
SBCL User Manual
SBCL version 1.3.19

2017-08

This manual is part of the SBCL software system. See the ‘README’ file for more
information.
This manual is largely derived from the manual for the CMUCL system, which was
produced at Carnegie Mellon University and later released into the public domain.
This manual is in the public domain and is provided with absolutely no warranty. See
the ‘COPYING’ and ‘CREDITS’ files for more information.

i

Table of Contents

1 Getting Support and Reporting Bugs. 1
1.1 Volunteer Support . 1
1.2 Commercial Support . 1
1.3 Reporting Bugs . 1

1.3.1 How to Report Bugs Effectively . 1
1.3.2 Signal Related Bugs . 2

2 Introduction . 3
2.1 ANSI Conformance . 3
2.2 Extensions . 3
2.3 Idiosyncrasies . 4

2.3.1 Declarations . 4
2.3.2 FASL Format . 4
2.3.3 Compiler-only Implementation . 5
2.3.4 Defining Constants . 5
2.3.5 Style Warnings . 5

2.4 Development Tools . 6
2.4.1 Editor Integration . 6
2.4.2 Language Reference . 6
2.4.3 Generating Executables . 6

2.5 More SBCL Information . 6
2.5.1 SBCL Homepage . 6
2.5.2 Online Documentation . 6
2.5.3 Additional Documentation Files . 7
2.5.4 Internals Documentation . 7

2.6 More Common Lisp Information . 7
2.6.1 Internet Community . 7
2.6.2 Third-party Libraries . 7
2.6.3 Common Lisp Books . 7

2.7 History and Implementation of SBCL . 8

3 Starting and Stopping . 10
3.1 Starting SBCL . 10

3.1.1 From Shell to Lisp . 10
3.1.2 Running from Emacs . 10
3.1.3 Shebang Scripts . 10

3.2 Stopping SBCL . 10
3.2.1 Exit . 10
3.2.2 End of File . 11
3.2.3 Saving a Core Image . 11
3.2.4 Exit on Errors . 13

3.3 Command Line Options . 13
3.3.1 Runtime Options . 14
3.3.2 Toplevel Options . 15

3.4 Initialization Files . 16
3.5 Initialization and Exit Hooks . 16

ii

4 Compiler . 17
4.1 Diagnostic Messages . 17

4.1.1 Controlling Verbosity . 17
4.1.2 Diagnostic Severity . 18
4.1.3 Understanding Compile Diagnostics . 18

4.1.3.1 The Parts of a Compiler Diagnostic . 18
4.1.3.2 The Original and Actual Source . 20
4.1.3.3 The Processing Path . 21

4.2 Handling of Types . 21
4.2.1 Declarations as Assertions . 21
4.2.2 Precise Type Checking . 22
4.2.3 Getting Existing Programs to Run . 22
4.2.4 Implementation Limitations . 24

4.3 Compiler Policy . 24
4.4 Compiler Errors . 26

4.4.1 Type Errors at Compile Time . 26
4.4.2 Errors During Macroexpansion . 27
4.4.3 Read Errors . 27

4.5 Open Coding and Inline Expansion . 27
4.6 Interpreter . 28

5 Debugger . 29
5.1 Debugger Entry . 29

5.1.1 Debugger Banner . 29
5.1.2 Debugger Invocation . 29

5.2 Debugger Command Loop . 30
5.3 Stack Frames . 30

5.3.1 Stack Motion . 30
5.3.2 How Arguments are Printed . 31
5.3.3 Function Names . 31

5.3.3.1 Entry Point Details . 32
5.3.4 Debug Tail Recursion . 32
5.3.5 Unknown Locations and Interrupts . 32

5.4 Variable Access . 33
5.4.1 Variable Value Availability . 33
5.4.2 Note On Lexical Variable Access . 34

5.5 Source Location Printing . 34
5.5.1 How the Source is Found . 35
5.5.2 Source Location Availability . 36

5.6 Debugger Policy Control . 36
5.7 Exiting Commands . 37
5.8 Information Commands . 38
5.9 Function Tracing . 38
5.10 Single Stepping . 40
5.11 Enabling and Disabling the Debugger . 40

iii

6 Efficiency . 41
6.1 Slot access . 41

6.1.1 Structure object slot access . 41
6.1.2 Standard object slot access . 41

6.2 Dynamic-extent allocation . 41
6.3 Modular arithmetic . 43
6.4 Global and Always-Bound variables. 44
6.5 Miscellaneous Efficiency Issues . 44

7 Beyond the ANSI Standard . 46
7.1 Reader Extensions . 46
7.2 Package-Local Nicknames . 46
7.3 Package Variance. 48
7.4 Garbage Collection . 48

7.4.1 Finalization . 48
7.4.2 Weak Pointers . 49
7.4.3 Introspection and Tuning. 49

7.5 Metaobject Protocol . 51
7.5.1 AMOP Compatibility of Metaobject Protocol . 51
7.5.2 Metaobject Protocol Extensions . 53

7.6 Extensible Sequences . 53
7.6.1 Iterator Protocol . 56
7.6.2 Simple Iterator Protocol . 57

7.7 Support For Unix . 58
7.7.1 Command-line arguments . 58
7.7.2 Querying the process environment . 58
7.7.3 Running external programs . 58

7.8 Unicode Support . 61
7.8.1 Unicode property access . 61
7.8.2 String operations . 64
7.8.3 Breaking strings . 65

7.9 Customization Hooks for Users . 66
7.10 Tools To Help Developers . 67
7.11 Resolution of Name Conflicts . 67
7.12 Hash Table Extensions . 67
7.13 Random Number Generation . 69
7.14 Miscellaneous Extensions . 70
7.15 Stale Extensions . 72
7.16 Efficiency Hacks . 72

8 Foreign Function Interface . 73
8.1 Introduction to the Foreign Function Interface . 73
8.2 Foreign Types . 73

8.2.1 Defining Foreign Types . 74
8.2.2 Foreign Types and Lisp Types . 74
8.2.3 Foreign Type Specifiers . 74

8.3 Operations On Foreign Values . 76
8.3.1 Accessing Foreign Values . 76

8.3.1.1 Untyped memory . 76
8.3.2 Coercing Foreign Values . 77
8.3.3 Foreign Dynamic Allocation . 77

8.4 Foreign Variables . 78

iv

8.4.1 Local Foreign Variables . 78
8.4.2 External Foreign Variables . 78

8.5 Foreign Data Structure Examples . 79
8.6 Loading Shared Object Files . 80
8.7 Foreign Function Calls . 81

8.7.1 The alien-funcall Primitive . 81
8.7.2 The define-alien-routine Macro . 82
8.7.3 define-alien-routine Example . 82
8.7.4 Calling Lisp From C . 83

8.8 Step-By-Step Example of the Foreign Function Interface . 83

9 Pathnames . 86
9.1 Lisp Pathnames . 86

9.1.1 Home Directory Specifiers . 86
9.1.2 The SYS Logical Pathname Host . 86

9.2 Native Filenames . 86

10 Streams . 88
10.1 External Formats . 88
10.2 Bivalent Streams . 90
10.3 Gray Streams . 90

10.3.1 Gray Streams classes. 91
10.3.2 Methods common to all streams . 92
10.3.3 Input stream methods . 92
10.3.4 Character input stream methods . 92
10.3.5 Output stream methods . 93
10.3.6 Character output stream methods . 94
10.3.7 Binary stream methods . 95
10.3.8 Gray Streams examples . 95

10.3.8.1 Character counting input stream . 95
10.3.8.2 Output prefixing character stream . 97

10.4 Simple Streams . 98

11 Package Locks . 99
11.1 Package Lock Concepts . 99

11.1.1 Package Locking Overview . 99
11.1.2 Implementation Packages. 99
11.1.3 Package Lock Violations . 99

11.1.3.1 Lexical Bindings and Declarations . 99
11.1.3.2 Other Operations . 100

11.1.4 Package Locks in Compiled Code . 100
11.1.4.1 Interned Symbols . 100
11.1.4.2 Other Limitations on Compiled Code . 100

11.1.5 Operations Violating Package Locks . 100
11.1.5.1 Operations on Packages . 100
11.1.5.2 Operations on Symbols . 100

11.2 Package Lock Dictionary . 101

v

12 Threading . 104
12.1 Threading basics . 104

12.1.1 Thread Objects . 104
12.1.2 Making, Returning From, Joining, and Yielding Threads . 104
12.1.3 Asynchronous Operations . 105
12.1.4 Miscellaneous Operations . 107
12.1.5 Error Conditions . 107

12.2 Special Variables . 108
12.3 Atomic Operations . 108

CAS Protocol . 110
12.4 Mutex Support . 111
12.5 Semaphores. 113
12.6 Waitqueue/condition variables . 114
12.7 Barriers . 116
12.8 Sessions/Debugging . 117
12.9 Foreign threads . 117
12.10 Implementation (Linux x86/x86-64) . 118

13 Timers . 119
13.1 Timer Dictionary . 119

14 Networking . 121
14.1 Sockets Overview . 121
14.2 General Sockets . 121
14.3 Socket Options . 123
14.4 INET Domain Sockets . 125
14.5 Local (Unix) Domain Sockets . 126
14.6 Name Service . 126

15 Profiling. 127
15.1 Deterministic Profiler . 127
15.2 Statistical Profiler . 127

15.2.1 Example Usage . 128
15.2.2 Output . 129
15.2.3 Platform support . 129
15.2.4 Macros . 129
15.2.5 Functions . 130
15.2.6 Variables . 132
15.2.7 Credits . 132

16 Contributed Modules . 133
16.1 sb-aclrepl . 134

16.1.1 Usage . 134
16.1.2 Example Initialization . 134
16.1.3 Credits . 134

16.2 sb-concurrency . 135
16.2.1 Queue . 136
16.2.2 Mailbox (lock-free) . 137
16.2.3 Gates . 139
16.2.4 Frlocks, aka Fast Read Locks . 140

16.3 sb-cover . 142

vi

16.3.1 Example Usage . 142
16.3.2 Functions . 142

16.4 sb-grovel . 144
16.4.1 Using sb-grovel in your own ASDF system . 144
16.4.2 Contents of a grovel-constants-file . 144
16.4.3 Programming with sb-grovel’s structure types . 146

16.4.3.1 Traps and Pitfalls . 146
16.5 sb-md5 . 147

16.5.1 Credits . 147
16.6 sb-posix . 148

16.6.1 Lisp names for C names . 148
16.6.2 Types . 148

16.6.2.1 File-descriptors . 148
16.6.2.2 Filenames . 149

16.6.3 Function Parameters . 149
16.6.4 Function Return Values . 149
16.6.5 Lisp objects and C structures. 150
16.6.6 Functions with idiosyncratic bindings . 152

16.7 sb-queue . 153
16.8 sb-rotate-byte. 154

17 Deprecation . 155
17.1 Why Deprecate? . 155
17.2 The Deprecation Pipeline . 156
17.3 Deprecation Conditions . 156
17.4 Introspecting Deprecation Information . 157
17.5 Deprecation Declaration . 157
17.6 Deprecation Examples . 158
17.7 Deprecated Interfaces in SBCL . 158

17.7.1 List of Deprecated Interfaces . 158
17.7.1.1 Early Deprecation. 158
17.7.1.2 Late Deprecation . 160
17.7.1.3 Final Deprecation . 161

17.7.2 Historical Interfaces . 161

Appendix A Concept Index . 163

Appendix B Function Index. 165

Appendix C Variable Index . 172

Appendix D Type Index . 173

Colophon . 175

Chapter 1: Getting Support and Reporting Bugs 1

1 Getting Support and Reporting Bugs

1.1 Volunteer Support

Your primary source of SBCL support should probably be the mailing list sbcl-help: in addition
to other users SBCL developers monitor this list and are available for advice. As an anti-spam
measure subscription is required for posting:

https://lists.sourceforge.net/lists/listinfo/sbcl-help

Remember that the people answering your question are volunteers, so you stand a much better
chance of getting a good answer if you ask a good question.

Before sending mail, check the list archives at either

http://sourceforge.net/mailarchive/forum.php?forum_name=sbcl-help

or

http://news.gmane.org/gmane.lisp.steel-bank.general

to see if your question has been answered already. Checking the bug database is also worth it
See Section 1.3 [Reporting Bugs], page 1, to see if the issue is already known.

For general advice on asking good questions, see

http://www.catb.org/~esr/faqs/smart-questions.html.

1.2 Commercial Support

There is no formal organization developing SBCL, but if you need a paid support arrangement or
custom SBCL development, we maintain the list of companies and consultants below. Use it to
identify service providers with appropriate skills and interests, and contact them directly.

The SBCL project cannot verify the accuracy of the information or the competence of the
people listed, and they have provided their own blurbs below: you must make your own judgement
of suitability from the available information - refer to the links they provide, the CREDITS file,
mailing list archives, CVS commit messages, and so on. Please feel free to ask for advice on the
sbcl-help list.

(At present, no companies or consultants wish to advertise paid support or custom SBCL de-
velopment in this manual).

1.3 Reporting Bugs

SBCL uses Launchpad to track bugs. The bug database is available at

https://bugs.launchpad.net/sbcl

Reporting bugs there requires registering at Launchpad. However, bugs can also be reported on
the mailing list sbcl-bugs, which is moderated but does not require subscribing.

Simply send email to sbcl-bugs@lists.sourceforge.net and the bug will be checked and
added to Launchpad by SBCL maintainers.

1.3.1 How to Report Bugs Effectively

Please include enough information in a bug report that someone reading it can reproduce the
problem, i.e. don’t write

Subject: apparent bug in PRINT-OBJECT (or *PRINT-LENGTH*?)
PRINT-OBJECT doesn’t seem to work with *PRINT-LENGTH*. Is this a bug?

but instead

https://lists.sourceforge.net/lists/listinfo/sbcl-help
http://sourceforge.net/mailarchive/forum.php?forum_name=sbcl-help
http://news.gmane.org/gmane.lisp.steel-bank.general
http://www.catb.org/~esr/faqs/smart-questions.html
https://bugs.launchpad.net/sbcl
mailto:sbcl-bugs@lists.sourceforge.net

Chapter 1: Getting Support and Reporting Bugs 2

Subject: apparent bug in PRINT-OBJECT (or *PRINT-LENGTH*?)
In sbcl-1.2.3 running under OpenBSD 4.5 on my Alpha box, when
I compile and load the file

(DEFSTRUCT (FOO (:PRINT-OBJECT (LAMBDA (X Y)
(LET ((*PRINT-LENGTH* 4))
(PRINT X Y)))))

X Y)
then at the command line type

(MAKE-FOO)
the program loops endlessly instead of printing the object.

A more in-depth discussion on reporting bugs effectively can be found at
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html.

1.3.2 Signal Related Bugs

If you run into a signal related bug, you are getting fatal errors such as signal N is [un]blocked
or just hangs, and you want to send a useful bug report then:
1. Compile SBCL with ldb support (feature :sb-ldb, see ‘base-target-features.lisp-expr’)

and change #define QSHOW_SIGNAL 0 to #define QSHOW_SIGNAL 1 in
‘src/runtime/runtime.h’.

2. Isolate a smallish test case, run it.
3. If it just hangs kill it with sigabrt: kill -ABRT <pidof sbcl>.
4. Print the backtrace from ldb by typing ba.
5. Attach gdb: gdb -p <pidof sbcl> and get backtraces for all threads: thread apply all ba.
6. If multiple threads are in play then still in gdb, try to get Lisp backtrace for all threads: thread

apply all call backtrace_from_fp($ebp, 100). Substitute $ebp with $rbp on x86-64. The
backtraces will appear in the stdout of the SBCL process.

7. Send a report with the backtraces and the output (both stdout and stderr) produced by SBCL.
8. Don’t forget to include OS and SBCL version.
9. If available, include information on outcome of the same test with other versions of SBCL, OS,

...

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

Chapter 2: Introduction 3

2 Introduction

SBCL is a mostly-conforming implementation of the ANSI Common Lisp standard. This manual
focuses on behavior which is specific to SBCL, not on behavior which is common to all implemen-
tations of ANSI Common Lisp.

2.1 ANSI Conformance

Essentially every type of non-conformance is considered a bug. (The exceptions involve internal
inconsistencies in the standard.) See Section 1.3 [Reporting Bugs], page 1.

2.2 Extensions

SBCL comes with numerous extensions, some in core and some in modules loadable with require.
Unfortunately, not all of these extensions have proper documentation yet.

System Definition Tool
asdf is a flexible and popular protocol-oriented system definition tool by Daniel Barlow.
See Info file ‘asdf’, node ‘Top’, for more information.

Foreign Function Interface
sb-alien package allows interfacing with C-code, loading shared object files, etc. See
Chapter 8 [Foreign Function Interface], page 73.
sb-grovel can be used to partially automate generation of foreign function interface
definitions. See Section 16.4 [sb-grovel], page 144.

Recursive Event Loop
SBCL provides a recursive event loop (serve-event) for doing non-blocking IO on
multiple streams without using threads.

Metaobject Protocol
sb-mop package provides a metaobject protocol for the Common Lisp Object System
as described in Art of Metaobject Protocol.

Extensible Sequences
SBCL allows users to define subclasses of the sequence class. See Section 7.6 [Exten-
sible Sequences], page 53.

Native Threads
SBCL has native threads on x86/Linux, capable of taking advantage of SMP on mul-
tiprocessor machines. See Chapter 12 [Threading], page 104.

Network Interface
sb-bsd-sockets is a low-level networking interface, providing both TCP and UDP
sockets. See Chapter 14 [Networking], page 121.

Introspective Facilities
sb-introspect module offers numerous introspective extensions, including access to
function lambda-lists and a cross referencing facility.

Operating System Interface
sb-ext contains a number of functions for running external processes, accessing envi-
ronment variables, etc.
sb-posix module provides a lispy interface to standard POSIX facilities.

Extensible Streams
sb-gray is an implementation of Gray Streams. See Section 10.3 [Gray Streams],
page 90.
sb-simple-streams is an implementation of the simple streams API proposed by Franz
Inc. See Section 10.4 [Simple Streams], page 98.

Chapter 2: Introduction 4

Profiling sb-profile is a exact per-function profiler. See Section 15.1 [Deterministic Profiler],
page 127.
sb-sprof is a statistical profiler, capable of call-graph generation and instruction level
profiling, which also supports allocation profiling. See Section 15.2 [Statistical Profiler],
page 127.

Customization Hooks
SBCL contains a number of extra-standard customization hooks that can be used to
tweak the behaviour of the system. See Section 7.9 [Customization Hooks for Users],
page 66.
sb-aclrepl provides an Allegro CL -style toplevel for SBCL, as an alternative to the
classic CMUCL-style one. See Section 16.1 [sb-aclrepl], page 134.

