
CircuitSim93 :
A circuit simulator benchmarking methodology case study

J.A. Barby and R. Guindi
Electrical and Computer Engineering

200 University Avenue West
University of Waterloo

Waterloo, Ontario, Canada
N2L 3G1

phone (5 19)885- 121 1 x3995, FAX (5 19)74&5 195, jabarby@vlsi.uWaterloo.Ca

Absiract - A circuit simulator benchmarking methodology
is developed that follows the philosophy that one wants to exer-
cise each of the simulators on each of the benchmark circuits
and make a fair comparison of their performance. This metho-
dology was tested out in a benchmarking of 6 commercial cir-
cuit simulatotx from 3 CAE companies using a new circuit
simulator benchmark suite called CircuitSim93.

I. INTRODUCTION
The CircuitSim90 circuit simulator benchmark suite is one

of the very few defacto standard circuit simulator benchmark
suites that is in the public domain. It is also well know that
there are serious problems with some of the netlists. There-
fore, what to do if you have 6 circuit simulators from 3 dif-
ferent simulator companies and need to use CircuitSim90 to
benchmark them?
This paper outlines the methodology used to benchmark

Hspice H9007D and H92A (from MetaSoftware), Saber 3. l a
and 3.ld (from Analogy) and Spectre 4.2 and 4.2.la (from
Cadence) using CircuitSim90 as the starting point. The
result is a greatly improved benchmark suite referred to as
CircuitSim93 and a set of tools to simplify the benchmarking
operation.

II. BENCHMARKING
We start by stating our view of circuit simulator bench-

marking.

A. The AimslGoals Of A Benchmarking Effort
The aim or goal of a benchmarking effort is to make a fair

comparison of the performance of each simulator. The result
should be a side-by-side comparison of each simulator’s per-
formance in the key areas of interest. A customer wants the
results to show (from a technical view point) which is the
better simulator for the target application given the specifica-
tions on the hardwarelsoftware platform to be run on. A ven-
dor wants the results to show where they have m m for

The work described in this paper was supported by NSERC Research
Grant OGPOO03984 and Canadian Microelectronics Corporation research
contract CON93/02127.

0-7803-1375-5/93$03.00 0 1993 IEEE

improvement .
B. A Benchmarking Philosophy And Comparison Crireria

The benchmarking philosophy used in the CircuitSim93
project was that one wants to exercise each of the simulators
on each of the benchmark circuits and make a fair m-
parison of their performance. This is much easier said than
done, as making a fair comparison of simulators that have
very different modelling and simulation philosophies (and
market positioning) can be difficult.

Hspice is a general circuit simulation solution that works
on a flattened circuit description. Its default calibration
is for digital circuits.
Spectre is a simulation engine for a CAE analog and
mixed-signal design framework. Its default calibration is
for analog circuits. It has very good netlist and model
parameter debugging features.
Saber is good for topdown design methodology. It is
targetted to handle all the simulation needs of a full sys-
tem design from architecture down to detailed circuit
simulation results in an efficient timely way. Its measure
is how fast can a designer go from concept to working
system that meets specifications.

In fact, a benchmarking of such a range of simulators using a
set of predesigned netlists, can never be a “fair” measure of
each of the simulator’s performance. Yes the benchmarking
can measure bow good a particular simulator is at a given
task (which it may or may not have been optimized for), but
it is not a measure of the simulator’s true potential. We are
looking at other benchmarking approaches for this case and
the mixed-signal case.

One has to carefully think out the performance criteria to
be measured in advance as a foundation for making their
decisions on the actual benchmarking process. We now look
at some details behind each of eight criteria used and explain
why they are important measures given the high performance
workstation commonly in use by todays designers.

531

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 15, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

1) Times: user cpu time, system overhead cpu time, and
elapse time. The user cpu time is a measure of simulation
computing cost. However, the system overhead CPU time is
useful to diagnosis inefficiencies in the program. The elapse
time is becoming one of the most significant measures of a
simulator, as designer time is the major cost in most design
projects.

2) Required spoce: swap space, resident memory
required for efficient cpu utilization, and temporary disk
space (data and executable files).

