">

Data Type Example

TABLE int 0

SPECTATOR boolstring true

SEAT int 3

Description
Client request to join table

26

Appendix A. Protocol Reference

Message Data

TABLE

The identifier of the table the player wishes to join

SPECTATOR

Whether to join as spectator (when true) or not (when false or omitted).

SEAT

The seat number of the seat to join in. If the seat number is negative or not given,
the first available seat will be joined.

Usage
JOIN is sent from client to the server to request a table join. The server will respond
with RESULT telling us the success of the action. If the action was successful the client
will also receive a JOIN, which we should act upon. If the join succeeds it is likely an
UPDATE of type ’table’ will also be necessary.

LEAVE

Name
LEAVE — Client request to leave table

Synopsis

<LEAVE FORCE="force">

FORCE boolstring false

Description
Server response to player request to leave tablet

Message Data

FORCE

Force leaving the table even though the game doesn’t support it. The game
would then be cancelled. For spectators, this flag is ignored.

Usage
LEAVE is sent from the client to the server to request a table leave. The server will
respons with a RESULT message as well as a LEAVE message with reason "normal"
if the leave succeeded.

27

Appendix A. Protocol Reference

CHAT

Name
CHAT — Client chat message request

Synopsis

<CHAT TYPE=’type’ TO=’to’> <![CDATA[...]]> </CHAT>

Data Type Example

TYPE string normal

TO string josef

Description
Client chat message request

Message Data

TYPE

Chat type. Can be one of "normal", "announce", "beep", "private", or "table".

TO

Name of player who will receive message. This attribute is needed for ’beep’ and
’private’ messages, but not for ’normal’, ’announce’, or ’table’. The client should
behave sanely if this contains incorrect data or is not present.

Usage
A CHAT request is sent from the client to send a chat message. The server will re-
spond with an appropriate RESULT which embeds a CHAT tag.

ADMIN

Name
ADMIN — Room Administration

Synopsis

28

Appendix A. Protocol Reference

<ADMIN ACTION=’action’ PLAYER=’player’>
<REASON><![CDATA[...]]></REASON> </ADMIN>

Data Type Example

ACTION string gag

PLAYER string someplayer22

Description
Room administration

Message Data

ACTION

Type of administrative action. Is one of either "gag", "ungag" or "kick".

PLAYER

Name of player who is affected by the action.

REASON

A textual explanation of the action. This is mandatory for "kick" actions, and
ignored for all others.

Usage
An ADMIN request is sent from the client to do an administrative action on a player
in the current room. The server will respond with an appropriate RESULT which
embeds a admin tag.

PERMADMIN

Name
PERMADMIN — Permissions administration

Synopsis

<PERMADMIN PLAYER=’player’ PERM=’perm’ VALUE=’value’/>

Data Type Example

PLAYER string someplayer22

PERM string join_table

VALUE boolean true

29

Appendix A. Protocol Reference

Description
Permissions administration

Message Data

PLAYER

Name of player who is affected by the action.

PERM

Name of the permission being modified. Current permissions include
’join_table’, ’launch_table’, ’rooms_login’, ’rooms_admin’, ’chat_announce’,
’chat_bot’, ’no_stats’, ’edit_tables’, ’edit_privmsg’.

VALUE

Whether to set or unset the permission. Either ’true’ or ’false’.

Usage
Administrators can change permissions of other players. A PERMADMIN request
is sent from the client to change a particular permission on a particular player. The
server will respond with an appropriate RESULT which embeds an admin tag.

ENTER

Name
ENTER — Request to change rooms

Synopsis

<ENTER ROOM="room">

Data Type Example

ROOM int 1

Description
Request to change rooms

Message Data

ROOM

The room identifier of requested destination room

30

Appendix A. Protocol Reference

Usage
ENTER is sent from the client to the server to request a room change. It is expected
that the server will respond with RESULT.

CHANNEL

Name
CHANNEL — Request for a direct game connection

Synopsis

<CHANNEL ID="id">

Data Type Example

ID string Grubby

Description
Request for a direct connection between game server and game client

Message Data

ID

Identifier of the created channel. This equals the name of the player who
launches or joins a game.

Usage
To obtain a channel, the CHANNEL tag is sent within a separate SESSION.

31

Appendix A. Protocol Reference

32

	GGZ Gaming Zone Main Protocol Specification
	Table of Contents
	Objectives
	Chapter 1. The Protocol
	Chapter 2. ClientServer Communication Protocol
	Logging in
	Requesting server information
	Rooms
	Requesting room information
	Server updates
	Table Management
	Chatting with friends
	Administrative actions
	Game Interactions

	Appendix A. Protocol Reference
	Messages sent in both directions
	SESSION
	Name
	Synopsis
	Description
	Message Data
	Usage

	PING
	Name
	Synopsis
	Description
	Message Data
	Usage

	PONG
	Name
	Synopsis
	Description
	Message Data
	Usage

	Server to client messages
	ROOM
	Name
	Synopsis
	Description
	Message Data
	Usage

	GAME
	Name
	Synopsis
	Description
	Message Data
	Usage

	SERVER
	Name
	Synopsis
	Description
	Message Data
	Usage

	MOTD
	Name
	Synopsis
	Description
	Message Data
	Usage

	UPDATE
	Name
	Synopsis
	Description
	Message Data
	Usage

	PLAYER
	Name
	Synopsis
	Description
	Message Data
	Usage

	TABLE
	Name
	Synopsis
	Description
	Message Data
	Usage

	JOIN
	Name
	Synopsis
	Description
	Message Data
	Usage

	LEAVE
	Name
	Synopsis
	Description
	Message Data
	Usage

	RESULT
	Name
	Synopsis
	Description
	Message Data
	Usage

	LIST
	Name
	Synopsis
	Description
	Message Data
	Usage

	CHAT
	Name
	Synopsis
	Description
	Message Data
	Usage

	Client to server messages
	LOGIN
	Name
	Synopsis
	Description
	Message Data
	Usage

	LIST
	Name
	Synopsis
	Description
	Message Data
	Usage

	LAUNCH
	Name
	Synopsis
	Description
	Usage

	JOIN
	Name
	Synopsis
	Description
	Message Data
	Usage

	LEAVE
	Name
	Synopsis
	Description
	Message Data
	Usage

	CHAT
	Name
	Synopsis
	Description
	Message Data
	Usage

	ADMIN
	Name
	Synopsis
	Description
	Message Data
	Usage

	PERMADMIN
	Name
	Synopsis
	Description
	Message Data
	Usage

	ENTER
	Name
	Synopsis
	Description
	Message Data
	Usage

	CHANNEL
	Name
	Synopsis
	Description
	Message Data
	Usage