CLTL2 Compatibility Layer
sb-cltl2 module provides compiler-let and environment access functionality de-
scribed in Common Lisp The Language, 2nd Edition which were removed from the
language during the ANSI standardization process.

Executable Delivery
The :executable argument to [Function sb-ext:save-lisp-and-die], page 11 can produce
a ‘standalone’ executable containing both an image of the current Lisp session and an
SBCL runtime.

Bitwise Rotation
sb-rotate-byte provides an efficient primitive for bitwise rotation of integers, an
operation required by e.g. numerous cryptographic algorithms, but not available as a
primitive in ANSI Common Lisp. See Section 16.8 [sb-rotate-byte], page 154.

Test Harness
sb-rt module is a simple yet attractive regression and unit-test framework.

MD5 Sums
sb-md5 is an implementation of the MD5 message digest algorithm for Common Lisp,
using the modular arithmetic optimizations provided by SBCL. See Section 16.5 [sb-
md5], page 147.

2.3 Idiosyncrasies

The information in this section describes some of the ways that SBCL deals with choices that the
ANSI standard leaves to the implementation.

2.3.1 Declarations

Declarations are generally treated as assertions. This general principle, and its implications, and the
bugs which still keep the compiler from quite satisfying this principle, are discussed in Section 4.2.1
[Declarations as Assertions], page 21.

2.3.2 FASL Format

SBCL fasl-format is binary compatible only with the exact SBCL version it was generated with.
While this is obviously suboptimal, it has proven more robust than trying to maintain fasl compat-
ibility across versions: accidentally breaking things is far too easy, and can lead to hard to diagnose
bugs.

The following snippet handles fasl recompilation automatically for ASDF-based systems, and
makes a good candidate for inclusion in the user or system initialization file (see Section 3.4 [Ini-
tialization Files], page 16.)

(require :asdf)

Chapter 2: Introduction 5

;;; If a fasl was stale, try to recompile and load (once).
(defmethod asdf:perform :around ((o asdf:load-op)

(c asdf:cl-source-file))
(handler-case (call-next-method o c)

;; If a fasl was stale, try to recompile and load (once).
(sb-ext:invalid-fasl ()

(asdf:perform (make-instance ’asdf:compile-op) c)
(call-next-method))))

2.3.3 Compiler-only Implementation

SBCL is essentially a compiler-only implementation of Common Lisp. That is, for all but a few
special cases, eval creates a lambda expression, calls compile on the lambda expression to create
a compiled function, and then calls funcall on the resulting function object. A more traditional
interpreter is also available on default builds; it is usually only called internally. This is explicitly
allowed by the ANSI standard, but leads to some oddities; e.g. at default settings, functionp and
compiled-function-p are equivalent, and they collapse into the same function when SBCL is built
without the interpreter.

2.3.4 Defining Constants

SBCL is quite strict about ANSI’s definition of defconstant. ANSI says that doing defconstant
of the same symbol more than once is undefined unless the new value is eql to the old value.
Conforming to this specification is a nuisance when the “constant” value is only constant under
some weaker test like string= or equal.

It’s especially annoying because, in SBCL, defconstant takes effect not only at load time but
also at compile time, so that just compiling and loading reasonable code like

(defconstant +foobyte+ ’(1 4))

runs into this undefined behavior. Many implementations of Common Lisp try to help the
programmer around this annoyance by silently accepting the undefined code and trying to do what
the programmer probably meant.

SBCL instead treats the undefined behavior as an error. Often such code can be rewritten in
portable ANSI Common Lisp which has the desired behavior. E.g., the code above can be given an
exactly defined meaning by replacing defconstant either with defparameter or with a customized
macro which does the right thing, e.g.

(defmacro define-constant (name value &optional doc)
‘(defconstant ,name (if (boundp ’,name) (symbol-value ’,name) ,value)

,@(when doc (list doc))))

or possibly along the lines of the defconstant-eqx macro used internally in the implementation
of SBCL itself. In circumstances where this is not appropriate, the programmer can handle the
condition type sb-ext:defconstant-uneql, and choose either the continue or abort restart as
appropriate.

2.3.5 Style Warnings

SBCL gives style warnings about various kinds of perfectly legal code, e.g.
• defmethod without a preceding defgeneric;
• multiple defuns of the same symbol in different units;
• special variables not named in the conventional *foo* style, and lexical variables unconven-

tionally named in the *foo* style

This causes friction with people who point out that other ways of organizing code (especially
avoiding the use of defgeneric) are just as aesthetically stylish. However, these warnings should be

Chapter 2: Introduction 6

read not as “warning, bad aesthetics detected, you have no style” but “warning, this style keeps the
compiler from understanding the code as well as you might like.” That is, unless the compiler warns
about such conditions, there’s no way for the compiler to warn about some programming errors
which would otherwise be easy to overlook. (Related bug: The warning about multiple defuns
is pointlessly annoying when you compile and then load a function containing defun wrapped in
eval-when, and ideally should be suppressed in that case, but still isn’t as of SBCL 0.7.6.)

2.4 Development Tools

2.4.1 Editor Integration

Though SBCL can be used running “bare”, the recommended mode of development is with an edi-
tor connected to SBCL, supporting not only basic lisp editing (paren-matching, etc), but providing
among other features an integrated debugger, interactive compilation, and automated documenta-
tion lookup.

Currently SLIME1 (Superior Lisp Interaction Mode for Emacs) together with Emacs is recom-
mended for use with SBCL, though other options exist as well.

SLIME can be downloaded from http://www.common-lisp.net/project/slime/.

2.4.2 Language Reference

CLHS (Common Lisp Hyperspec) is a hypertext version of the ANSI standard, made freely available
by LispWorks – an invaluable reference.

See: http://www.lispworks.com/reference/HyperSpec/index.html

2.4.3 Generating Executables

SBCL can generate stand-alone executables. The generated executables include the SBCL runtime
itself, so no restrictions are placed on program functionality. For example, a deployed program can
call compile and load, which requires the compiler to be present in the executable. For further
information, See [Function sb-ext:save-lisp-and-die], page 11.

2.5 More SBCL Information

2.5.1 SBCL Homepage

The SBCL website at http://www.sbcl.org/ has some general information, plus links to mailing
lists devoted to SBCL, and to archives of these mailing lists. Subscribing to the mailing lists sbcl-
help and sbcl-announce is recommended: both are fairly low-volume, and help you keep abreast
with SBCL development.

2.5.2 Online Documentation

Documentation for non-ANSI extensions for various commands is available online from the SBCL
executable itself. The extensions for functions which have their own command prompts (e.g. the de-
bugger, and inspect) are documented in text available by typing help at their command prompts.
The extensions for functions which don’t have their own command prompt (such as trace) are
described in their documentation strings, unless your SBCL was compiled with an option not to
include documentation strings, in which case the documentation strings are only readable in the
source code.

1 Historically, the ILISP package at http://ilisp.cons.org/ provided similar functionality, but it does not support
modern SBCL versions.

http://www.common-lisp.net/project/slime/
http://www.lispworks.com/reference/HyperSpec/index.html
http://www.sbcl.org/
http://ilisp.cons.org/

Chapter 2: Introduction 7

2.5.3 Additional Documentation Files

Besides this user manual both SBCL source and binary distributions include some other SBCL-
specific documentation files, which should be installed along with this manual on your system, e.g.
in ‘/usr/local/share/doc/sbcl/’.

‘COPYING’ Licence and copyright summary.

‘CREDITS’ Authorship information on various parts of SBCL.

‘INSTALL’ Covers installing SBCL from both source and binary distributions on your system, and
also has some installation related troubleshooting information.

‘NEWS’ Summarizes changes between various SBCL versions.

2.5.4 Internals Documentation

If you’re interested in the development of the SBCL system itself, then subscribing to sbcl-devel is
a good idea.

SBCL internals documentation – besides comments in the source – is currently maintained as a
wiki-like website: http://sbcl-internals.cliki.net/.

Some low-level information describing the programming details of the conversion from CMUCL
to SBCL is available in the ‘doc/FOR-CMUCL-DEVELOPERS’ file in the SBCL distribution, though it
is not installed by default.

2.6 More Common Lisp Information

2.6.1 Internet Community

The Common Lisp internet community is fairly diverse: news://comp.lang.lisp is fairly high
volume newsgroup, but has a rather poor signal/noise ratio. Various special interest mail-
ing lists and IRC tend to provide more content and less flames. http://www.lisp.org and
http://www.cliki.net contain numerous pointers places in the net where lispers talks shop.

2.6.2 Third-party Libraries

For a wealth of information about free Common Lisp libraries and tools we recommend checking
out CLiki : http://www.cliki.net/.

2.6.3 Common Lisp Books

If you’re not a programmer and you’re trying to learn, many introductory Lisp books are available.
However, we don’t have any standout favorites. If you can’t decide, try checking the Usenet
news://comp.lang.lisp FAQ for recent recommendations.

If you are an experienced programmer in other languages but need to learn about Common
Lisp, some books stand out:

Practical Common Lisp, by Peter Seibel
An excellent introduction to the language, covering both the basics and “advanced
topics” like macros, CLOS, and packages. Available both in print format and on the
web: http://www.gigamonkeys.com/book/.

Paradigms Of Artificial Intelligence Programming, by Peter Norvig
Good information on general Common Lisp programming, and many nontrivial exam-
ples. Whether or not your work is AI, it’s a very good book to look at.

On Lisp, by Paul Graham
An in-depth treatment of macros, but not recommended as a first Common Lisp book,
since it is slightly pre-ANSI so you need to be on your guard against non-standard
usages, and since it doesn’t really even try to cover the language as a whole, focusing
solely on macros. Downloadable from http://www.paulgraham.com/onlisp.html.

http://sbcl-internals.cliki.net/
news://comp.lang.lisp
http://www.lisp.org
http://www.cliki.net
http://www.cliki.net/
news://comp.lang.lisp
http://www.gigamonkeys.com/book/
http://www.paulgraham.com/onlisp.html

Chapter 2: Introduction 8

Object-Oriented Programming In Common Lisp, by Sonya Keene
With the exception of Practical Common Lisp most introductory books don’t empha-
size CLOS. This one does. Even if you’re very knowledgeable about object oriented
programming in the abstract, it’s worth looking at this book if you want to do any OO
in Common Lisp. Some abstractions in CLOS (especially multiple dispatch) go beyond
anything you’ll see in most OO systems, and there are a number of lesser differences
as well. This book tends to help with the culture shock.

Art Of Metaobject Programming, by Gregor Kiczales et al.
Currently the prime source of information on the Common Lisp Metaobject Protocol,
which is supported by SBCL. Section 2 (Chapters 5 and 6) are freely available at
http://www.lisp.org/mop/.

2.7 History and Implementation of SBCL

You can work productively with SBCL without knowing or understanding anything about where it
came from, how it is implemented, or how it extends the ANSI Common Lisp standard. However,
a little knowledge can be helpful in order to understand error messages, to troubleshoot problems,
to understand why some parts of the system are better debugged than others, and to anticipate
which known bugs, known performance problems, and missing extensions are likely to be fixed,
tuned, or added.

SBCL is descended from CMUCL, which is itself descended from Spice Lisp, including early
implementations for the Mach operating system on the IBM RT, back in the 1980s. Some design
decisions from that time are still reflected in the current implementation:

• The system expects to be loaded into a fixed-at-compile-time location in virtual memory, and
also expects the location of all of its heap storage to be specified at compile time.

• The system overcommits memory, allocating large amounts of address space from the system
(often more than the amount of virtual memory available) and then failing if ends up using
too much of the allocated storage.

• The system is implemented as a C program which is responsible for supplying low-level services
and loading a Lisp ‘.core’ file.

SBCL also inherited some newer architectural features from CMUCL. The most important
is that on some architectures it has a generational garbage collector (“GC”), which has various
implications (mostly good) for performance. These are discussed in another chapter, Chapter 6
[Efficiency], page 41.

SBCL has diverged from CMUCL in that SBCL is now essentially a “compiler-only implemen-
tation” of Common Lisp. This is a change in implementation strategy, taking advantage of the
freedom “any of these facilities might share the same execution strategy” guaranteed in the ANSI
specification section 3.1 (“Evaluation”). It does not mean SBCL can’t be used interactively, and
in fact the change is largely invisible to the casual user, since SBCL still can and does execute
code interactively by compiling it on the fly. (It is visible if you know how to look, like using
compiled-function-p; and it is visible in the way that SBCL doesn’t have many bugs which be-
have differently in interpreted code than in compiled code.) What it means is that in SBCL, the
eval function only truly “interprets” a few easy kinds of forms, such as symbols which are boundp.
More complicated forms are evaluated by calling compile and then calling funcall on the returned
result.

The direct ancestor of SBCL is the x86 port of CMUCL. This port was in some ways the most
cobbled-together of all the CMUCL ports, since a number of strange changes had to be made to
support the register-poor x86 architecture. Some things (like tracing and debugging) do not work
particularly well there. SBCL should be able to improve in these areas (and has already improved
in some other areas), but it takes a while.

http://www.lisp.org/mop/

Chapter 2: Introduction 9

On the x86 SBCL – like the x86 port of CMUCL – uses a conservative GC. This means that
it doesn’t maintain a strict separation between tagged and untagged data, instead treating some
untagged data (e.g. raw floating point numbers) as possibly-tagged data and so not collecting any
Lisp objects that they point to. This has some negative consequences for average time efficiency
(though possibly no worse than the negative consequences of trying to implement an exact GC on a
processor architecture as register-poor as the X86) and also has potentially unlimited consequences
for worst-case memory efficiency. In practice, conservative garbage collectors work reasonably well,
not getting anywhere near the worst case. But they can occasionally cause odd patterns of memory
usage.

The fork from CMUCL was based on a major rewrite of the system bootstrap process. CMUCL
has for many years tolerated a very unusual “build” procedure which doesn’t actually build the
complete system from scratch, but instead progressively overwrites parts of a running system
with new versions. This quasi-build procedure can cause various bizarre bootstrapping hangups,
especially when a major change is made to the system. It also makes the connection between the
current source code and the current executable more tenuous than in other software systems –
it’s easy to accidentally “build” a CMUCL system containing characteristics not reflected in the
current version of the source code.

Other major changes since the fork from CMUCL include
• SBCL has removed many CMUCL extensions, (e.g. IP networking, remote procedure call,

Unix system interface, and X11 interface) from the core system. Most of these are available
as contributed modules (distributed with SBCL) or third-party modules instead.

• SBCL has deleted or deprecated some nonstandard features and code complexity which helped
efficiency at the price of maintainability. For example, the SBCL compiler no longer implements
memory pooling internally (and so is simpler and more maintainable, but generates more
garbage and runs more slowly), and various block-compilation efficiency-increasing extensions
to the language have been deleted or are no longer used in the implementation of SBCL itself.

Chapter 3: Starting and Stopping 10

3 Starting and Stopping

3.1 Starting SBCL

3.1.1 From Shell to Lisp

To run SBCL type sbcl at the command line.
You should end up in the toplevel REPL (read, eval, print -loop), where you can interact with

SBCL by typing expressions.
$ sbcl

This is SBCL 0.8.13.60, an implementation of ANSI Common Lisp.

More information about SBCL is available at <http://www.sbcl.org/>.

SBCL is free software, provided as is, with absolutely no warranty.

It is mostly in the public domain; some portions are provided under

BSD-style licenses. See the CREDITS and COPYING files in the

distribution for more information.

* (+ 2 2)

4

* (exit)

$

See also Section 3.3 [Command Line Options], page 13 and Section 3.2 [Stopping SBCL], page 10.

3.1.2 Running from Emacs

To run SBCL as an inferior-lisp from Emacs in your ‘.emacs’ do something like:
;;; The SBCL binary and command-line arguments
(setq inferior-lisp-program "/usr/local/bin/sbcl --noinform")

For more information on using SBCL with Emacs, see Section 2.4.1 [Editor Integration], page 6.

3.1.3 Shebang Scripts

Standard Unix tools that are interpreters follow a common command line protocol that is necessary
to work with “shebang scripts”. SBCL supports this via the --script command line option.

Example file (‘hello.lisp’):
#!/usr/local/bin/sbcl --script
(write-line "Hello, World!")

Usage examples:
$./hello.lisp

Hello, World!

$ sbcl --script hello.lisp

Hello, World!

3.2 Stopping SBCL

3.2.1 Exit

SBCL can be stopped at any time by calling sb-ext:exit, optionally returning a specified nu-
meric value to the calling process. See Chapter 12 [Threading], page 104 for information about
terminating individual threads.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:exit &key code abort
timeout

Terminates the process, causing sbcl to exit with code. code defaults to 0 when abort is false,
and 1 when it is true.

Chapter 3: Starting and Stopping 11

When abort is false (the default), current thread is first unwound, *exit-hooks* are run, other
threads are terminated, and standard output streams are flushed before sbcl calls exit(3) -- at
which point atexit(3) functions will run. If multiple threads call exit with abort being false,
the first one to call it will complete the protocol.

When abort is true, sbcl exits immediately by calling exit(2) without unwinding stack, or
calling exit hooks. Note that exit(2) does not call atexit(3) functions unlike exit(3).

Recursive calls to exit cause exit to behave as it abort was true.

timeout controls waiting for other threads to terminate when abort is nil. Once current thread
has been unwound and *exit-hooks* have been run, spawning new threads is prevented and
all other threads are terminated by calling terminate-thread on them. The system then waits
for them to finish using join-thread, waiting at most a total timeout seconds for all threads
to join. Those threads that do not finish in time are simply ignored while the exit protocol
continues. timeout defaults to *exit-timeout*, which in turn defaults to 60. timeout nil
means to wait indefinitely.

Note that timeout applies only to join-thread, not *exit-hooks*. Since terminate-thread
is asynchronous, getting multithreaded application termination with complex cleanups right
using it can be tricky. To perform an orderly synchronous shutdown use an exit hook instead
of relying on implicit thread termination.

Consequences are unspecified if serious conditions occur during exit excepting errors from
exit-hooks, which cause warnings and stop execution of the hook that signaled, but otherwise
allow the exit process to continue normally.

3.2.2 End of File

By default SBCL also exits on end of input, caused either by user pressing Control-D on an
attached terminal, or end of input when using SBCL as part of a shell pipeline.

3.2.3 Saving a Core Image

SBCL has the ability to save its state as a file for later execution. This functionality is important
for its bootstrapping process, and is also provided as an extension to the user.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:save-lisp-and-die
core-file-name &key toplevel executable save-runtime-options purify root-structures
environment-name compression

Save a "core image", i.e. enough information to restart a Lisp process later in the same state,
in the file of the specified name. Only global state is preserved: the stack is unwound in the
process.