Simulators differ greatly in their efficient use of virtual
memory (swap space) and physical memory (resident
memory). Good memory management will result in the two
memory sizes being close and small. When a simulator
requires more virtual memory than swap space available, a
designer is stop dead in his tracks. However, if the resident
memory required for efficient cpu utilization excesds the
actual physical memory available for user processes, the
workstation goes into severe paging mode increasing the
elapse time 2 or 3 orders of magnitude. Once a workstation
gets into severe paging mode, the cpu sits idle most of the
time and the simulation proceeds at the speed of the disk and
memory cache rather than at the sped of the CPU. Given the
large difference between cpu and disk access speeds in
modem workstations, this is significant. Basically, the
workstation physical memory needs to be as large as the
CAE software requires or you are wasting designer time.
Therefore, all other things being equal, a simulator that
requires less resident memory for efficient operation is the
preferred simulator.

A little known fact (even unknown to many users) is that
certain circuit simulators require extra disk space at run time
for either executables and/or temporary disk space. For large
circuits, this required space is up in the 100s of Mbytes.

In most worksta-
tions, paging is more of a problem than swapping. By moni-
toring these during a simulation, one can quickly tell if the
resident memory is exceeding the available physical
memory. It is only when both, the page fault a n t is high
and the resident memory is high, one can determine more
physical memory is required for a given simulat0r:netlist
combination to run efficiently.

Given the differen-
tial between CPU speed and disk speed, a good simulator will
minimize its disk activity. If files are NFS mounted, the disk
write cost is significantly greater than a disk read. These two
give one a clear picture on how well thought out the simula-
tor architecture is. Significant disk reads and writes will
result in increased elapse time and reduced cpu utilization.

5) Accuracylcorrectness of response: Most users
assume that if a simulator completes without issuing an error

3) Page fd t s and swapping counts:

4) IO operations (r e d and writes):

or warning message, that the waveforms are correct. This is
an incorrect assumption. Models, numerical analysis, algo-
rithms, well thought out coding, and calibration settings all
factor into this question. A measure of this is needed in any
benchmarking or one ends up making an invalid comparison
of simulator performance. The unfortunate side effect of this
is that one has to run all the simulators on all the circuits
before they can determine if it is an issue.

Associated with the above is the
need to calibrate a simulator. There are three major factors
effecting a simulator’s accuracy: calibration of the model
parameters, calibration of the nonlinear solution algorithm
and calibration of the integration step size control. One has
to understand that all these simulators never drive for zero
error, but rather go for acceptable emr . me user has to
adjust one or more parameters, which in some cases are
interacting, to get the desired accuracy. From a user’s point
of view, it is desirable to have one parameter controlling the
accuracy of a nonlinear solution and a separated (nonin-
teracting) parameter controlling the integration step size con-
trol.

The calibration effort is a measure of skill and training
level needed for an arbitrary designer to be able to
effectly/efficiently use a given simulator.

Given most simulators have slightly
different syntax and handle parameter ranges in different
ways, one is always porting netlists as part of a benchmark-
ing. The ease with which one can port a netlist to a simula-
tor is a measure on how well thought out the simulator was
and the quality of the tools that come with the simulator.
’Ihis is all important as it translates into designer time.

8) Paramerer checking: The simulator’s parameter
checking is a solid measure of how well thought out the
simulator was from a designer’s point of view. Many
designers waste significant valuable time simulating circuits
with model parameters that are inconsistent or seem unrea-
sonable for a given technology. A well thought out simula-
tor will wam a user if a model parameter seems strange and
possibly stop the simulator if the model parameter exceed the
range of possible values for a given technology.

6) Calibration effort:

7) Porting effort:

HI. CircuitSimW CIRCUIT SIMULATOR BENCHMARK SUITE

?he CircuitSim90 circuit simulator benchmark suite from
MCNC is one of the very few defacto standard circuit simu-
lator benchmark suites that is in the public domain. These
“MCNC benchmarks” have gone far beyond their original
intent. The CircuitSim90 set is basically a small subset of a
test suite MCNC used intemally for CAzM r e p i o n test-
ing. CircuitSim90 is made-up of public domain circuits from
MCNC and Sandia Labs [11.

532

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 15, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

It is well known by MCNC and anyone who has tried to
use the CircuitSim90 benchmark suite (including Analogy,
Cadence, Dazix and Metasoftware), that there are multiple
problems with the netlists and probably circuit responses.
Shortly after the initial CircuitSim90 effort was completed,
MCNC’s CAZM development was suspended (along with
CircuitSim90). The benchmark suite has been in a state of
disrepair for many years. All those who have tried to use it
have either given up or kept quiet on what they did. The
case study below walks through the problems and solutions
to CircuitSimW’s disrepair resulting in a greatly improved
suite referred to as CircuitSim93. The CircuitSi” is avail-
able from the authors at no charge.