The following &key arguments are defined:

:toplevel
The function to run when the created core file is resumed. The default function
handles command line toplevel option processing and runs the top level read-eval-
print loop. This function returning is equivalent to (sb-ext:exit :code 0) being
called.

toplevel functions should always provide an abort restart: otherwise code they
call will run without one.

:executable
If true, arrange to combine the sbcl runtime and the core image to create a stand-
alone executable. If false (the default), the core image will not be executable on
its own. Executable images always behave as if they were passed the –noinform
runtime option.

Chapter 3: Starting and Stopping 12

:save-runtime-options
If true, values of runtime options –dynamic-space-size and –control-stack-size that
were used to start sbcl are stored in the standalone executable, and restored
when the executable is run. This also inhibits normal runtime option processing,
causing all command line arguments to be passed to the toplevel. Meaningless if
:executable is nil.

:purify If true (the default on cheneygc), do a purifying gc which moves all dynamically
allocated objects into static space. This takes somewhat longer than the normal gc
which is otherwise done, but it’s only done once, and subsequent GC’s will be done
less often and will take less time in the resulting core file. See the purify function.
This parameter has no effect on platforms using the generational garbage collector.

:root-structures
This should be a list of the main entry points in any newly loaded systems. This
need not be supplied, but locality and/or gc performance may be better if they
are. This has two different but related meanings: If :purify is true - and only for
cheneygc - the root structures are those which anchor the set of objects moved into
static space. On gencgc - and only on platforms supporting immobile code - these
are the functions and/or function-names which commence a depth-first scan of code
when reordering based on the statically observable call chain. The complete set of
reachable objects is not affected per se. This argument is meaningless if neither
enabling precondition holds.

:environment-name
This has no purpose; it is accepted only for legacy compatibility.

:compression
This is only meaningful if the runtime was built with the :sb-core-compression
feature enabled. If nil (the default), saves to uncompressed core files. If :sb-core-
compression was enabled at build-time, the argument may also be an integer from
-1 to 9, corresponding to zlib compression levels, or t (which is equivalent to the
default compression level, -1).

:application-type
Present only on Windows and is meaningful only with :executable t. Specifies the
subsystem of the executable, :console or :gui. The notable difference is that :gui
doesn’t automatically create a console window. The default is :console.

The save/load process changes the values of some global variables:

standard-output, *debug-io*, etc.
Everything related to open streams is necessarily changed, since the os won’t let us
preserve a stream across save and load.

default-pathname-defaults
This is reinitialized to reflect the working directory where the saved core is loaded.

save-lisp-and-die interacts with sb-alien:load-shared-object: see its documentation for
details.

On threaded platforms only a single thread may remain running after sb-ext:*save-hooks*
have run. Applications using multiple threads can be save-lisp-and-die friendly by registering
a save-hook that quits any additional threads, and an init-hook that restarts them.

This implementation is not as polished and painless as you might like:

• It corrupts the current Lisp image enough that the current process needs to be killed
afterwards. This can be worked around by forking another process that saves the core.

Chapter 3: Starting and Stopping 13

• There is absolutely no binary compatibility of core images between different runtime support
programs. Even runtimes built from the same sources at different times are treated as
incompatible for this purpose.

This isn’t because we like it this way, but just because there don’t seem to be good quick fixes
for either limitation and no one has been sufficiently motivated to do lengthy fixes.

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*save-hooks*
A list of function designators which are called in an unspecified order before creating a saved
core image.
Unused by sbcl itself: reserved for user and applications.

In cases where the standard initialization files have already been loaded into the saved core, and
alternative ones should be used (or none at all), SBCL allows customizing the initfile pathname
computation.

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*sysinit-pathname-
function*

Designator for a function of zero arguments called to obtain a pathname designator for the
default sysinit file, or nil. If the function returns nil, no sysinit file is used unless one has been
specified on the command-line.

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*userinit-pathname-
function*

Designator for a function of zero arguments called to obtain a pathname designator or a stream
for the default userinit file, or nil. If the function returns nil, no userinit file is used unless
one has been specified on the command-line.

To facilitate distribution of SBCL applications using external resources, the filesystem location
of the SBCL core file being used is available from Lisp.

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*core-pathname*
The absolute pathname of the running sbcl core.

3.2.4 Exit on Errors

SBCL can also be configured to exit if an unhandled error occurs, which is mainly useful for acting
as part of a shell pipeline; doing so under most other circumstances would mean giving up large
parts of the flexibility and robustness of Common Lisp. See Section 5.1 [Debugger Entry], page 29.

3.3 Command Line Options

Command line options can be considered an advanced topic; for ordinary interactive use, no com-
mand line arguments should be necessary.

In order to understand the command line argument syntax for SBCL, it is helpful to understand
that the SBCL system is implemented as two components, a low-level runtime environment written
in C and a higher-level system written in Common Lisp itself. Some command line arguments
are processed during the initialization of the low-level runtime environment, some command line
arguments are processed during the initialization of the Common Lisp system, and any remaining
command line arguments are passed on to user code.

The full, unambiguous syntax for invoking SBCL at the command line is:
sbcl runtime-option* --end-runtime-options toplevel-option* --end-toplevel-options

user-options*
For convenience, the --end-runtime-options and --end-toplevel-options elements can be

omitted. Omitting these elements can be convenient when you are running the program inter-
actively, and you can see that no ambiguities are possible with the option values you are using.

Chapter 3: Starting and Stopping 14

Omitting these elements is probably a bad idea for any batch file where any of the options are
under user control, since it makes it impossible for SBCL to detect erroneous command line input,
so that erroneous command line arguments will be passed on to the user program even if they was
intended for the runtime system or the Lisp system.

3.3.1 Runtime Options

--core corefilename

Run the specified Lisp core file instead of the default. Note that if the Lisp core file
is a user-created core file, it may run a nonstandard toplevel which does not recognize
the standard toplevel options.

--dynamic-space-size megabytes

Size of the dynamic space reserved on startup in megabytes. Default value is platform
dependent.

--control-stack-size megabytes

Size of control stack reserved for each thread in megabytes. Default value is 2.

--noinform
Suppress the printing of any banner or other informational message at startup. This
makes it easier to write Lisp programs which work cleanly in Unix pipelines. See also
the --noprint and --disable-debugger options.

--disable-ldb
Disable the low-level debugger. Only effective if SBCL is compiled with LDB.

--lose-on-corruption
There are some dangerous low level errors (for instance, control stack exhausted, mem-
ory fault) that (or whose handlers) can corrupt the image. By default SBCL prints a
warning, then tries to continue and handle the error in Lisp, but this will not always
work and SBCL may malfunction or even hang. With this option, upon encountering
such an error SBCL will invoke ldb (if present and enabled) or else exit.

--script filename

As a runtime option this is equivalent to --noinform --disable-ldb --lose-on-
corruption --end-runtime-options --script filename. See the description of --
script as a toplevel option below. If there are no other command line arguments
following --script, the filename argument can be omitted.

--merge-core-pages
When platform support is present, provide hints to the operating system that identical
pages may be shared between processes until they are written to. This can be useful
to reduce the memory usage on systems with multiple SBCL processes started from
similar but differently-named core files, or from compressed cores. Without platform
support, do nothing.

--no-merge-core-pages
Ensures that no sharing hint is provided to the operating system.

--default-merge-core-pages
Reverts the sharing hint policy to the default: only compressed cores trigger hinting.
Uncompressed cores are mapped directly from the core file, which is usually enough to
ensure sharing.

--help Print some basic information about SBCL, then exit.

--version
Print SBCL’s version information, then exit.

Chapter 3: Starting and Stopping 15

In the future, runtime options may be added to control behaviour such as lazy allocation of
memory.

Runtime options, including any –end-runtime-options option, are stripped out of the command
line before the Lisp toplevel logic gets a chance to see it.

3.3.2 Toplevel Options

--sysinit filename

Load filename instead of the default system initialization file (see Section 3.4 [Initial-
ization Files], page 16.)

--no-sysinit
Don’t load a system-wide initialization file. If this option is given, the --sysinit
option is ignored.

--userinit filename

Load filename instead of the default user initialization file (see Section 3.4 [Initialization
Files], page 16.)

--no-userinit
Don’t load a user initialization file. If this option is given, the --userinit option is
ignored.

--eval command

After executing any initialization file, but before starting the read-eval-print loop on
standard input, read and evaluate the command given. More than one --eval option
can be used, and all will be read and executed, in the order they appear on the command
line.

--load filename

This is equivalent to --eval ’(load "filename")’. The special syntax is intended to
reduce quoting headaches when invoking SBCL from shell scripts.

--noprint
When ordinarily the toplevel "read-eval-print loop" would be executed, execute a "read-
eval loop" instead, i.e. don’t print a prompt and don’t echo results. Combined with
the --noinform runtime option, this makes it easier to write Lisp "scripts" which work
cleanly in Unix pipelines.

--disable-debugger
By default when SBCL encounters an error, it enters the builtin debugger, allowing
interactive diagnosis and possible intercession. This option disables the debugger, caus-
ing errors to print a backtrace and exit with status 1 instead. When given, this option
takes effect before loading of initialization files or processing --eval and --load op-
tions. See sb-ext:disable-debugger for details. See Section 5.1 [Debugger Entry],
page 29.

--script filename

Implies --no-userinit --no-sysinit --disable-debugger --end-toplevel-
options.
Causes the system to load the specified file instead of entering the read-eval-print-loop,
and exit afterwards. If the file begins with a shebang line, it is ignored.
If there are no other command line arguments following, the filename can be omitted:
this causes the script to be loaded from standard input instead. Shebang lines in
standard input script are currently not ignored.
In either case, if there is an unhandled error (e.g. end of file, or a broken pipe) on
either standard input, standard output, or standard error, the script silently exits with
code 0. This allows e.g. safely piping output from SBCL to head -n1 or similar.

Chapter 3: Starting and Stopping 16

3.4 Initialization Files

SBCL processes initialization files with read and eval, not load; hence initialization files can be
used to set startup *package* and *readtable*, and for proclaiming a global optimization policy.

System Initialization File

Defaults to ‘$SBCL_HOME/sbclrc’, or if that doesn’t exist to ‘/etc/sbclrc’. Can be overridden
with the command line option --sysinit or --no-sysinit.
The system initialization file is intended for system administrators and software packagers to
configure locations of installed third party modules, etc.
User Initialization File

Defaults to ‘$HOME/.sbclrc’. Can be overridden with the command line option --userinit
or --no-userinit.
The user initialization file is intended for personal customizations, such as loading certain
modules at startup, defining convenience functions to use in the REPL, handling automatic
recompilation of FASLs (see Section 2.3.2 [FASL Format], page 4), etc.

Neither initialization file is required.

3.5 Initialization and Exit Hooks

SBCL provides hooks into the system initialization and exit.

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*init-hooks*
A list of function designators which are called in an unspecified order when a saved core image
starts up, after the system itself has been initialized.
Unused by sbcl itself: reserved for user and applications.

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*exit-hooks*
A list of function designators which are called in an unspecified order when sbcl process exits.
Unused by sbcl itself: reserved for user and applications.
Using (sb-ext:exit :abort t), or calling exit(3) directly circumvents these hooks.

Chapter 4: Compiler 17

4 Compiler

This chapter will discuss most compiler issues other than efficiency, including compiler error mes-
sages, the SBCL compiler’s unusual approach to type safety in the presence of type declarations,
the effects of various compiler optimization policies, and the way that inlining and open coding
may cause optimized code to differ from a naive translation. Efficiency issues are sufficiently varied
and separate that they have their own chapter, Chapter 6 [Efficiency], page 41.

4.1 Diagnostic Messages

4.1.1 Controlling Verbosity

The compiler can be quite verbose in its diagnostic reporting, rather more then some users would
prefer – the amount of noise emitted can be controlled, however.

To control emission of compiler diagnostics (of any severity other than error: see Section 4.1.2
[Diagnostic Severity], page 18) use the sb-ext:muffle-conditions and sb-ext:unmuffle-
conditions declarations, specifying the type of condition that is to be muffled (the muffling is
done using an associated muffle-warning restart).

Global control:
;;; Muffle compiler-notes globally
(declaim (sb-ext:muffle-conditions sb-ext:compiler-note))

Local control:
;;; Muffle compiler-notes based on lexical scope
(defun foo (x)
(declare (optimize speed) (fixnum x)

(sb-ext:muffle-conditions sb-ext:compiler-note))
(values (* x 5) ; no compiler note from this
(locally
(declare (sb-ext:unmuffle-conditions sb-ext:compiler-note))
;; this one gives a compiler note
(* x -5))))

[Declaration]\smallertt\phantomconcurrency:\llapsb-ext:muffle-conditions
Syntax: type*
Muffles the diagnostic messages that would be caused by compile-time signals of given types.

[Declaration]\smallertt\phantomconcurrency:\llapsb-ext:unmuffle-conditions
Syntax: type*
Cancels the effect of a previous sb-ext:muffle-conditions declaration.

Various details of how the compiler messages are printed can be controlled via the alist sb-
ext:*compiler-print-variable-alist*.

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*compiler-print-
variable-alist*

an association list describing new bindings for special variables to be used by the compiler for
error-reporting, etc. Eg.

((*PRINT-LENGTH* . 10) (*PRINT-LEVEL* . 6) (*PRINT-PRETTY* . NIL))

The variables in the car positions are bound to the values in the cdr during the execution of
some debug commands. When evaluating arbitrary expressions in the debugger, the normal
values of the printer control variables are in effect.
Initially empty, *compiler-print-variable-alist* is Typically used to specify bindings for
printer control variables.

Chapter 4: Compiler 18

For information about muffling warnings signaled outside of the compiler, see Section 7.9 [Cus-
tomization Hooks for Users], page 66.

4.1.2 Diagnostic Severity

There are four levels of compiler diagnostic severity:
1. error
2. warning
3. style warning
4. note

The first three levels correspond to condition classes which are defined in the ANSI standard
for Common Lisp and which have special significance to the compile and compile-file functions.
These levels of compiler error severity occur when the compiler handles conditions of these classes.

The fourth level of compiler error severity, note, corresponds to the sb-ext:compiler-note, and
is used for problems which are too mild for the standard condition classes, typically hints about how
efficiency might be improved. The sb-ext:code-deletion-note, a subtype of compiler-note, is
signalled when the compiler deletes user-supplied code after proving that the code in question is
unreachable.

Future work for SBCL includes expanding this hierarchy of types to allow more fine-grained
control over emission of diagnostic messages.

[Condition]\smallertt\phantomconcurrency:\llapsb-ext:compiler-note
Class precedence list: \llwcompiler-note%, \llwcondition%, \llwt%

Root of the hierarchy of conditions representing information discovered by the compiler that
the user might wish to know, but which does not merit a style-warning (or any more serious
condition).

[Condition]\smallertt\phantomconcurrency:\llapsb-ext:code-deletion-note
Class precedence list: \llwcode-deletion-note%, \llwcompiler-note%, \llwcondition%,
\llwt%

A condition type signalled when the compiler deletes code that the user has written, having
proved that it is unreachable.

4.1.3 Understanding Compile Diagnostics

The messages emitted by the compiler contain a lot of detail in a terse format, so they may be
confusing at first. The messages will be illustrated using this example program:

(defmacro zoq (x)
‘(roq (ploq (+ ,x 3))))

(defun foo (y)
(declare (symbol y))
(zoq y))

The main problem with this program is that it is trying to add 3 to a symbol. Note also that
the functions roq and ploq aren’t defined anywhere.

4.1.3.1 The Parts of a Compiler Diagnostic

When processing this program, the compiler will produce this warning:
; file: /tmp/foo.lisp
; in: DEFUN FOO
; (ZOQ Y)
; --> ROQ PLOQ

Chapter 4: Compiler 19

; ==>
; (+ Y 3)
;
; caught WARNING:
; Asserted type NUMBER conflicts with derived type (VALUES SYMBOL &OPTIONAL).

In this example we see each of the six possible parts of a compiler diagnostic:
1. ‘file: /tmp/foo.lisp’ This is the name of the file that the compiler read the relevant code

from. The file name is displayed because it may not be immediately obvious when there is an
error during compilation of a large system, especially when with-compilation-unit is used
to delay undefined warnings.

2. ‘in: DEFUN FOO’ This is the definition top level form responsible for the diagnostic. It is
obtained by taking the first two elements of the enclosing form whose first element is a symbol
beginning with “‘def’”. If there is no such enclosing “‘def’” form, then the outermost form is
used. If there are multiple ‘def’ forms, then they are all printed from the outside in, separated
by ‘=>’’s. In this example, the problem was in the defun for foo.

3. ‘(ZOQ Y)’ This is the original source form responsible for the diagnostic. Original source means
that the form directly appeared in the original input to the compiler, i.e. in the lambda passed
to compile or in the top level form read from the source file. In this example, the expansion
of the zoq macro was responsible for the message.

4. ‘--> ROQ PLOQ’ This is the processing path that the compiler used to produce the code that
caused the message to be emitted. The processing path is a representation of the evaluated
forms enclosing the actual source that the compiler encountered when processing the original
source. The path is the first element of each form, or the form itself if the form is not a list.
These forms result from the expansion of macros or source-to-source transformation done by
the compiler. In this example, the enclosing evaluated forms are the calls to roq and ploq.
These calls resulted from the expansion of the zoq macro.

5. ‘==> (+ Y 3)’ This is the actual source responsible for the diagnostic. If the actual source
appears in the explanation, then we print the next enclosing evaluated form, instead of printing
the actual source twice. (This is the form that would otherwise have been the last form of the
processing path.) In this example, the problem is with the evaluation of the reference to the
variable y.

6. ‘caught WARNING: Asserted type NUMBER conflicts with derived type (VALUES SYMBOL
&OPTIONAL).’ This is the explanation of the problem. In this example, the problem is that,
while the call to + requires that its arguments are all of type number, the compiler has derived
that y will evaluate to a symbol. Note that ‘(VALUES SYMBOL &OPTIONAL)’ expresses that y
evaluates to precisely one value.

Note that each part of the message is distinctively marked:
• ‘file:’ and ‘in:’ mark the file and definition, respectively.
• The original source is an indented form with no prefix.
• Each line of the processing path is prefixed with ‘-->’
• The actual source form is indented like the original source, but is marked by a preceding ‘==>’

line.
• The explanation is prefixed with the diagnostic severity, which can be ‘caught ERROR:’, ‘caught

WARNING:’, ‘caught STYLE-WARNING:’, or ‘note:’.

Each part of the message is more specific than the preceding one. If consecutive messages are for
nearby locations, then the front part of the messages would be the same. In this case, the compiler
omits as much of the second message as in common with the first. For example:

; file: /tmp/foo.lisp
; in: DEFUN FOO

Chapter 4: Compiler 20

; (ZOQ Y)
; --> ROQ
; ==>
; (PLOQ (+ Y 3))
;
; caught STYLE-WARNING:
; undefined function: PLOQ

; ==>
; (ROQ (PLOQ (+ Y 3)))
;
; caught STYLE-WARNING:
; undefined function: ROQ

In this example, the file, definition and original source are identical for the two messages, so the
compiler omits them in the second message. If consecutive messages are entirely identical, then
the compiler prints only the first message, followed by: ‘[Last message occurs repeats times]’
where repeats is the number of times the message was given.

If the source was not from a file, then no file line is printed. If the actual source is the same
as the original source, then the processing path and actual source will be omitted. If no forms
intervene between the original source and the actual source, then the processing path will also be
omitted.

4.1.3.2 The Original and Actual Source

The original source displayed will almost always be a list. If the actual source for an message is
a symbol, the original source will be the immediately enclosing evaluated list form. So even if the
offending symbol does appear in the original source, the compiler will print the enclosing list and
then print the symbol as the actual source (as though the symbol were introduced by a macro.)

When the actual source is displayed (and is not a symbol), it will always be code that resulted
from the expansion of a macro or a source-to-source compiler optimization. This is code that did
not appear in the original source program; it was introduced by the compiler.

Keep in mind that when the compiler displays a source form in an diagnostic message, it always
displays the most specific (innermost) responsible form. For example, compiling this function

(defun bar (x)
(let (a)
(declare (fixnum a))
(setq a (foo x))
a))

gives this error message

; file: /tmp/foo.lisp
; in: DEFUN BAR
; (LET (A)
; (DECLARE (FIXNUM A))
; (SETQ A (FOO X))
; A)
;
; caught WARNING:
; Asserted type FIXNUM conflicts with derived type (VALUES NULL &OPTIONAL).

This message is not saying “there is a problem somewhere in this let” – it is saying that there
is a problem with the let itself. In this example, the problem is that a’s nil initial value is not a
fixnum.

Chapter 4: Compiler 21

4.1.3.3 The Processing Path

The processing path is mainly useful for debugging macros, so if you don’t write macros, you can
probably ignore it. Consider this example:

(defun foo (n)
(dotimes (i n *undefined*)))

Compiling results in this error message:
; in: DEFUN FOO
; (DOTIMES (I N *UNDEFINED*))
; --> DO BLOCK LET TAGBODY RETURN-FROM
; ==>
; (PROGN *UNDEFINED*)
;
; caught WARNING:
; undefined variable: *UNDEFINED*

Note that do appears in the processing path. This is because dotimes expands into:
(do ((i 0 (1+ i)) (#:g1 n))

((>= i #:g1) *undefined*)
(declare (type unsigned-byte i)))

The rest of the processing path results from the expansion of do:
(block nil
(let ((i 0) (#:g1 n))
(declare (type unsigned-byte i))
(tagbody (go #:g3)
#:g2 (psetq i (1+ i))
#:g3 (unless (>= i #:g1) (go #:g2))
(return-from nil (progn *undefined*)))))

In this example, the compiler descended into the block, let, tagbody and return-from to
reach the progn printed as the actual source. This is a place where the “actual source appears
in explanation” rule was applied. The innermost actual source form was the symbol *undefined*
itself, but that also appeared in the explanation, so the compiler backed out one level.

4.2 Handling of Types

One of the most important features of the SBCL compiler (similar to the original CMUCL compiler,
also known as Python) is its fairly sophisticated understanding of the Common Lisp type system
and its conservative approach to the implementation of type declarations.

These two features reward the use of type declarations throughout development, even when high
performance is not a concern. Also, as discussed in the chapter on performance (see Chapter 6 [Ef-
ficiency], page 41), the use of appropriate type declarations can be very important for performance
as well.

The SBCL compiler also has a greater knowledge of the Common Lisp type system than other
compilers. Support is incomplete only for types involving the satisfies type specifier.

4.2.1 Declarations as Assertions

The SBCL compiler treats type declarations differently from most other Lisp compilers. Under
default compilation policy the compiler doesn’t blindly believe type declarations, but considers
them assertions about the program that should be checked: all type declarations that have not
been proven to always hold are asserted at runtime.

Remaining bugs in the compiler’s handling of types unfortunately provide some excep-
tions to this rule, see Section 4.2.4 [Implementation Limitations], page 24.

Chapter 4: Compiler 22

CLOS slot types form a notable exception. Types declared using the :type slot option in
defclass are asserted if and only if the class was defined in safe code and the slot access location
is in safe code as well. This laxness does not pose any internal consistency issues, as the CLOS
slot types are not available for the type inferencer, nor do CLOS slot types provide any efficiency
benefits.

There are three type checking policies available in SBCL, selectable via optimize declarations.

Full Type Checks
All declarations are considered assertions to be checked at runtime, and all type checks
are precise. The default compilation policy provides full type checks.
Used when (or (>= safety 2) (>= safety speed 1)).

Weak Type Checks
Declared types may be simplified into faster to check supertypes: for example, (or
(integer -17 -7) (integer 7 17)) is simplified into (integer -17 17).
Note: it is relatively easy to corrupt the heap when weak type checks are used if the
program contains type-errors.
Used when (and (< safety 2) (< safety speed))

No Type Checks
All declarations are believed without assertions. Also disables argument count and
array bounds checking.
Note: any type errors in code where type checks are not performed are liable to corrupt
the heap.
Used when (= safety 0).

4.2.2 Precise Type Checking

Precise checking means that the check is done as though typep had been called with the exact type
specifier that appeared in the declaration.

If a variable is declared to be (integer 3 17) then its value must always be an integer between
3 and 17. If multiple type declarations apply to a single variable, then all the declarations must be
correct; it is as though all the types were intersected producing a single and type specifier.

To gain maximum benefit from the compiler’s type checking, you should always declare the
types of function arguments and structure slots as precisely as possible. This often involves the use
of or, member, and other list-style type specifiers.

4.2.3 Getting Existing Programs to Run

Since SBCL’s compiler does much more comprehensive type checking than most Lisp compilers,
SBCL may detect type errors in programs that have been debugged using other compilers. These
errors are mostly incorrect declarations, although compile-time type errors can find actual bugs if
parts of the program have never been tested.

Some incorrect declarations can only be detected by run-time type checking. It is very important
to initially compile a program with full type checks (high safety optimization) and then test this
safe version. After the checking version has been tested, then you can consider weakening or elimi-
nating type checks. This applies even to previously debugged programs, because the SBCL compiler
does much more type inference than other Common Lisp compilers, so an incorrect declaration can
do more damage.

The most common problem is with variables whose constant initial value doesn’t match the type
declaration. Incorrect constant initial values will always be flagged by a compile-time type error,
and they are simple to fix once located. Consider this code fragment:

(prog (foo)
(declare (fixnum foo))

Chapter 4: Compiler 23

(setq foo ...)
...)

Here foo is given an initial value of nil, but is declared to be a fixnum. Even if it is never
read, the initial value of a variable must match the declared type. There are two ways to fix this
problem. Change the declaration

(prog (foo)
(declare (type (or fixnum null) foo))
(setq foo ...)
...)

or change the initial value

(prog ((foo 0))
(declare (fixnum foo))
(setq foo ...)
...)

It is generally preferable to change to a legal initial value rather than to weaken the declaration,
but sometimes it is simpler to weaken the declaration than to try to make an initial value of the
appropriate type.

Another declaration problem occasionally encountered is incorrect declarations on defmacro
arguments. This can happen when a function is converted into a macro. Consider this macro:

(defmacro my-1+ (x)
(declare (fixnum x))
‘(the fixnum (1+ ,x)))

Although legal and well-defined Common Lisp code, this meaning of this definition is almost
certainly not what the writer intended. For example, this call is illegal:

(my-1+ (+ 4 5))

This call is illegal because the argument to the macro is (+ 4 5), which is a list, not a fixnum.
Because of macro semantics, it is hardly ever useful to declare the types of macro arguments. If
you really want to assert something about the type of the result of evaluating a macro argument,
then put a the in the expansion:

(defmacro my-1+ (x)
‘(the fixnum (1+ (the fixnum ,x))))

In this case, it would be stylistically preferable to change this macro back to a function and
declare it inline.

Some more subtle problems are caused by incorrect declarations that can’t be detected at compile
time. Consider this code:

(do ((pos 0 (position #\a string :start (1+ pos))))
((null pos))
(declare (fixnum pos))
...)

Although pos is almost always a fixnum, it is nil at the end of the loop. If this example is
compiled with full type checks (the default), then running it will signal a type error at the end of
the loop. If compiled without type checks, the program will go into an infinite loop (or perhaps
position will complain because (1+ nil) isn’t a sensible start.) Why? Because if you compile
without type checks, the compiler just quietly believes the type declaration. Since the compiler
believes that pos is always a fixnum, it believes that pos is never nil, so (null pos) is never true,
and the loop exit test is optimized away. Such errors are sometimes flagged by unreachable code
notes, but it is still important to initially compile and test any system with full type checks, even
if the system works fine when compiled using other compilers.

Chapter 4: Compiler 24

In this case, the fix is to weaken the type declaration to (or fixnum null)1.
Note that there is usually little performance penalty for weakening a declaration in this way.

Any numeric operations in the body can still assume that the variable is a fixnum, since nil is not
a legal numeric argument. Another possible fix would be to say:

(do ((pos 0 (position #\a string :start (1+ pos))))
((null pos))

(let ((pos pos))
(declare (fixnum pos))
...))

This would be preferable in some circumstances, since it would allow a non-standard represen-
tation to be used for the local pos variable in the loop body.

4.2.4 Implementation Limitations

Ideally, the compiler would consider all type declarations to be assertions, so that adding type
declarations to a program, no matter how incorrect they might be, would never cause undefined
behavior. However, the compiler is known to fall short of this goal in two areas:
• Proclaimed constraints on argument and result types of a function are supposed to be checked

by the function. If the function type is proclaimed before function definition, type checks are
inserted by the compiler, but the standard allows the reversed order, in which case the compiler
will trust the declaration.

• The compiler cannot check types of an unknown number of values; if the number of generated
values is unknown, but the number of consumed is known, only consumed values are checked.
For example,

(defun foo (x)
(the integer (bar x)))

causes the following compiler diagnostic to be emitted:
; note: type assertion too complex to check:
; (VALUES INTEGER &REST T).

A partial workaround is instead write:
(defun foo (x)
(the (values integer &optional) (bar x)))

These are important issues, but are not necessarily easy to fix, so they may, alas, remain in the
system for a while.

4.3 Compiler Policy

Compiler policy is controlled by the optimize declaration, supporting all ANSI optimization qual-
ities (debug, safety, space, and speed).2

For effects of various optimization qualities on type-safety and debuggability see Section 4.2.1
[Declarations as Assertions], page 21 and Section 5.6 [Debugger Policy Control], page 36.

Ordinarily, when the speed quality is high, the compiler emits notes to notify the program-
mer about its inability to apply various optimizations. For selective muffling of these notes See
Section 4.1.1 [Controlling Verbosity], page 17.

The value of space mostly influences the compiler’s decision whether to inline operations, which
tend to increase the size of programs. Use the value 0 with caution, since it can cause the compiler
to inline operations so indiscriminately that the net effect is to slow the program by causing cache
misses or even swapping.

1 Actually, this declaration is unnecessary in SBCL, since it already knows that position returns a non-negative
fixnum or nil.

2 A deprecated extension sb-ext:inhibit-warnings is still supported, but liable to go away at any time.

Chapter 4: Compiler 25

[Function]\smallertt\phantomconcurrency:\llapsb-ext:describe-compiler-
policy &optional
spec

Print all global optimization settings, augmented by spec.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:restrict-compiler-
policy &optional quality min
max

Assign a minimum value to an optimization quality. quality is the name of the optimization
quality to restrict, min (defaulting to zero) is the minimum allowed value, and max (defaults to
3) is the maximum.

Returns the alist describing the current policy restrictions.

If quality is nil or not given, nothing is done.

Otherwise, if min is zero or max is 3 or neither are given, any existing restrictions of quality
are removed.

See also :policy option in with-compilation-unit.

[Macro]\smallertt\phantomconcurrency:\llapcl:with-compilation-unit options
&body body

Affects compilations that take place within its dynamic extent. It is intended to be eg. wrapped
around the compilation of all files in the same system.

Following options are defined:

:override Boolean-Form
One of the effects of this form is to delay undefined warnings until the end of the
form, instead of giving them at the end of each compilation. If override is nil (the
default), then the outermost with-compilation-unit form grabs the undefined
warnings. Specifying override true causes that form to grab any enclosed warnings,
even if it is enclosed by another with-compilation-unit.

:policy Optimize-Declaration-Form
Provides dynamic scoping for global compiler optimization qualities and restric-
tions, limiting effects of subsequent optimize proclamations and calls to sb-
ext:restrict-compiler-policy to the dynamic scope of body.

If override is false, specified policy is merged with current global policy. If
override is true, current global policy, including any restrictions, is discarded in
favor of the specified policy.

Supplying policy nil is equivalent to the option not being supplied at all, ie.
dynamic scoping of policy does not take place.

This option is an SBCL-specific experimental extension: Interface subject to change.

:source-namestring Namestring-Form
Attaches the value returned by the Namestring-Form to the internal debug-source
information as the namestring of the source file. Normally the namestring of the
input-file for compile-file is used: this option can be used to provide source-file
information for functions compiled using compile, or to override the input-file of
compile-file.

If both an outer and an inner with-compilation-unit provide a source-
namestring, the inner one takes precedence. Unaffected by :override.

This is an SBCL-specific extension.

Chapter 4: Compiler 26

:source-plist Plist-Form
Attaches the value returned by the Plist-Form to internal debug-source information
of functions compiled in within the dynamic extent of body.
Primarily for use by development environments, in order to eg. associate function
definitions with editor-buffers. Can be accessed using sb-introspect:definition-
source-plist.
If an outer with-compilation-unit form also provide a source-plist, it is ap-
pended to the end of the provided source-plist. Unaffected by :override.
This is an SBCL-specific extension.

Examples:
;; Prevent proclamations from the file leaking, and restrict
;; SAFETY to 3 -- otherwise uses the current global policy.
(with-compilation-unit (:policy ’(optimize))
(restrict-compiler-policy ’safety 3)
(load "foo.lisp"))

;; Using default policy instead of the current global one,
;; except for DEBUG 3.
(with-compilation-unit (:policy ’(optimize debug)

:override t)
(load "foo.lisp"))

;; Same as if :POLICY had not been specified at all: SAFETY 3
;; proclamation leaks out from WITH-COMPILATION-UNIT.
(with-compilation-unit (:policy nil)
(declaim (optimize safety))
(load "foo.lisp"))

4.4 Compiler Errors

4.4.1 Type Errors at Compile Time

If the compiler can prove at compile time that some portion of the program cannot be executed
without a type error, then it will give a warning at compile time.

It is possible that the offending code would never actually be executed at run-time due to some
higher level consistency constraint unknown to the compiler, so a type warning doesn’t always
indicate an incorrect program.

For example, consider this code fragment:
(defun raz (foo)
(let ((x (case foo

(:this 13)
(:that 9)
(:the-other 42))))

(declare (fixnum x))
(foo x)))

Compilation produces this warning:
; in: DEFUN RAZ
; (CASE FOO (:THIS 13) (:THAT 9) (:THE-OTHER 42))
; --> LET COND IF COND IF COND IF
; ==>
; (COND)

Chapter 4: Compiler 27

;
; caught WARNING:
; This is not a FIXNUM:
; NIL

In this case, the warning means that if foo isn’t any of :this, :that or :the-other, then x
will be initialized to nil, which the fixnum declaration makes illegal. The warning will go away if
ecase is used instead of case, or if :the-other is changed to t.

This sort of spurious type warning happens moderately often in the expansion of complex macros
and in inline functions. In such cases, there may be dead code that is impossible to correctly execute.
The compiler can’t always prove this code is dead (could never be executed), so it compiles the
erroneous code (which will always signal an error if it is executed) and gives a warning.

4.4.2 Errors During Macroexpansion

The compiler handles errors that happen during macroexpansion, turning them into compiler errors.
If you want to debug the error (to debug a macro), you can set *break-on-signals* to error.
For example, this definition:

(defun foo (e l)
(do ((current l (cdr current))

((atom current) nil))
(when (eq (car current) e) (return current))))

gives this error:
; in: DEFUN FOO
; (DO ((CURRENT L (CDR CURRENT))
; ((ATOM CURRENT) NIL))
; (WHEN (EQ (CAR CURRENT) E) (RETURN CURRENT)))
;
; caught ERROR:
; (in macroexpansion of (DO # #))
; (hint: For more precise location, try *BREAK-ON-SIGNALS*.)
; DO step variable is not a symbol: (ATOM CURRENT)

4.4.3 Read Errors

SBCL’s compiler does not attempt to recover from read errors when reading a source file, but
instead just reports the offending character position and gives up on the entire source file.

4.5 Open Coding and Inline Expansion

Since Common Lisp forbids the redefinition of standard functions, the compiler can have special
knowledge of these standard functions embedded in it. This special knowledge is used in various
ways (open coding, inline expansion, source transformation), but the implications to the user are
basically the same:
• Attempts to redefine standard functions may be frustrated, since the function may never be

called. Although it is technically illegal to redefine standard functions, users sometimes want
to implicitly redefine these functions when they are debugging using the trace macro. Special-
casing of standard functions can be inhibited using the notinline declaration, but even then
some phases of analysis such as type inferencing are applied by the compiler.

• The compiler can have multiple alternate implementations of standard functions that imple-
ment different trade-offs of speed, space and safety. This selection is based on the compiler
policy, Section 4.3 [Compiler Policy], page 24.

When a function call is open coded, inline code whose effect is equivalent to the function call
is substituted for that function call. When a function call is closed coded, it is usually left as is,

Chapter 4: Compiler 28

although it might be turned into a call to a different function with different arguments. As an
example, if nthcdr were to be open coded, then

(nthcdr 4 foobar)

might turn into
(cdr (cdr (cdr (cdr foobar))))

or even
(do ((i 0 (1+ i))
(list foobar (cdr foobar)))
((= i 4) list))

If nth is closed coded, then
(nth x l)

might stay the same, or turn into something like
(car (nthcdr x l))

In general, open coding sacrifices space for speed, but some functions (such as car) are so simple
that they are always open-coded. Even when not open-coded, a call to a standard function may be
transformed into a different function call (as in the last example) or compiled as static call. Static
function call uses a more efficient calling convention that forbids redefinition.

4.6 Interpreter

By default SBCL implements eval by calling the native code compiler.
SBCL also includes an interpreter for use in special cases where using the compiler is undesirable,

for example due to compilation overhead. Unlike in some other Lisp implementations, in SBCL
interpreted code is not safer or more debuggable than compiled code.