Iv. A BENCHMARKING MEXHODOUWSY

The main difficulty with doing a fair benchmarking, is that
the various simulators use different netlist syntax as well as
have different command sequences and options. This always
raises the question “are the netlists and command sequences
equivalent”? This is actually a real problem with the Circu-
itSim90 benchmark suite, in that a number of the netlists are
very large (see Tab. 1) and have different node and instance
names for Hspice @“-large directory) from those for
Spice2g6 (mos2-large-sp directory). This has two signifi-
cant benchmarking problems associated with it:
(1) Given the size of the netlists, it is far too time consum-

ing to prove the netlists are equivalent.
(2) The longer node and instance names require more

swap and resident memory to store the names and
associated lookup tables. In addition, the cpu run
times will be effected as the name lookup times will
vary some what with the length of the node and
instance names.

To overcome these and other problems, a methodology is
required to simplify things and allow a fair comparison of
the simulators. This can be summarized in the following
points used for the CircuitSim93 project:
(1) The netlists for the various simulators should be algo-

rithmicly generated (from the CircuitSim90 netlists in
the bjt, “2, mos3, and “2-large-sp directories)
using Unix’s “sed”, “awk”, and “ a h ” scripts along
with Analogy’s Spitos in the Saber case. These scripts
give one a simple paper trail on each netlist and allow
one to fix the CircuitSim90 netlists without actually
changing the CircuitSim90 source (making it easy to
prove using Unix’s “diff” that the source used is the
actual CircuitSim90 source). Thus, it is a simple pro-
cess to show that the netlists used by each simulator
are equivalent. In addition, the node, instance and sub-
circuit names in the netlist for each simulator are the
same (within the syntax of the simulator), thus making
sure the benchmark comparisons are fair.

The (Unix) ah’s “time” command measures most of
the performance parameters of interest and reports
them in a single wtput line which can be p t pro-
cessed with various scripts into tables for a bench-
marking report. By using special scripts to run the
various simulators and save the “time” information in
files following a set naming convention, the bench-
marking report tables can be automatically generated.
This avoids the error prone and time consuming prob-
lems when they are manually generated.
The Unix’s Makefile facility with the neceSSary run
time scripts makes gluing all this together a straight
forward task and reduces the chance of human m r .

v. A SUMMARY OF THE CASE STUDY

The CircuitSim93 project evaluated Hspice H9007D and
H92A (from Metasoftware), Saber 3.la and 3.ld (from
Analogy) and Cadence 4.2 and 4.2.la (from Cadence) using
MCNC’s CircuitSim90 benchmark suite as a starting point.

The actual benchmarking runs were on a sparcl0/41 with
264Mb swap and %Mb memory in equivalent to single user
mode. ?he binaries on 1.2 Gb disk were NFS mounted f”
a sparcl0/41 and the user files on a 750 Mb disk were N I 3
mounted from a sparc2. The performance data was meas-
ured using ah’s time command.

The application of the above benchmarking philosophy
and methodology when applied to MCNC’s CircuitSim90
benchmark suite resulted in the new CircuitSim93 circuit
simulator benchmark suite with CircuitSim90 problemsbugs
fixed. In this new suite, the Hspice, Spedre and Saber net-
lists are all generated from the original MCNC’s Circuit-
Sim90 spice2 netlists @jt, “2, mos3, and “2-large-sp
directories) using various saipts which supply the paper trail
of the netlist conversion. The scripts (sed, awk, a h , and in
the case of Saber, Analogy’s Spitos product) are controlled
via Makefiles.

One of the problems with the CircuitSim90 netlists is bad
“:model” statements with obsolete or wrong model parame-
ters. Since the various simulators do different things when
they run across model parameters outside of normal bounds,
the only fair thing to do, from a benchmarking point of view,
is to adjust the erroneous model parameter to be within nor-
mal bounds. These adjustments are all cleanly documented
in the various scripts. In addition, the scrips document the
necessary mapping of obsolete model parameter names to
correct model parameter names.