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*evaluator-mode*
Toggle between different evaluator implementations. If set to :compile, an implementation of
eval that calls the compiler will be used. If set to :interpret, an interpreter will be used.

Chapter 5: Debugger 29

5 Debugger

This chapter documents the debugging facilities of SBCL, including the debugger, single-stepper
and trace, and the effect of (optimize debug) declarations.

5.1 Debugger Entry

5.1.1 Debugger Banner

When you enter the debugger, it looks something like this:
debugger invoked on a TYPE-ERROR in thread 11184:
The value 3 is not of type LIST.

You can type HELP for debugger help, or (SB-EXT:QUIT) to exit from SBCL.

restarts (invokable by number or by possibly-abbreviated name):
0: [ABORT] Reduce debugger level (leaving debugger, returning to toplevel).
1: [TOPLEVEL] Restart at toplevel READ/EVAL/PRINT loop.

(CAR 1 3)
0]

The first group of lines describe what the error was that put us in the debugger. In this case
car was called on 3, causing a type-error.

This is followed by the “beginner help line”, which appears only if sb-debug:*debug-beginner-
help-p* is true (default).

Next comes a listing of the active restart names, along with their descriptions – the ways we
can restart execution after this error. In this case, both options return to top-level. Restarts can
be selected by entering the corresponding number or name.

The current frame appears right underneath the restarts, immediately followed by the debugger
prompt.

5.1.2 Debugger Invocation

The debugger is invoked when:
• error is called, and the condition it signals is not handled.
• break is called, or signal is called with a condition that matches the current *break-on-

signals*.
• the debugger is explicitly entered with the invoke-debugger function.

When the debugger is invoked by a condition, ANSI mandates that the value of *debugger-
hook*, if any, be called with two arguments: the condition that caused the debugger to be invoked
and the previous value of *debugger-hook*. When this happens, *debugger-hook* is bound to
NIL to prevent recursive errors. However, ANSI also mandates that *debugger-hook* not be
invoked when the debugger is to be entered by the break function. For users who wish to provide
an alternate debugger interface (and thus catch break entries into the debugger), SBCL provides
sb-ext:*invoke-debugger-hook*, which is invoked during any entry into the debugger.

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*invoke-debugger-hook*
This is either nil or a designator for a function of two arguments, to be run when the debugger
is about to be entered. The function is run with *invoke-debugger-hook* bound to nil to
minimize recursive errors, and receives as arguments the condition that triggered debugger entry
and the previous value of *invoke-debugger-hook*
This mechanism is an sbcl extension similar to the standard *debugger-hook*. In contrast to
debugger-hook, it is observed by invoke-debugger even when called by break.

Chapter 5: Debugger 30

5.2 Debugger Command Loop

The debugger is an interactive read-eval-print loop much like the normal top level, but some symbols
are interpreted as debugger commands instead of being evaluated. A debugger command starts
with the symbol name of the command, possibly followed by some arguments on the same line.
Some commands prompt for additional input. Debugger commands can be abbreviated by any
unambiguous prefix: help can be typed as ‘h’, ‘he’, etc.

The package is not significant in debugger commands; any symbol with the name of a debugger
command will work. If you want to show the value of a variable that happens also to be the name
of a debugger command you can wrap the variable in a progn to hide it from the command loop.

The debugger prompt is “frame]”, where frame is the number of the current frame. Frames
are numbered starting from zero at the top (most recent call), increasing down to the bottom. The
current frame is the frame that commands refer to.

It is possible to override the normal printing behaviour in the debugger by using the sb-
ext:*debug-print-variable-alist*.

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*debug-print-variable-
alist*

an association list describing new bindings for special variables to be used within the debugger.
Eg.

((*PRINT-LENGTH* . 10) (*PRINT-LEVEL* . 6) (*PRINT-PRETTY* . NIL))

The variables in the car positions are bound to the values in the cdr during the execution of
some debug commands. When evaluating arbitrary expressions in the debugger, the normal
values of the printer control variables are in effect.
Initially empty, *debug-print-variable-alist* is typically used to provide bindings for
printer control variables.

5.3 Stack Frames

A stack frame is the run-time representation of a call to a function; the frame stores the state that
a function needs to remember what it is doing. Frames have:
• variables (see Section 5.4 [Variable Access], page 33), which are the values being operated on.
• arguments to the call (which are really just particularly interesting variables).
• a current source location (see Section 5.5 [Source Location Printing], page 34), which is the

place in the program where the function was running when it stopped to call another function,
or because of an interrupt or error.

5.3.1 Stack Motion

These commands move to a new stack frame and print the name of the function and the values of
its arguments in the style of a Lisp function call:

[Debugger Command]\smallertt\phantomconcurrency:up
Move up to the next higher frame. More recent function calls are considered to be higher on
the stack.

[Debugger Command]\smallertt\phantomconcurrency:down
Move down to the next lower frame.

[Debugger Command]\smallertt\phantomconcurrency:top
Move to the highest frame, that is, the frame where the debugger was entered.

[Debugger Command]\smallertt\phantomconcurrency:bottom
Move to the lowest frame.

Chapter 5: Debugger 31

[Debugger Command]\smallertt\phantomconcurrency:frame [n]
Move to the frame with the specified number. Prompts for the number if not supplied. The
frame with number 0 is the frame where the debugger was entered.

5.3.2 How Arguments are Printed

A frame is printed to look like a function call, but with the actual argument values in the argument
positions. So the frame for this call in the source:

(myfun (+ 3 4) ’a)

would look like this:

(MYFUN 7 A)

All keyword and optional arguments are displayed with their actual values; if the corresponding
argument was not supplied, the value will be the default. So this call:

(subseq "foo" 1)

would look like this:

(SUBSEQ "foo" 1 3)

And this call:

(string-upcase "test case")

would look like this:

(STRING-UPCASE "test case" :START 0 :END NIL)

The arguments to a function call are displayed by accessing the argument variables. Although
those variables are initialized to the actual argument values, they can be set inside the function; in
this case the new value will be displayed.

&rest arguments are handled somewhat differently. The value of the rest argument variable is
displayed as the spread-out arguments to the call, so:

(format t "~A is a ~A." "This" ’test)

would look like this:

(FORMAT T "~A is a ~A." "This" ’TEST)

Rest arguments cause an exception to the normal display of keyword arguments in functions
that have both &rest and &key arguments. In this case, the keyword argument variables are not
displayed at all; the rest arg is displayed instead. So for these functions, only the keywords actually
supplied will be shown, and the values displayed will be the argument values, not values of the
(possibly modified) variables.

If the variable for an argument is never referenced by the function, it will be deleted. The
variable value is then unavailable, so the debugger prints ‘#<unused-arg>’ instead of the value.
Similarly, if for any of a number of reasons the value of the variable is unavailable or not known
to be available (see Section 5.4 [Variable Access], page 33), then ‘#<unavailable-arg>’ will be
printed instead of the argument value.

Note that inline expansion and open-coding affect what frames are present in the debugger, see
Section 5.6 [Debugger Policy Control], page 36.

5.3.3 Function Names

If a function is defined by defun it will appear in backtrace by that name. Functions defined
by labels and flet will appear as (FLET name) and (LABELS name) respectively. Anonymous
lambdas will appear as (LAMDBA lambda-list).

Chapter 5: Debugger 32

5.3.3.1 Entry Point Details

Sometimes the compiler introduces new functions that are used to implement a user function, but
are not directly specified in the source. This is mostly done for argument type and count checking.

With recursive functions, an additional external frame may appear before the frame represent-
ing the first call to the recursive function. This is a consequence of the way the compiler works:
there is nothing odd with your program. You may also see cleanup frames during the execution
of unwind-protect cleanup code, and optional for variable argument entry points.

5.3.4 Debug Tail Recursion

The compiler is “properly tail recursive.” If a function call is in a tail-recursive position, the stack
frame will be deallocated at the time of the call, rather than after the call returns. Consider this
backtrace:

(BAR ...)
(FOO ...)

Because of tail recursion, it is not necessarily the case that FOO directly called BAR. It may be
that FOO called some other function FOO2 which then called BAR tail-recursively, as in this example:

(defun foo ()
...
(foo2 ...)
...)

(defun foo2 (...)
...
(bar ...))

(defun bar (...)
...)

Usually the elimination of tail-recursive frames makes debugging more pleasant, since these
frames are mostly uninformative. If there is any doubt about how one function called another,
it can usually be eliminated by finding the source location in the calling frame. See Section 5.5
[Source Location Printing], page 34.

The elimination of tail-recursive frames can be prevented by disabling tail-recursion optimiza-
tion, which happens when the debug optimization quality is greater than 2. See Section 5.6 [De-
bugger Policy Control], page 36.

5.3.5 Unknown Locations and Interrupts

The debugger operates using special debugging information attached to the compiled code. This
debug information tells the debugger what it needs to know about the locations in the code where
the debugger can be invoked. If the debugger somehow encounters a location not described in the
debug information, then it is said to be unknown. If the code location for a frame is unknown,
then some variables may be inaccessible, and the source location cannot be precisely displayed.

There are three reasons why a code location could be unknown:
• There is inadequate debug information due to the value of the debug optimization quality. See

Section 5.6 [Debugger Policy Control], page 36.
• The debugger was entered because of an interrupt such as 〈C-c〉.
• A hardware error such as “‘bus error’” occurred in code that was compiled unsafely due to

the value of the safety optimization quality.

In the last two cases, the values of argument variables are accessible, but may be incorrect.
For more details on when variable values are accessible, Section 5.4.1 [Variable Value Availability],
page 33.

Chapter 5: Debugger 33

It is possible for an interrupt to happen when a function call or return is in progress. The
debugger may then flame out with some obscure error or insist that the bottom of the stack has
been reached, when the real problem is that the current stack frame can’t be located. If this
happens, return from the interrupt and try again.

5.4 Variable Access

There are two ways to access the current frame’s local variables in the debugger: list-locals and
sb-debug:var.

The debugger doesn’t really understand lexical scoping; it has just one namespace for all the
variables in the current stack frame. If a symbol is the name of multiple variables in the same
function, then the reference appears ambiguous, even though lexical scoping specifies which value
is visible at any given source location. If the scopes of the two variables are not nested, then the
debugger can resolve the ambiguity by observing that only one variable is accessible.

When there are ambiguous variables, the evaluator assigns each one a small integer identifier.
The sb-debug:var function uses this identifier to distinguish between ambiguous variables. The
list-locals command prints the identifier. In the following example, there are two variables
named X. The first one has identifier 0 (which is not printed), the second one has identifier 1.

X = 1
X#1 = 2

[Debugger Command]\smallertt\phantomconcurrency:list-locals [prefix]
This command prints the name and value of all variables in the current frame whose name has
the specified prefix. prefix may be a string or a symbol. If no prefix is given, then all available
variables are printed. If a variable has a potentially ambiguous name, then the name is printed
with a “#identifier” suffix, where identifier is the small integer used to make the name unique.

[Function]\smallertt\phantomconcurrency:\llapsb-debug:var name &optional
identifier

This function returns the value of the variable in the current frame with the specified name. If
supplied, identifier determines which value to return when there are ambiguous variables.

When name is a symbol, it is interpreted as the symbol name of the variable, i.e. the package is
significant. If name is an uninterned symbol (gensym), then return the value of the uninterned
variable with the same name. If name is a string, sb-debug:var interprets it as the prefix of a
variable name that must unambiguously complete to the name of a valid variable.

identifier is used to disambiguate the variable name; use list-locals to find out the identifiers.

5.4.1 Variable Value Availability

The value of a variable may be unavailable to the debugger in portions of the program where Lisp
says that the variable is defined. If a variable value is not available, the debugger will not let
you read or write that variable. With one exception, the debugger will never display an incorrect
value for a variable. Rather than displaying incorrect values, the debugger tells you the value is
unavailable.

The one exception is this: if you interrupt (e.g., with 〈C-c〉) or if there is an unexpected hardware
error such as “‘bus error’” (which should only happen in unsafe code), then the values displayed
for arguments to the interrupted frame might be incorrect.1 This exception applies only to the
interrupted frame: any frame farther down the stack will be fine.

The value of a variable may be unavailable for these reasons:

1 Since the location of an interrupt or hardware error will always be an unknown location, non-argument variable
values will never be available in the interrupted frame. See Section 5.3.5 [Unknown Locations and Interrupts],
page 32.

Chapter 5: Debugger 34

• The value of the debug optimization quality may have omitted debug information needed to
determine whether the variable is available. Unless a variable is an argument, its value will
only be available when debug is at least 2.

• The compiler did lifetime analysis and determined that the value was no longer needed, even
though its scope had not been exited. Lifetime analysis is inhibited when the debug optimiza-
tion quality is 3.

• The variable’s name is an uninterned symbol (gensym). To save space, the compiler only
dumps debug information about uninterned variables when the debug optimization quality is
3.

• The frame’s location is unknown (see Section 5.3.5 [Unknown Locations and Interrupts],
page 32) because the debugger was entered due to an interrupt or unexpected hardware error.
Under these conditions the values of arguments will be available, but might be incorrect. This
is the exception mentioned above.

• The variable (or the code referencing it) was optimized out of existence. Variables with no
reads are always optimized away. The degree to which the compiler deletes variables will
depend on the value of the compilation-speed optimization quality, but most source-level
optimizations are done under all compilation policies.

• The variable is never set and its definition looks like
(LET ((var1 var2))

...)

In this case, var1 is substituted with var2.
• The variable is never set and is referenced exactly once. In this case, the reference is substituted

with the variable initial value.

Since it is especially useful to be able to get the arguments to a function, argument variables
are treated specially when the speed optimization quality is less than 3 and the debug quality is at
least 1. With this compilation policy, the values of argument variables are almost always available
everywhere in the function, even at unknown locations. For non-argument variables, debug must
be at least 2 for values to be available, and even then, values are only available at known locations.

5.4.2 Note On Lexical Variable Access

When the debugger command loop establishes variable bindings for available variables, these vari-
able bindings have lexical scope and dynamic extent.2 You can close over them, but such closures
can’t be used as upward function arguments.

You can also set local variables using setq, but if the variable was closed over in the original
source and never set, then setting the variable in the debugger may not change the value in all the
functions the variable is defined in. Another risk of setting variables is that you may assign a value
of a type that the compiler proved the variable could never take on. This may result in bad things
happening.

5.5 Source Location Printing

One of the debugger’s capabilities is source level debugging of compiled code. These commands
display the source location for the current frame:

[Debugger Command]\smallertt\phantomconcurrency:source [context]
This command displays the file that the current frame’s function was defined from (if it was
defined from a file), and then the source form responsible for generating the code that the
current frame was executing. If context is specified, then it is an integer specifying the number
of enclosing levels of list structure to print.

2 The variable bindings are actually created using the Lisp symbol-macrolet special form.

Chapter 5: Debugger 35

The source form for a location in the code is the innermost list present in the original source
that encloses the form responsible for generating that code. If the actual source form is not a list,
then some enclosing list will be printed. For example, if the source form was a reference to the
variable *some-random-special*, then the innermost enclosing evaluated form will be printed.
Here are some possible enclosing forms:

(let ((a *some-random-special*))
...)

(+ *some-random-special* ...)

If the code at a location was generated from the expansion of a macro or a source-level compiler
optimization, then the form in the original source that expanded into that code will be printed.
Suppose the file ‘/usr/me/mystuff.lisp’ looked like this:

(defmacro mymac ()
’(myfun))

(defun foo ()
(mymac)
...)

If foo has called myfun, and is waiting for it to return, then the source command would print:
; File: /usr/me/mystuff.lisp

(MYMAC)

Note that the macro use was printed, not the actual function call form, (myfun).
If enclosing source is printed by giving an argument to source or vsource, then the actual

source form is marked by wrapping it in a list whose first element is ‘#:***HERE***’. In the
previous example, source 1 would print:

; File: /usr/me/mystuff.lisp

(DEFUN FOO ()
(#:***HERE***
(MYMAC))
...)

5.5.1 How the Source is Found

If the code was defined from Lisp by compile or eval, then the source can always be reliably
located. If the code was defined from a ‘fasl’ file created by compile-file, then the debugger
gets the source forms it prints by reading them from the original source file. This is a potential
problem, since the source file might have moved or changed since the time it was compiled.

The source file is opened using the truename of the source file pathname originally given to the
compiler. This is an absolute pathname with all logical names and symbolic links expanded. If the
file can’t be located using this name, then the debugger gives up and signals an error.

If the source file can be found, but has been modified since the time it was compiled, the
debugger prints this warning:

; File has been modified since compilation:
; filename

; Using form offset instead of character position.

where filename is the name of the source file. It then proceeds using a robust but not foolproof
heuristic for locating the source. This heuristic works if:
• No top-level forms before the top-level form containing the source have been added or deleted,

and

Chapter 5: Debugger 36

• The top-level form containing the source has not been modified much. (More precisely, none
of the list forms beginning before the source form have been added or deleted.)

If the heuristic doesn’t work, the displayed source will be wrong, but will probably be near the
actual source. If the “shape” of the top-level form in the source file is too different from the original
form, then an error will be signaled. When the heuristic is used, the source location commands are
noticeably slowed.

Source location printing can also be confused if (after the source was compiled) a read-macro
you used in the code was redefined to expand into something different, or if a read-macro ever
returns the same eq list twice. If you don’t define read macros and don’t use ## in perverted ways,
you don’t need to worry about this.

5.5.2 Source Location Availability

Source location information is only available when the debug optimization quality is at least 2. If
source location information is unavailable, the source commands will give an error message.

If source location information is available, but the source location is unknown because of an
interrupt or unexpected hardware error (see Section 5.3.5 [Unknown Locations and Interrupts],
page 32), then the command will print:

Unknown location: using block start.

and then proceed to print the source location for the start of the basic block enclosing the
code location. It’s a bit complicated to explain exactly what a basic block is, but here are some
properties of the block start location:
• The block start location may be the same as the true location.
• The block start location will never be later in the program’s flow of control than the true

location.
• No conditional control structures (such as if, cond, or) will intervene between the block start

and the true location (but note that some conditionals present in the original source could be
optimized away.) Function calls do not end basic blocks.

• The head of a loop will be the start of a block.
• The programming language concept of “block structure” and the Lisp block special form are

totally unrelated to the compiler’s basic block.

In other words, the true location lies between the printed location and the next conditional (but
watch out because the compiler may have changed the program on you.)

5.6 Debugger Policy Control

The compilation policy specified by optimize declarations affects the behavior seen in the debugger.
The debug quality directly affects the debugger by controlling the amount of debugger information
dumped. Other optimization qualities have indirect but observable effects due to changes in the
way compilation is done.

Unlike the other optimization qualities (which are compared in relative value to evaluate trade-
offs), the debug optimization quality is directly translated to a level of debug information. This
absolute interpretation allows the user to count on a particular amount of debug information being
available even when the values of the other qualities are changed during compilation. These are
the levels of debug information that correspond to the values of the debug quality:

0 Only the function name and enough information to allow the stack to be parsed.

> 0 Any level greater than 0 gives level 0 plus all argument variables. Values will only be
accessible if the argument variable is never set and speed is not 3. SBCL allows any
real value for optimization qualities. It may be useful to specify 0.5 to get backtrace
argument display without argument documentation.

Chapter 5: Debugger 37

1 Level 1 provides argument documentation (printed argument lists) and derived argu-
ment/result type information. This makes describe more informative, and allows the
compiler to do compile-time argument count and type checking for any calls compiled
at run-time. This is the default.

2 Level 1 plus all interned local variables, source location information, and lifetime in-
formation that tells the debugger when arguments are available (even when speed is 3
or the argument is set).

> 2 Any level greater than 2 gives level 2 and in addition disables tail-call optimization,
so that the backtrace will contain frames for all invoked functions, even those in tail
positions.

3 Level 2 plus all uninterned variables. In addition, lifetime analysis is disabled (even
when speed is 3), ensuring that all variable values are available at any known location
within the scope of the binding. This has a speed penalty in addition to the obvious
space penalty.

> (max speed space)
If debug is greater than both speed and space, the command return can be used to
continue execution by returning a value from the current stack frame.

> (max speed space compilation-speed)
If debug is greater than all of speed, space and compilation-speed the code will be
steppable (see Section 5.10 [Single Stepping], page 40).

As you can see, if the speed quality is 3, debugger performance is degraded. This effect comes
from the elimination of argument variable special-casing (see Section 5.4.1 [Variable Value Avail-
ability], page 33). Some degree of speed/debuggability tradeoff is unavoidable, but the effect is not
too drastic when debug is at least 2.

In addition to inline and notinline declarations, the relative values of the speed and space
qualities also change whether functions are inline expanded. If a function is inline expanded, then
there will be no frame to represent the call, and the arguments will be treated like any other local
variable. Functions may also be “semi-inline”, in which case there is a frame to represent the call,
but the call is to an optimized local version of the function, not to the original function.

5.7 Exiting Commands

These commands get you out of the debugger.

[Debugger Command]\smallertt\phantomconcurrency:toplevel
Throw to top level.

[Debugger Command]\smallertt\phantomconcurrency:restart [n]
Invokes the nth restart case as displayed by the error command. If n is not specified, the
available restart cases are reported.

[Debugger Command]\smallertt\phantomconcurrency:continue
Calls continue on the condition given to debug. If there is no restart case named continue,
then an error is signaled.

[Debugger Command]\smallertt\phantomconcurrency:abort
Calls abort on the condition given to debug. This is useful for popping debug command loop
levels or aborting to top level, as the case may be.

[Debugger Command]\smallertt\phantomconcurrency:return value
Returns value from the current stack frame. This command is available when the debug opti-
mization quality is greater than both speed and space. Care must be taken that the value is
of the same type as SBCL expects the stack frame to return.

Chapter 5: Debugger 38

[Debugger Command]\smallertt\phantomconcurrency:restart-frame
Restarts execution of the current stack frame. This command is available when the debug
optimization quality is greater than both speed and space and when the frame is for is a global
function. If the function is redefined in the debugger before the frame is restarted, the new
function will be used.

5.8 Information Commands

Most of these commands print information about the current frame or function, but a few show
general information.

[Debugger Command]\smallertt\phantomconcurrency:help
[Debugger Command]\smallertt\phantomconcurrency:?

Displays a synopsis of debugger commands.

[Debugger Command]\smallertt\phantomconcurrency:describe
Calls describe on the current function and displays the number of local variables.

[Debugger Command]\smallertt\phantomconcurrency:print
Displays the current function call as it would be displayed by moving to this frame.

[Debugger Command]\smallertt\phantomconcurrency:error
Prints the condition given to invoke-debugger and the active proceed cases.

[Debugger Command]\smallertt\phantomconcurrency:backtrace [n]
Displays all the frames from the current to the bottom. Only shows n frames if specified. The
printing is controlled by *debug-print-variable-alist*.

5.9 Function Tracing

The tracer causes selected functions to print their arguments and their results whenever they are
called. Options allow conditional printing of the trace information and conditional breakpoints on
function entry or exit.

[Macro]\smallertt\phantomconcurrency:\llapcl:trace &rest specs
trace {Option Global-Value}* {Name {Option Value}*}*
trace is a debugging tool that provides information when specified functions are called. In its
simplest form:

(TRACE NAME-1 NAME-2 ...)

The NAMEs are not evaluated. Each may be a symbol, denoting an individual function, or a
string, denoting all functions fbound to symbols whose home package is the package with the
given name.
Options allow modification of the default behavior. Each option is a pair of an option keyword
and a value form. Global options are specified before the first name, and affect all functions
traced by a given use of trace. Options may also be interspersed with function names, in which
case they act as local options, only affecting tracing of the immediately preceding function name.
Local options override global options.
By default, trace causes a printout on *trace-output* each time that one of the named
functions is entered or returns. (This is the basic, ansi Common Lisp behavior of trace.)
The following options are defined:

:report Report-Type
If Report-Type is trace (the default) then information is reported by printing im-
mediately. If Report-Type is nil, then the only effect of the trace is to execute
other options (e.g. print or BREAK).

Chapter 5: Debugger 39

:condition Form
:condition-after Form
:condition-all Form

If :condition is specified, then trace does nothing unless Form evaluates to true
at the time of the call. :condition-after is similar, but suppresses the initial
printout, and is tested when the function returns. :condition-all tries both before
and after.

:break Form
:break-after Form
:break-all Form

If specified, and Form evaluates to true, then the debugger is invoked at the start of
the function, at the end of the function, or both, according to the respective option.

:print Form
:print-after Form
:print-all Form

In addition to the usual printout, the result of evaluating Form is printed at the
start of the function, at the end of the function, or both, according to the respective
option. Multiple print options cause multiple values to be printed.

:wherein Names
If specified, Names is a function name or list of names. trace does nothing unless a
call to one of those functions encloses the call to this function (i.e. it would appear
in a backtrace.) Anonymous functions have string names like "DEFUN FOO".

:encapsulate {:DEFAULT | t | NIL}
If t, the tracing is done via encapsulation (redefining the function name) rather than
by modifying the function. :default is the default, and means to use encapsulation
for interpreted functions and funcallable instances, breakpoints otherwise. When en-
capsulation is used, forms are *not* evaluated in the function’s lexical environment,
but sb-debug:arg can still be used.

:methods {T | NIL}
If t, any function argument naming a generic function will have its methods traced
in addition to the generic function itself.

:function Function-Form
This is a not really an option, but rather another way of specifying what function
to trace. The Function-Form is evaluated immediately, and the resulting function
is traced.

:condition, :break and :print forms are evaluated in a context which mocks up the lexical
environment of the called function, so that sb-debug:var and sb-debug:arg can be used. The
-after and -all forms can use sb-debug:arg.

[Macro]\smallertt\phantomconcurrency:\llapcl:untrace &rest specs
Remove tracing from the specified functions. Untraces all functions when called with no argu-
ments.

[Variable]\smallertt\phantomconcurrency:\llapsb-debug:*trace-indentation-
step*

the increase in trace indentation at each call level

[Variable]\smallertt\phantomconcurrency:\llapsb-debug:*max-trace-
indentation*

If the trace indentation exceeds this value, then indentation restarts at 0.

Chapter 5: Debugger 40

[Variable]\smallertt\phantomconcurrency:\llapsb-debug:*trace-encapsulate-
default*

the default value for the :encapsulate option to trace

5.10 Single Stepping

SBCL includes an instrumentation based single-stepper for compiled code, that can be invoked via
the step macro, or from within the debugger. See Section 5.6 [Debugger Policy Control], page 36,
for details on enabling stepping for compiled code.

The following debugger commands are used for controlling single stepping.

[Debugger Command]\smallertt\phantomconcurrency:start
Selects the continue restart if one exists and starts single stepping. None of the other single
stepping commands can be used before stepping has been started either by using start or by
using the standard step macro.

[Debugger Command]\smallertt\phantomconcurrency:step
Steps into the current form. Stepping will be resumed when the next form that has been
compiled with stepper instrumentation is evaluated.

[Debugger Command]\smallertt\phantomconcurrency:next
Steps over the current form. Stepping will be disabled until evaluation of the form is complete.

[Debugger Command]\smallertt\phantomconcurrency:out
Steps out of the current frame. Stepping will be disabled until the topmost stack frame that
had been stepped into returns.

[Debugger Command]\smallertt\phantomconcurrency:stop
Stops the single stepper and resumes normal execution.

[Macro]\smallertt\phantomconcurrency:\llapcl:step form
The form is evaluated with single stepping enabled. Function calls outside the lexical scope of
the form can be stepped into only if the functions in question have been compiled with sufficient
debug policy to be at least partially steppable.

5.11 Enabling and Disabling the Debugger

In certain contexts (e.g., non-interactive applications), it may be desirable to turn off the SBCL
debugger (and possibly re-enable it). The functions here control the debugger.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:disable-debugger
When invoked, this function will turn off both the sbcl debugger and ldb (the low-level debug-
ger). See also enable-debugger.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:enable-debugger
Restore the debugger if it has been turned off by disable-debugger.

Chapter 6: Efficiency 41

6 Efficiency

6.1 Slot access

6.1.1 Structure object slot access

Structure slot accessors are efficient only if the compiler is able to open code them: compiling a
call to a structure slot accessor before the structure is defined, declaring one notinline, or passing
it as a functional argument to another function causes severe performance degradation.

6.1.2 Standard object slot access

The most efficient way to access a slot of a standard-object is by using slot-value with a
constant slot name argument inside a defmethod body, where the variable holding the instance is
a specializer parameter of the method and is never assigned to. The cost is roughly 1.6 times that
of an open coded structure slot accessor.

Second most efficient way is to use a CLOS slot accessor, or slot-value with a constant slot
name argument, but in circumstances other than specified above. This may be up to 3 times as
slow as the method described above.

Example:
(defclass foo () ((bar)))

;; Fast: specializer and never assigned to
(defmethod quux ((foo foo) new)
(let ((old (slot-value foo ’bar)))
(setf (slot-value foo ’bar) new)
old))

;; Slow: not a specializer
(defmethod quux ((foo foo) new)
(let* ((temp foo)

(old (slot-value temp ’bar)))
(setf (slot-value temp ’bar) new)
old))

;; Slow: assignment to FOO
(defmethod quux ((foo foo) new)
(let ((old (slot-value foo ’bar)))
(setf (slot-value foo ’bar) new)
(setf foo new)
old))

Note that when profiling code such as this, the first few calls to the generic function are not
representative, as the dispatch mechanism is lazily set up during those calls.

6.2 Dynamic-extent allocation

SBCL has fairly extensive support for performing allocation on the stack when a variable is declared
dynamic-extent. The dynamic-extent declarations are not verified, but are simply trusted as long
as sb-ext:*stack-allocate-dynamic-extent* is true.

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*stack-allocate-
dynamic-extent*

If true (the default), the compiler respects dynamic-extent declarations and stack allocates
otherwise inaccessible parts of the object whenever possible. Potentially long (over one page

Chapter 6: Efficiency 42

in size) vectors are, however, not stack allocated except in zero safety code, as such a vector
could overflow the stack without triggering overflow protection.

If dynamic extent constraints specified in the Common Lisp standard are violated, the best that
can happen is for the program to have garbage in variables and return values; more commonly, the
system will crash.

In particular, it is important to realize that dynamic extend is contagious:
(let* ((a (list 1 2 3))

(b (cons a a)))
(declare (dynamic-extent b))
;; Unless A is accessed elsewhere as well, SBCL will consider
;; it to be otherwise inaccessible -- it can only be accessed
;; through B, after all -- and stack allocate it as well.
;;
;; Hence returning (CAR B) here is unsafe.
...)

This allows stack allocation of complex structures. As a notable exception to this, SBCL does not
as of 1.0.48.21 propagate dynamic-extentness through &rest arguments – but another conforming
implementation might, so portable code should not rely on this.

(declaim (inline foo))
(defun foo (fun &rest arguments)
(declare (dynamic-extent arguments))
(apply fun arguments))

(defun bar (a)
;; SBCL will heap allocate the result of (LIST A), and stack allocate
;; only the spine of the &rest list -- so this is safe, but unportable.
;;
;; Another implementation, including earlier versions of SBCL might consider
;; (LIST A) to be otherwise inaccessible and stack-allocate it as well!
(foo #’car (list a)))

There are many cases when dynamic-extent declarations could be useful. At present, SBCL
implements stack allocation for
• &rest lists, when these are declared dynamic-extent.
• cons, list, list*, and vector when the result is bound to a variable declared dynamic-

extent.
• simple forms of make-array, whose result is bound to a variable declared dynamic-extent:

stack allocation is possible only if the resulting array is known to be both simple and one-
dimensional, and has a constant :element-type.
Note: stack space is limited, so allocation of a large vector may cause stack overflow. For this
reason potentially large vectors, which might circumvent stack overflow detection, are stack
allocated only in zero safety policies.

• closures defined with flet or labels, with a bound dynamic-extent declaration. Blocks and
tags are also allocated on the heap, unless all non-local control transfers to them are compiled
with zero safety.

• user-defined structures when the structure constructor defined using defstruct has been de-
clared inline and the result of the call to the constructor is bound to a variable declared
dynamic-extent.
Note: structures with “raw” slots can currently be stack-allocated only on x86 and x86-64.

• all of the above when they appear as initial parts of another stack-allocated object.

Chapter 6: Efficiency 43

Examples:
;;; Declaiming a structure constructor inline before definition makes
;;; stack allocation possible.
(declaim (inline make-thing))
(defstruct thing obj next)

;;; Stack allocation of various objects bound to DYNAMIC-EXTENT
;;; variables.
(let* ((list (list 1 2 3))

(nested (cons (list 1 2) (list* 3 4 (list 5))))
(vector (make-array 3 :element-type ’single-float))
(thing (make-thing :obj list

:next (make-thing :obj (make-array 3)))))
(declare (dynamic-extent list nested vector thing))
...)

;;; Stack allocation of arguments to a local function is equivalent
;;; to stack allocation of local variable values.
(flet ((f (x)

(declare (dynamic-extent x))
...))

...
(f (list 1 2 3))
(f (cons (cons 1 2) (cons 3 4)))
...)

;;; Stack allocation of &REST lists
(defun foo (&rest args)
(declare (dynamic-extent args))
...)

Future plans include
• Automatic detection of the common idiom of calling quantifiers with a closure, even when the

closure is not declared dynamic-extent.

6.3 Modular arithmetic

Some numeric functions have a property: N lower bits of the result depend only on N lower bits of
(all or some) arguments. If the compiler sees an expression of form (logand exp mask), where exp
is a tree of such “good” functions and mask is known to be of type (unsigned-byte w), where w
is a “good” width, all intermediate results will be cut to w bits (but it is not done for variables and
constants!). This often results in an ability to use simple machine instructions for the functions.

Consider an example.
(defun i (x y)
(declare (type (unsigned-byte 32) x y))
(ldb (byte 32 0) (logxor x (lognot y))))

The result of (lognot y) will be negative and of type (signed-byte 33), so a naive imple-
mentation on a 32-bit platform is unable to use 32-bit arithmetic here. But modular arithmetic
optimizer is able to do it: because the result is cut down to 32 bits, the compiler will replace logxor
and lognot with versions cutting results to 32 bits, and because terminals (here—expressions x
and y) are also of type (unsigned-byte 32), 32-bit machine arithmetic can be used.

As of SBCL 0.8.5 “good” functions are +, -; logand, logior, logxor, lognot and their combi-
nations; and ash with the positive second argument. “Good” widths are 32 on HPPA, MIPS, PPC,

Chapter 6: Efficiency 44

Sparc and x86 and 64 on Alpha. While it is possible to support smaller widths as well, currently
this is not implemented.

6.4 Global and Always-Bound variables

[Macro]\smallertt\phantomconcurrency:\llapsb-ext:defglobal name value
&optional doc

Defines name as a global variable that is always bound. value is evaluated and assigned to name
both at compile- and load-time, but only if name is not already bound.

Global variables share their values between all threads, and cannot be locally bound, declared
special, defined as constants, and neither bound nor defined as symbol macros.

See also the declarations sb-ext:global and sb-ext:always-bound.

[Declaration]\smallertt\phantomconcurrency:\llapsb-ext:global
Syntax: (sb-ext:global symbol*)

Only valid as a global proclamation.

Specifies that the named symbols cannot be proclaimed or locally declared special. Proclaiming
an already special or constant variable name as global signal an error. Allows more efficient
value lookup in threaded environments in addition to expressing programmer intention.

[Declaration]\smallertt\phantomconcurrency:\llapsb-ext:always-bound
Syntax: (sb-ext:always-bound symbol*)

Only valid as a global proclamation.

Specifies that the named symbols are always bound. Inhibits makunbound of the named symbols.
Proclaiming an unbound symbol as always-bound signals an error. Allows the compiler to elide
boundness checks from value lookups.

6.5 Miscellaneous Efficiency Issues

FIXME: The material in the CMUCL manual about getting good performance from the compiler
should be reviewed, reformatted in Texinfo, lightly edited for SBCL, and substituted into this
manual. In the meantime, the original CMUCL manual is still 95+% correct for the SBCL version
of the Python compiler. See the sections

• Advanced Compiler Use and Efficiency Hints

• Advanced Compiler Introduction

• More About Types in Python

• Type Inference

• Source Optimization

• Tail Recursion

• Local Call

• Block Compilation

• Inline Expansion

• Object Representation

• Numbers

• General Efficiency Hints

• Efficiency Notes

Besides this information from the CMUCL manual, there are a few other points to keep in mind.

Chapter 6: Efficiency 45

• The CMUCL manual doesn’t seem to state it explicitly, but Python has a mental block about
type inference when assignment is involved. Python is very aggressive and clever about infer-
ring the types of values bound with let, let*, inline function call, and so forth. However, it’s
much more passive and dumb about inferring the types of values assigned with setq, setf, and
friends. It would be nice to fix this, but in the meantime don’t expect that just because it’s
very smart about types in most respects it will be smart about types involved in assignments.
(This doesn’t affect its ability to benefit from explicit type declarations involving the assigned
variables, only its ability to get by without explicit type declarations.)