In general, Hspice and Saber issue a warning when they
detected an unusual model parameter and use the default
value. However, Spectre would normally issue a fatal error
message and stop the simulation. Basically, the Spectre view
is that if the user went to the trouble to specify a model
parameter and the value is invalid, then the user should

533

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 15, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

cored the value or change the hard/soft limits associate with
that parameter.

Since part of the benchmarking will include IO measure-
ments and we are trying to make a fair comparison, the vari-
ous scripts adjust the netlists commands to make this com-
parison fair.
As was mentioned, many of the netlists in CircuitSimWs

mos2-large-sp diredory are badly broken. These netlists are
many Mbytes long with over 10,OOO transistors (see Tab. 1).
Manual corredions are not feasible. Following our bench-
marking methodology, the corrections are algorithmic in
nature. These errors can be grouped into:
(1)
(2)
(3)
(4)

nodes with only one connection to them,
nodes with no DC path to ground,
nodes with nothing connected to them,
multiple (thousands) of instances of various com-
ponents with the same instance name.

Case (3) results in an emrhvaming message in the various
simulators, however, cases (l), (2), and (4) result in error
messages. The surprising case (3) happens in some of the
netlists where a few subcircuits have extemal nodes to which
nothing is connected intemally or extemally. Unfortunately,
the most common occurrence of case (1) are gates of a MOS
transistor, i.e. the MOS transistors have a floating gate coo-
nection.

Consistent with our benchmarking methodology, the
above scripts were designed so that nodes with nothing con-
nected to them will be deleted from the netlists (using awk
scripts). Nodes without a DC path to ground or only one
connection to them will have a le12 resistor (G& con-
nected between them and ground (using sed). When multiple
component instance names appear, they will be replaced
using algorithmicly generated instance names (using awk).

Both Hspice and Saber tend to find nodes with no DC path
to ground during run time, while Spectre's graph search
picks them out when compiling the netlist. This resulted in
Spedre finding all floating nodes in a couple of seconds (one
run), while Hspice and Saber would take thousands of
seconds per run to detect these nodes one at a time. In the
project, we very quickly switched to using Spectre to debug
the netlists and then find out how long it would take Hspice
and Saber to find the first error.
As part of the CircuitSim93 project, the effort to port the

spice2g6 netlists to the various simulators was documented.
In addition, we kept track of which simulators could detect
the above errors. These will appear in a future publication.

With oscillator circuits, not only is the operating point a
problem, but they require noise to start the oscillation. This
noise is naturally present in a real circuit but not necessarily
in a simulated one. CircuitSim93 avoids both these prob-
lems by starting the oscillators with all nodes/current zero at

time+ and tums on the voltage supplies at the first integra-
tion time step (timeO+). We refer to this as a tripzero
operation. This is accomplished by modifying all the
sources to be " pwl(0 0 l o e l 2 ...)" .

After making the above syntax and circuit corredions,
most netlist:simulator combinations worked. A few cases
initially failed during operating point analysis or DC transfer
analysis. In keeping with our philosophy, we made minor
run time option changes in these few cases to get the
netlist:simulator combination to run. llese changes were:

trip=zero adjustment for H9007D:dac, H9007Dsmult20,
H92Axhip2, H92Asmult20, Saber:pc-frame, and
Saber:sram.
Spedre 4.2.la required a nodeset to step around a numer-
ical problem during the .op portion of the .tran in chip2.
Saber required a reduced step size in the .dc of vreg.
Saber required a different solution approach for the .dc in
bias, schmitfast, and schmitslow.

The outputs/waveforms of each of the simulators were
compared to each 'other and significant differences were
detected. Most of the significant differences occurred in the
analog circuits. We found that if a circuit had three p i b l e
operating points, the three simulators (€?spice, Saber, and
Spectre) would all converge to different ones. This of course
resulted in their transient responses being very different,
invalidating the cpu performance measurements.

The above results were a clear indication that each simula-
tor would have to be calibrated for each circuit and the per-
formance measurements rerun. (This was partially unex-
pected.) It takes 1 sparclO/41 cpu month (in single user
mode) just to rerun the performance measurements. In addi-
tional it would take one or two elapse months to adjust all
the calibration parameters to force each of the simulators to
generate the same response curve. The calibration and rerun-
ning of the petformance measurements is being left for phase
two of the CircuitSim93 project.

ACKNOWLEDGEMJWIS
The authors wish to thank Ken Kundert (Cadence), David
Eedrosian (Analogy), and Emst Christen (Analogy) for their
insight into problems with the various circuits within the
MCNC CircuitSim90 benchmark suite. Without their input,
the CircuitSim93 project would not have been such a suc-
cess. In addition, the authors wish to thank thank Bill
Richards (MCNC) for his insight into the history of the Cir-
cuitSim90 project.

REFERENCES

[l] William R. Richards Jr., CircuitSim90, MCNC, Nov, 1992 [unpub-
lished].

534

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 15, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

Tab. 1: CircuitSim93 circuit sizes

circuit nodes eqn d bjt mos2 mos3 c r v I ml tl vct wt a

bjt
astabl 6 12
bias 12 55
bj tff 48 177
bj tinv 26 40
latch 19 65
loc 326 739
nagle 26 54
opompl 71 518
optnns 270 1860
rca 18 32

schmitecl 8 18
vreg 19 20

ring1 1 34 101

0 2 0 0 2 4 2 0 0 0 0 0 0
0 13 0 0 0 5 4 0 0 0 0 0 0
0 41 0 0 1 2 6 6 0 0 0 0 0 0
0 12 0 0 0 24 2 0 0 0 0 0 0
0 14 0 0 0 10 4 0 0 0 0 0 0
0 96 0 0 12 276 5 48 36 9 54 54 0
0 23 0 0 1 1 1 5 0 0 0 0 0 0
0 148 0 0 4 28 3 0 0 0 0 0 0
0 528 0 0 1 9 1 4 8 6 0 0 0 0 0 0
0 11 0 0 0 12 3 0 0 0 0 0 0
0 2 2 44 0 11 0 1 0 0 0 0 0 0
0 4 0 0 1 8 2 0 0 0 0 0 0
0 20 0 0 0 10 1 0 0 0 0 0 0

mos2
ab-ac
ab-integ

cram
e1480
g1310

hussamp
mosrect
mux8
nand
pump =so
ring

ab-opemp

gm6

schmitfast
schmitslow
slowlatc h
tomnto
mos3
arom
b330
counter
gml
gm17
gm19
gm2
gm3
jge
mike2
rich3
todd3

25
28
28
32

145
66
7

14
6

30
17
3

15
18
5
7

12
25

57
163
93
31
31
89

5
17

180
11
51
13

28
32
31
44

204
97

17
10
42
19
4

16
19
19
25
37
36

20

62
856
%

129
148
428
21
79

243
38
56
43

0 0
0 0
0 0
0 0

49 0
28 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

31
31
31
60
28
14
5

16
4
64
25
1
0
34
6
8
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

14
58

116
330
220
46
56

162
7

30
348

12
106
13

22
24
24
42
17
21
0
2
0

29
0
2

13
1
0
0
0

33

23
0
0
8
7

83
5
I

157
1

12
0

1
3
4
0

130
56
0
1
2
0
0
1

30
0
0
0
1
0 -
2
0
0
7
3
1
0
0
1
0
2
1

3
4
3

12
3
3
3
3
2

12
2
1
1
1
2
2
5

11 -

5
33
3
6
5

15
2
2

63
5
5
6

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 6 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 2

mos2-large
add20
add32
chip2
&C
fadd32
memglus
pc-frame

ram2k
smolt20
sq*
sram
voter
voter25

F h i P

52 1
1058
9197
1094
161

2865
6527
407

4849
559 1
515
343

1708
43

2479
1124
9218
6366
178

17788
6568
2298

32632

2900
2374
1731

51

28759

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

958
1984

18816
2635
288

7454
14265

942
13880
11559
1188
1008
4243

74

0
0
0
0
0
0
0
0
0
0
0
0
0
0

409 1
800

21548
11291

25
14274
17%
345
156

34466
1022

24
460

0

0 4 2 0 0 0 0 0 0
0 6 6 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0

271 2 0 0 0 0 0 0
0 1 7 0 0 0 0 0 0
0 1 5 0 0 0 0 0 0

2 1 4 1 0 0 0 0 0 0
0 7 0 0 0 0 0 0
0 2 3 0 0 0 0 0 0
1 5 0 0 0 0 0 0 0
0 9 0 0 0 0 0 0
0 1 5 0 0 0 0 0 0
1 2 3 0 0 0 0 0 0
0 8 0 0 0 0 0 0

535

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 15, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