• Since the time the CMUCL manual was written, CMUCL (and thus SBCL) has gotten a
generational garbage collector. This means that there are some efficiency implications of
various patterns of memory usage which aren’t discussed in the CMUCL manual. (Some new
material should be written about this.)

• SBCL has some important known efficiency problems. Perhaps the most important are
− The garbage collector is not particularly efficient, at least on platforms without the gen-

erational collector (as of SBCL 0.8.9, all except x86).
− Various aspects of the PCL implementation of CLOS are more inefficient than necessary.

Finally, note that Common Lisp defines many constructs which, in the infamous phrase, “could
be compiled efficiently by a sufficiently smart compiler”. The phrase is infamous because making
a compiler which actually is sufficiently smart to find all these optimizations systematically is
well beyond the state of the art of current compiler technology. Instead, they’re optimized on a
case-by-case basis by hand-written code, or not optimized at all if the appropriate case hasn’t been
hand-coded. Some cases where no such hand-coding has been done as of SBCL version 0.6.3 include
• (reduce #’f x) where the type of x is known at compile time
• various bit vector operations, e.g. (position 0 some-bit-vector)

• specialized sequence idioms, e.g. (remove item list :count 1)

• cases where local compilation policy does not require excessive type checking, e.g. (locally
(declare (safety 1)) (assoc item list)) (which currently performs safe endp checking in-
ternal to assoc).

If your system’s performance is suffering because of some construct which could in principle be
compiled efficiently, but which the SBCL compiler can’t in practice compile efficiently, consider
writing a patch to the compiler and submitting it for inclusion in the main sources. Such code is
often reasonably straightforward to write; search the sources for the string “deftransform” to find
many examples (some straightforward, some less so).

Chapter 7: Beyond the ANSI Standard 46

7 Beyond the ANSI Standard

SBCL is derived from CMUCL, which implements many extensions to the ANSI standard. SBCL
doesn’t support as many extensions as CMUCL, but it still has quite a few. See Chapter 16
[Contributed Modules], page 133.

7.1 Reader Extensions

SBCL supports extended package prefix syntax, which allows specifying an alternate package in-
stead of *package* for the reader to use as the default package for interning symbols:

package-name::form-with-interning-into-package

Example:
’foo::(bar quux zot) == ’(foo::bar foo::quux foo::zot)

Doesn’t alter *package*: if foo::bar would cause a read-time package lock violation, so does
foo::(bar).

SBCL also extends the reader to normalize all symbols to Normalization Form KC in builds
with Unicode enabled. Whether symbols are normalized is controlled by

[Function]\smallertt\phantomconcurrency:\llapsb-ext:readtable-
normalization
readtable

Returns t if readtable normalizes strings to nfkc, and nil otherwise. The readtable-
normalization of the standard readtable is t.

Symbols created by intern and similar functions are not affected by this setting. If sb-
ext:readtable-normalization is t, symbols that are not normalized are escaped during printing.

7.2 Package-Local Nicknames

SBCL allows giving packages local nicknames: they allow short and easy-to-use names to be used
without fear of name conflict associated with normal nicknames.

A local nickname is valid only when inside the package for which it has been specified. Different
packages can use same local nickname for different global names, or different local nickname for
same global name.

Symbol :package-local-nicknames in *features* denotes the support for this feature.

[Macro]\smallertt\phantomconcurrency:\llapcl:defpackage name [[option]]* ⇒
package

Options are extended to include
• :local-nicknames (local-nickname actual-package-name)*

The package has the specified local nicknames for the corresponding actual packages.

Example:
(defpackage :bar (:intern "X"))
(defpackage :foo (:intern "X"))
(defpackage :quux (:use :cl) (:local-nicknames (:bar :foo) (:foo :bar)))
(find-symbol "X" :foo) ; => FOO::X
(find-symbol "X" :bar) ; => BAR::X
(let ((*package* (find-package :quux)))
(find-symbol "X" :foo)) ; => BAR::X

(let ((*package* (find-package :quux)))
(find-symbol "X" :bar)) ; => FOO::X

Chapter 7: Beyond the ANSI Standard 47

[Function]\smallertt\phantomconcurrency:\llapsb-ext:package-local-
nicknames
package-designator

Returns an alist of (local-nickname . actual-package) describing the nicknames local to the
designated package.
When in the designated package, calls to find-package with the any of the local-nicknames
will return the corresponding actual-package instead. This also affects all implied calls to find-
package, including those performed by the reader.
When printing a package prefix for a symbol with a package local nickname, the local nickname
is used instead of the real name in order to preserve print-read consistency.
See also: add-package-local-nickname, package-locally-nicknamed-by-list, remove-
package-local-nickname, and the defpackage option :local-nicknames.
Experimental: interface subject to change.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:package-locally-
nicknamed-by-list
package-designator

Returns a list of packages which have a local nickname for the designated package.
See also: add-package-local-nickname, package-local-nicknames, remove-package-
local-nickname, and the defpackage option :local-nicknames.
Experimental: interface subject to change.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:add-package-local-
nickname local-nickname actual-package &optional
package-designator

Adds local-nickname for actual-package in the designated package, defaulting to current
package. local-nickname must be a string designator, and actual-package must be a package
designator.
Returns the designated package.
Signals a continuable error if local-nickname is already a package local nickname for a different
package, or if local-nickname is one of "CL", "COMMON-LISP", or, "KEYWORD", or if
local-nickname is a global name or nickname for the package to which the nickname would be
added.
When in the designated package, calls to find-package with the local-nickname will return
the package the designated actual-package instead. This also affects all implied calls to find-
package, including those performed by the reader.
When printing a package prefix for a symbol with a package local nickname, local nickname is
used instead of the real name in order to preserve print-read consistency.
See also: package-local-nicknames, package-locally-nicknamed-by-list, remove-
package-local-nickname, and the defpackage option :local-nicknames.
Experimental: interface subject to change.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:remove-package-local-
nickname old-nickname &optional
package-designator

If the designated package had old-nickname as a local nickname for another package, it is
removed. Returns true if the nickname existed and was removed, and nil otherwise.
See also: add-package-local-nickname, package-local-nicknames, package-locally-
nicknamed-by-list, and the defpackage option :local-nicknames.
Experimental: interface subject to change.

Chapter 7: Beyond the ANSI Standard 48

7.3 Package Variance

Common Lisp standard specifies that “If the new definition is at variance with the current state of
that package, the consequences are undefined;” SBCL by default signals a full warning and retains
as much of the package state as possible.

This can be adjusted using sb-ext:*on-package-variance*:

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*on-package-variance*
Specifies behavior when redefining a package using defpackage and the definition is in variance
with the current state of the package.
The value should be of the form:

(:WARN [T | packages-names] :ERROR [T | package-names])

specifying which packages get which behaviour -- with t signifying the default unless otherwise
specified. If default is not specified, :warn is used.
:warn keeps as much state as possible and causes sbcl to signal a full warning.
:error causes sbcl to signal an error when the variant defpackage form is executed, with
restarts provided for user to specify what action should be taken.
Example:

(setf *on-package-variance* ’(:warn (:swank :swank-backend) :error t))

specifies to signal a warning if swank package is in variance, and an error otherwise.

7.4 Garbage Collection

SBCL provides additional garbage collection functionality not specified by ANSI.

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*after-gc-hooks*
Called after each garbage collection, except for garbage collections triggered during thread exits.
In a multithreaded environment these hooks may run in any thread.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:gc &key full gen
&allow-other-keys

Initiate a garbage collection.
The default is to initiate a nursery collection, which may in turn trigger a collection of one or
more older generations as well. If full is true, all generations are collected. If gen is provided,
it can be used to specify the oldest generation guaranteed to be collected.
On CheneyGC platforms arguments full and gen take no effect: a full collection is always
performed.

7.4.1 Finalization

Finalization allows code to be executed after an object has been garbage collected. This is useful
for example for releasing foreign memory associated with a Lisp object.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:finalize object function
&key dont-save

Arrange for the designated function to be called when there are no more references to object,
including references in function itself.
If dont-save is true, the finalizer will be cancelled when save-lisp-and-die is called: this is
useful for finalizers deallocating system memory, which might otherwise be called with addresses
from the old image.
In a multithreaded environment function may be called in any thread. In both single and
multithreaded environments function may be called in any dynamic scope: consequences are
unspecified if function is not fully re-entrant.

Chapter 7: Beyond the ANSI Standard 49

Errors from function are handled and cause a warning to be signalled in whichever thread the
function was called in.

Examples:

;;; GOOD, assuming RELEASE-HANDLE is re-entrant.
(let* ((handle (get-handle))

(object (make-object handle)))
(finalize object (lambda () (release-handle handle)))
object)

;;; BAD, finalizer refers to object being finalized, causing
;;; it to be retained indefinitely!
(let* ((handle (get-handle))

(object (make-object handle)))
(finalize object

(lambda ()
(release-handle (object-handle object)))))

;;; BAD, not re-entrant!
(defvar *rec* nil)

(defun oops ()
(when *rec*
(error "recursive OOPS"))

(let ((*rec* t))
(gc))) ; or just cons enough to cause one

(progn
(finalize "oops" #’oops)
(oops)) ; GC causes re-entry to #’oops due to the finalizer

; -> ERROR, caught, WARNING signalled

[Function]\smallertt\phantomconcurrency:\llapsb-ext:cancel-finalization
object

Cancel any finalization for object.

7.4.2 Weak Pointers

Weak pointers allow references to objects to be maintained without keeping them from being
garbage collected: useful for building caches among other things.

Hash tables can also have weak keys and values: see Section 7.12 [Hash Table Extensions],
page 67.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:make-weak-pointer
object

Allocate and return a weak pointer which points to object.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:weak-pointer-value
weak-pointer

If weak-pointer is valid, return the value of weak-pointer and t. If the referent of weak-
pointer has been garbage collected, returns the values nil and nil.

7.4.3 Introspection and Tuning

Chapter 7: Beyond the ANSI Standard 50

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*gc-run-time*
Total cpu time spent doing garbage collection (as reported by get-internal-run-time.) Ini-
tialized to zero on startup. It is safe to bind this to zero in order to measure gc time inside a
certain section of code, but doing so may interfere with results reported by eg. time.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:bytes-consed-between-
gcs

The amount of memory that will be allocated before the next garbage collection is initiated.
This can be set with setf.

On gencgc platforms this is the nursery size, and defaults to 5% of dynamic space size.

Note: currently changes to this value are lost when saving core.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:dynamic-space-size
Size of the dynamic space in bytes.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:get-bytes-consed
Return the number of bytes consed since the program began. Typically this result will be a
consed bignum, so if you have an application (e.g. profiling) which can’t tolerate the overhead
of consing bignums, you’ll probably want either to hack in at a lower level (as the code in the
sb-profile package does), or to design a more microefficient interface and submit it as a patch.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:gc-logfile
Return the pathname used to log garbage collections. Can be setf. Default is nil, meaning
collections are not logged. If non-null, the designated file is opened before and after each
collection, and generation statistics are appended to it.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:generation-average-age
generation

Average age of memory allocated to generation: average number of times objects allocated to
the generation have seen younger objects promoted to it. Available on gencgc platforms only.

Experimental: interface subject to change.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:generation-bytes-
allocated
generation

Number of bytes allocated to generation currently. Available on gencgc platforms only.

Experimental: interface subject to change.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:generation-bytes-
consed-between-gcs
generation

Number of bytes that can be allocated to generation before that generation is considered
for garbage collection. This value is meaningless for generation 0 (the nursery): see bytes-
consed-between-gcs instead. Default is 5% of the dynamic space size divided by the number
of non-nursery generations. Can be assigned to using setf. Available on gencgc platforms only.

Experimental: interface subject to change.

Chapter 7: Beyond the ANSI Standard 51

[Function]\smallertt\phantomconcurrency:\llapsb-ext:generation-minimum-
age-before-gc
generation

Minimum average age of objects allocated to generation before that generation is may be
garbage collected. Default is 0.75. See also generation-average-age. Can be assigned to
using setf. Available on gencgc platforms only.
Experimental: interface subject to change.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:generation-number-of-
gcs-before-promotion
generation

Number of times garbage collection is done on generation before automatic promotion to the
next generation is triggered. Default is 1. Can be assigned to using setf. Available on gencgc
platforms only.
Experimental: interface subject to change.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:generation-number-of-
gcs
generation

Number of times garbage collection has been done on generation without promotion. Available
on gencgc platforms only.
Experimental: interface subject to change.

7.5 Metaobject Protocol

7.5.1 AMOP Compatibility of Metaobject Protocol

SBCL supports a metaobject protocol which is intended to be compatible with AMOP; present
exceptions to this (as distinct from current bugs) are:
• compute-effective-method only returns one value, not two.

There is no record of what the second return value was meant to indicate, and apparently no
clients for it.

• The direct superclasses of funcallable-standard-object are (function standard-object),
not (standard-object function).
This is to ensure that the standard-object class is the last of the standardized classes before t
appearing in the class precedence list of generic-function and standard-generic-function,
as required by section 1.4.4.5 of the ANSI specification.

• the arguments :declare and :declarations to ensure-generic-function are both ac-
cepted, with the leftmost argument defining the declarations to be stored and returned by
generic-function-declarations.
Where AMOP specifies :declarations as the keyword argument to ensure-generic-
function, the Common Lisp standard specifies :declare. Portable code should use :declare.

• although SBCL obeys the requirement in AMOP that validate-superclass should treat
standard-class and funcallable-standard-class as compatible metaclasses, we impose an
additional requirement at class finalization time: a class of metaclass funcallable-standard-
class must have function in its superclasses, and a class of metaclass standard-class must
not.
After a class has been finalized, it is associated with a class prototype which is accessible
by a standard mop function class-prototype. The user can then ask whether this object
is a function or not in several different ways: whether it is a function according to typep;
whether its class-of is subtypep function, or whether function appears in the superclasses

Chapter 7: Beyond the ANSI Standard 52

of the class. The additional consistency requirement comes from the desire to make all of these
answers the same.

The following class definitions are bad, and will lead to errors either immediately or if an
instance is created:

(defclass bad-object (funcallable-standard-object)
()
(:metaclass standard-class))

(defclass bad-funcallable-object (standard-object)
()
(:metaclass funcallable-standard-class))

The following definition is acceptable:

(defclass mixin ()
((slot :initarg slot)))

(defclass funcallable-object (funcallable-standard-object mixin)
()
(:metaclass funcallable-standard-class))

and leads to a class whose instances are funcallable and have one slot.

Note that this requirement also applies to the class funcallable-standard-object, which has
metaclass funcallable-standard-class rather than standard-class as AMOP specifies.

• the requirement that “No portable class Cp may inherit, by virtue of being a direct or indirect
subclass of a specified class, any slot for which the name is a symbol accessible in the common-
lisp-user package or exported by any package defined in the ANSI Common Lisp standard.”
is interpreted to mean that the standardized classes themselves should not have slots named
by external symbols of public packages.

The rationale behind the restriction is likely to be similar to the ANSI Common Lisp restriction
on defining functions, variables and types named by symbols in the Common Lisp package:
preventing two independent pieces of software from colliding with each other.

• specializations of the new-value argument to (setf slot-value-using-class) are not al-
lowed: all user-defined methods must have a specializer of the class t.

This prohibition is motivated by a separation of layers: the slot-value-using-class family
of functions is intended for use in implementing different and new slot allocation strategies,
rather than in performing application-level dispatching. Additionally, with this requirement,
there is a one-to-one mapping between metaclass, class and slot-definition-class tuples and
effective methods of (setf slot-value-using-class), which permits optimization of (setf
slot-value-using-class)’s discriminating function in the same manner as for slot-value-
using-class and slot-boundp-using-class.

Note that application code may specialize on the new-value argument of slot accessors.

• the class named by the name argument to ensure-class, if any, is only redefined if it is the
proper name of that class; otherwise, a new class is created.

This is consistent with the description of ensure-class in AMOP as the functional version of
defclass, which has this behaviour; however, it is not consistent with the weaker requirement
in AMOP, which states that any class found by find-class, no matter what its class-name,
is redefined.

• an error is not signaled in the case of the :name initialization argument for slot-definition
objects being a constant, when the slot definition is of type structure-slot-definition (i.e.
it is associated with a class of type structure-class).

This allows code which uses constant names for structure slots to continue working as specified
in ANSI, while enforcing the constraint for all other types of slot.

Chapter 7: Beyond the ANSI Standard 53

• the class named t is not an instance of the built-in-class metaclass.

AMOP specifies, in the “Inheritance Structure of Metaobject Classes” section, that the class
named t should be an instance of built-in-class. However, it also specifies that validate-
superclass should return true (indicating that a direct superclass relationship is permissible)
if the second argument is the class named t. Also, ANSI specifies that classes with metaclass
built-in-class may not be subclassed using defclass, and also that the class named t is
the universal superclass, inconsistent with it being a built-in-class.

7.5.2 Metaobject Protocol Extensions

In addition, SBCL supports extensions to the Metaobject protocol from AMOP; at present, they
are:

• compile-time support for generating specializer metaobjects from specializer names in
defmethod forms is provided by the make-method-specializers-form function, which
returns a form which, when evaluated in the lexical environment of the defmethod, returns a
list of specializer metaobjects. This operator suffers from similar restrictions to those affecting
make-method-lambda, namely that the generic function must be defined when the defmethod
form is expanded, so that the correct method of make-method-specializers-form is
invoked. The system-provided method on make-method-specializers-form generates a call
to find-class for each symbol specializer name, and a call to intern-eql-specializer for
each (eql x) specializer name.

• run-time support for converting between specializer names and specializer metaobjects, mostly
for the purposes of find-method, is provided by parse-specializer-using-class and
unparse-specializer-using-class, which dispatch on their first argument, the generic func-
tion associated with a method with the given specializer. The system-provided methods on
those methods convert between classes and proper names and between lists of the form (eql
x) and interned eql specializer objects.

• distinguishing unbound instance allocated slots from bound ones when using standard-
instance-access and funcallable-standard-instance-access is possible by comparison
to the symbol-macro +slot-unbound+.

7.6 Extensible Sequences

ANSI Common Lisp has a class sequence with subclasses list and vector on which the “sequence
functions” like find, subseq, etc. operate. As an extension to the ANSI specification, SBCL allows
additional subclasses of sequence to be defined1.

Users of this extension just make instances of sequence subclasses and transparently operate
on them using sequence functions:

(coerce (subseq (make-instance ’my-sequence) 5 10) ’list)

From this perspective, no distinction between builtin and user-defined sequence subclasses
should be necessary.

Providers of the extension, that is of user-defined sequence subclasses, have to adhere to a
“sequence protocol” which consists of a set of generic functions in the sequence package.

A minimal sequence subclass has to specify standard-object and sequence as its superclasses
and has to be the specializer of the sequence parameter of methods on at least the following generic
functions:

1 A motivation, rationale and additional examples for the design of this extension can be found in the
paper Rhodes, Christophe (2007): User-extensible sequences in Common Lisp available for download at
http://www.doc.gold.ac.uk/~mas01cr/papers/ilc2007/sequences-20070301.pdf.

http://www.doc.gold.ac.uk/~mas01cr/papers/ilc2007/sequences-20070301.pdf

Chapter 7: Beyond the ANSI Standard 54

[Generic Function]\smallertt\phantomconcurrency:\llapsb-sequence:length
sequence

Returns the length of sequence or signals a protocol-unimplemented error if the sequence
protocol is not implemented for the class of sequence.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-sequence:elt sequence
index

Returns the element at position index of sequence or signals a protocol-unimplemented error
if the sequence protocol is not implemented for the class of sequence.

[Generic Function](setf \smallertt\phantomconcurrency:\llapsb-sequence:elt)
Replaces the element at position index of sequence with new-value and returns new-value or
signals a protocol-unimplemented error if the sequence protocol is not implemented for the
class of sequence.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-sequence:adjust-
sequence sequence length &key initial-element
initial-contents

Return destructively modified sequence or a freshly allocated sequence of the same class as
sequence of length length. Elements of the returned sequence are initialized to initial-
element, if supplied, initialized to initial-contents if supplied, or identical to the elements
of sequence if neither is supplied. Signals a protocol-unimplemented error if the sequence
protocol is not implemented for the class of sequence.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-sequence:make-
sequence-like sequence length &key initial-element
initial-contents

Returns a freshly allocated sequence of length length and of the same class as sequence.
Elements of the new sequence are initialized to initial-element, if supplied, initialized to
initial-contents if supplied, or identical to the elements of sequence if neither is supplied.
Signals a protocol-unimplemented error if the sequence protocol is not implemented for the
class of sequence.

make-sequence-like is needed for functions returning freshly-allocated sequences such as
subseq or copy-seq. adjust-sequence is needed for functions which destructively modify their
arguments such as delete. In fact, all other sequence functions can be implemented in terms of
the above functions and actually are, if no additional methods are defined. However, relying on
these generic implementations, in particular not implementing the iterator protocol can incur a
high performance penalty See Section 7.6.1 [Iterator Protocol], page 56.

When the sequence protocol is only partially implemented for a given sequence subclass, an
attempt to apply one of the missing operations to instances of that class signals the following
condition:

[Condition]\smallertt\phantomconcurrency:\llapsb-sequence:protocol-
unimplemented

Class precedence list: \llwprotocol-unimplemented%, \llwtype-error%, \llwerror%,
\llwserious-condition%, \llwcondition%, \llwt%

This error is signaled if a sequence operation is applied to an instance of a sequence class that
does not support the operation.

In addition to the mandatory functions above, methods on the sequence functions listed below
can be defined.

There are two noteworthy irregularities:

Chapter 7: Beyond the ANSI Standard 55

• The function sb-sequence:emptyp does not have a counterpart in the cl package. It is
intended to be used instead of length when working with lazy or infinite sequences.

• The functions map, concatenate and merge receive a type designator specifying the type of
the constructed sequence as their first argument. However, the corresponding generic functions
sb-sequence:map, sb-sequence:concatenate and sb-sequence:merge receive a prototype
instance of the requested sequence subclass instead.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-sequence:emptyp
sequence

Returns t if sequence is an empty sequence and nil otherwise. Signals an error if sequence is
not a sequence.

• sb-sequence:count, sb-sequence:count-if, sb-sequence:count-if-not
• sb-sequence:find, sb-sequence:find-if, sb-sequence:find-if-not
• sb-sequence:position, sb-sequence:position-if, sb-sequence:position-if-not
• sb-sequence:subseq

• sb-sequence:copy-seq

• sb-sequence:fill

•

[Generic Function]\smallertt\phantomconcurrency:\llapsb-sequence:map
result-prototype function sequence &rest sequences

Implements cl:map for extended sequences.
result-prototype corresponds to the result-type of cl:map but receives a prototype
instance of an extended sequence class instead of a type specifier. By dispatching on result-
prototype, methods on this generic function specify how extended sequence classes act
when they are specified as the result type in a cl:map call. result-prototype may not be
fully initialized and thus should only be used for dispatch and to determine its class.
Another difference to cl:map is that function is a function, not a function designator.

• sb-sequence:nsubstitute, sb-sequence:nsubstitute-if, sb-sequence:nsubstitute-
if-not, sb-sequence:substitute, sb-sequence:substitute-if, sb-
sequence:substitute-if-not

• sb-sequence:replace

• sb-sequence:nreverse, sb-sequence:reverse
•

[Generic Function]\smallertt\phantomconcurrency:\llapsb-
sequence:concatenate result-prototype &rest
sequences

Implements cl:concatenate for extended sequences.
result-prototype corresponds to the result-type of cl:concatenate but receives a
prototype instance of an extended sequence class instead of a type specifier. By dispatching
on result-prototype, methods on this generic function specify how extended sequence
classes act when they are specified as the result type in a cl:concatenate call. result-
prototype may not be fully initialized and thus should only be used for dispatch and to
determine its class.

• sb-sequence:reduce

• sb-sequence:mismatch

• sb-sequence:search

Chapter 7: Beyond the ANSI Standard 56

• sb-sequence:delete, sb-sequence:delete-if, sb-sequence:delete-if-not,
sb-sequence:remove, sb-sequence:remove-if, sb-sequence:remove-if-not,

• sb-sequence:delete-duplicates, sb-sequence:remove-duplicates

• sb-sequence:sort, sb-sequence:stable-sort

•

[Generic Function]\smallertt\phantomconcurrency:\llapsb-sequence:merge
result-prototype sequence1 sequence2 predicate &key key

Implements cl:merge for extended sequences.

result-prototype corresponds to the result-type of cl:merge but receives a prototype
instance of an extended sequence class instead of a type specifier. By dispatching on result-
prototype, methods on this generic function specify how extended sequence classes act
when they are specified as the result type in a cl:merge call. result-prototype may not
be fully initialized and thus should only be used for dispatch and to determine its class.

Another difference to cl:merge is that predicate is a function, not a function designator.

In the spirit of dolist, generic sequences can be traversed using the macro

[Macro]\smallertt\phantomconcurrency:\llapsb-sequence:dosequence (element
sequence &optional return) &body body

Executes body with element subsequently bound to each element of sequence, then returns
return.

7.6.1 Iterator Protocol

The iterator protocol allows subsequently accessing some or all elements of a sequence in forward or
reverse direction. Users first call make-sequence-iterator to create an iteration state and receive
functions to query and mutate it. These functions allow, among other things, moving to, retrieving
or modifying elements of the sequence. An iteration state consists of a state object, a limit object,
a from-end indicator and the following six functions to query or mutate this state:

[Function]step function sequence iterator from-end
Moves the iterator one position forward or backward in the associated sequence depending on
the iteration direction.

[Function]endp function sequence iterator limit from-end
Returns non-nil when the iterator has reached the end of the associated sequence with respect
to the iteration direction.

[Function]element function sequence iterator
Returns the sequence element associated to the current position of the iteration.

[Function]setf element function new-value sequence iterator
Destructively modifies the associates sequence by replacing the sequence element associated to
the current iteration position with a new value.

[Function]index function sequence iterator
Returns the position of the iteration in the associated sequence.

[Function]copy function sequence iterator
Returns a copy of the iteration state which can be mutated independently of the copied iteration
state.

An iterator is created by calling:

Chapter 7: Beyond the ANSI Standard 57

[Generic Function]\smallertt\phantomconcurrency:\llapsb-sequence:make-
sequence-iterator sequence &key from-end start
end

Returns a sequence iterator for sequence or, if start and/or end are supplied, the subsequence
bounded by start and end as nine values:

1. iterator state 2. limit 3. from-end 4. step function 5. endp function 6. element function 7.
setf element function 8. index function 9. copy state function

If from-end is nil, the constructed iterator visits the specified elements in the order in which
they appear in sequence. Otherwise, the elements are visited in the opposite order.

Note that make-sequence-iterator calls make-simple-sequence-iterator when there is no
specialized method for a particular sequence subclass. See Section 7.6.2 [Simple Iterator Protocol],
page 57.

The following convenience macros simplify traversing sequences using iterators:

[Macro]\smallertt\phantomconcurrency:\llapsb-sequence:with-sequence-
iterator (&rest vars) (sequence &rest args &key from-end start end) &body
body

Executes body with the elements of vars bound to the iteration state returned by make-
sequence-iterator for sequence and args. Elements of vars may be nil in which case
the corresponding value returned by make-sequence-iterator is ignored.

[Macro]\smallertt\phantomconcurrency:\llapsb-sequence:with-sequence-
iterator-functions (step endp elt setf index copy) (sequence &rest args &key
from-end start end) &body body

Executes body with the names step, endp, elt, setf, index and copy bound to local functions
which execute the iteration state query and mutation functions returned by make-sequence-
iterator for sequence and args. step, endp, elt, setf, index and copy have dynamic extent.

7.6.2 Simple Iterator Protocol

For cases in which the full flexibility and performance of the general sequence iterator protocol is
not required, there is a simplified sequence iterator protocol consisting of a few generic functions
which can be specialized for iterator classes:

[Generic Function]\smallertt\phantomconcurrency:\llapsb-sequence:iterator-
step sequence iterator
from-end

Moves iterator one position forward or backward in sequence depending on the iteration
direction encoded in from-end.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-sequence:iterator-
endp sequence iterator limit
from-end

Returns non-NIL when iterator has reached limit (which may correspond to the end of
SEQUENCE) with respect to the iteration direction encoded in from-end.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-sequence:iterator-
element sequence
iterator

Returns the element of sequence associated to the position of iterator.

Chapter 7: Beyond the ANSI Standard 58

[Generic Function](setf
\smallertt\phantomconcurrency:\llapsb-sequence:iterator-element)

Destructively modifies sequence by replacing the sequence element associated to position of
iterator with new-value.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-sequence:iterator-
index sequence
iterator

Returns the position of iterator in sequence.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-sequence:iterator-
copy sequence
iterator

Returns a copy of iterator which also traverses sequence but can be mutated independently
of iterator.

Iterator objects implementing the above simple iteration protocol are created by calling the
following generic function:

[Generic Function]\smallertt\phantomconcurrency:\llapsb-sequence:make-
simple-sequence-iterator sequence &key from-end start
end

Returns a sequence iterator for sequence, start, end and from-end as three values:
1. iterator state 2. limit 3. from-end
The returned iterator can be used with the generic iterator functions iterator-step, iterator-
endp, iterator-element, (SETF ITERATOR-ELEMENT), iterator-index and iterator-
copy.

7.7 Support For Unix

7.7.1 Command-line arguments

The UNIX command line can be read from the variable sb-ext:*posix-argv*.

7.7.2 Querying the process environment

The UNIX environment can be queried with the sb-ext:posix-getenv function.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:posix-getenv name
Return the "value" part of the environment string "name=value" which corresponds to name,
or nil if there is none.

7.7.3 Running external programs

External programs can be run with sb-ext:run-program.2

[Function]\smallertt\phantomconcurrency:\llapsb-ext:run-program program args
&key env environment wait search pty input if-input-does-not-exist output
if-output-exists error if-error-exists status-hook external-format directory

run-program creates a new process specified by the program argument. args are the standard
arguments that can be passed to a program. For no arguments, use nil (which means that just
the name of the program is passed as arg 0).

2 In SBCL versions prior to 1.0.13, sb-ext:run-program searched for executables in a manner somewhat incom-
patible with other languages. As of this version, SBCL uses the system library routine execvp(3), and no
longer contains the function, find-executable-in-search-path, which implemented the old search. Users who
need this function may find it in ‘run-program.lisp’ versions 1.67 and earlier in SBCL’s CVS repository here
http://sbcl.cvs.sourceforge.net/sbcl/sbcl/src/code/run-program.lisp?view=log. However, we caution
such users that this search routine finds executables that system library routines do not.

http://sbcl.cvs.sourceforge.net/sbcl/sbcl/src/code/run-program.lisp?view=log

Chapter 7: Beyond the ANSI Standard 59

The program arguments and the environment are encoded using the default external format for
streams.

run-program will return a process structure. See the cmu Common Lisp Users Manual for
details about the process structure.

Notes about Unix environments (as in the :environment and :env args):

• The sbcl implementation of run-program, like Perl and many other programs, but unlike
the original cmu cl implementation, copies the Unix environment by default.

• Running Unix programs from a setuid process, or in any other situation where the Unix
environment is under the control of someone else, is a mother lode of security problems.
If you are contemplating doing this, read about it first. (The Perl community has a lot of
good documentation about this and other security issues in script-like programs.)

The &key arguments have the following meanings:
:environment

a list of STRINGs describing the new Unix environment (as in "man environ"). The
default is to copy the environment of the current process.

:env an alternative lossy representation of the new Unix environment, for compatibility
with cmu cl

:search Look for program in each of the directories in the child’s $PATH environment vari-
able. Otherwise an absolute pathname is required.

:wait If non-NIL (default), wait until the created process finishes. If nil, continue running
Lisp until the program finishes.

:pty Either t, nil, or a stream. Unless nil, the subprocess is established under a pty. If
:pty is a stream, all output to this pty is sent to this stream, otherwise the process-
pty slot is filled in with a stream connected to pty that can read output and write
input.

:input Either t, nil, a pathname, a stream, or :stream. If t, the standard input for the
current process is inherited. If nil, /dev/null is used. If a pathname, the file so
specified is used. If a stream, all the input is read from that stream and sent to
the subprocess. If :stream, the process-input slot is filled in with a stream that
sends its output to the process. Defaults to nil.

:if-input-does-not-exist (when :input is the name of a file)
can be one of: :error to generate an error :create to create an empty file nil (the
default) to return nil from run-program

:output Either t, nil, a pathname, a stream, or :stream. If t, the standard output for
the current process is inherited. If nil, /dev/null is used. If a pathname, the file
so specified is used. If a stream, all the output from the process is written to this
stream. If :stream, the process-output slot is filled in with a stream that can be
read to get the output. Defaults to nil.

:if-output-exists (when :output is the name of a file)
can be one of: :error (the default) to generate an error :supersede to supersede
the file with output from the program :append to append output from the program
to the file nil to return nil from run-program, without doing anything

:error and :if-error-exists
Same as :output and :if-output-exists, except that :error can also be specified
as :output in which case all error output is routed to the same place as normal
output.

Chapter 7: Beyond the ANSI Standard 60

:status-hook
This is a function the system calls whenever the status of the process changes. The
function takes the process as an argument.

:external-format
The external-format to use for :input, :output, and :error :STREAMs.

:directory
Specifies the directory in which the program should be run. nil (the default) means
the directory is unchanged.

Windows specific options:
:escape-arguments (default T)

Controls escaping of the arguments passed to CreateProcess.

When sb-ext:run-program is called with wait equal to NIL, an instance of class sb-ext:process
is returned. The following functions are available for use with processes:

[Function]\smallertt\phantomconcurrency:\llapsb-ext:process-p object
t if object is a process, nil otherwise.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:process-input instance
The input stream of the process or nil.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:process-output instance
The output stream of the process or nil.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:process-error instance
The error stream of the process or nil.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:process-alive-p process
Return t if process is still alive, nil otherwise.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:process-status process
Return the current status of process. The result is one of :running, :stopped, :exited, or
:signaled.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:process-wait process
&optional check-for-stopped

Wait for process to quit running for some reason. When check-for-stopped is t, also returns
when process is stopped. Returns process.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:process-exit-code
process

The exit code or the signal of a stopped process.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:process-core-dumped
instance

t if a core image was dumped by the process.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:process-close process
Close all streams connected to process and stop maintaining the status slot.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:process-kill process
signal &optional whom

Hand signal to process. If whom is :pid, use the kill Unix system call. If whom is :process-
group, use the killpg Unix system call. If whom is :pty-process-group deliver the signal to
whichever process group is currently in the foreground.

Chapter 7: Beyond the ANSI Standard 61

7.8 Unicode Support

SBCL provides support for working with Unicode text and querying the standard Unicode database
for information about individual codepoints. Unicode-related functions are located in the sb-
unicode package.

SBCL also extends ANSI character literal syntax to support Unicode codepoints. You can either
specify a character by its Unicode name, with spaces replaced by underscores, if a unique name
exists3 or by giving its hexadecimal codepoint preceded by a “U”, an optional “+”, and an arbitrary
number of leading zeros. You may also input the character directly into your source code if it can
be encoded in your file. If a character had an assigned name in Unicode 1.0 that was distinct from
its current name, you may also use that name (with spaces replaced by underscores) to specify the
character, unless the name is already associated with a codepoint in the latest Unicode standard
(such as “BELL”).

For example, you can specify the codepoint U+00E1 (“Latin Small Letter A With Acute”) as
• #\LATIN_SMALL_LETTER_A_WITH_ACUTE

• #\LATIN_SMALL_LETTER_A_ACUTE

• #\ assuming a Unicode source file
• #\U00E1

• #\UE1

• #\U+00E1

7.8.1 Unicode property access

The following functions can be used to find information about a Unicode codepoint.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:general-category
character

Returns the general category of character as it appears in UnicodeData.txt

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:bidi-class character
Returns the bidirectional class of character

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:combining-class
character

Returns the canonical combining class (CCC) of character

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:decimal-value
character

Returns the decimal digit value associated with character or nil if there is no such value.
The only characters in Unicode with a decimal digit value are those that are part of a range of
characters that encode the digits 0-9. Because of this, ‘(decimal-digit c) <=> (digit-char-p c 10)‘
in #+sb-unicode builds

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:digit-value
character

Returns the Unicode digit value of character or nil if it doesn’t exist.
Digit values are guaranteed to be integers between 0 and 9 inclusive. All characters with decimal
digit values have the same digit value, but there are characters (such as digits of number systems
without a 0 value) that have a digit value but no decimal digit value

3 Please note that the codepoint U+1F5CF (PAGE) introduced in Unicode 7.0 is named UNICODE_PAGE, since the
name “Page” is required to be assigned to form-feed (U+0C) by the ANSI standard.

Chapter 7: Beyond the ANSI Standard 62

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:numeric-value
character

Returns the numeric value of character or nil if there is no such value. Numeric value is the
most general of the Unicode numeric properties. The only constraint on the numeric value is
that it be a rational number.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:mirrored-p character
Returns t if character needs to be mirrored in bidirectional text. Otherwise, returns nil.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:bidi-mirroring-
glyph
character

Returns the mirror image of character if it exists. Otherwise, returns nil.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:age character
Returns the version of Unicode in which character was assigned as a pair of values, both
integers, representing the major and minor version respectively. If character is not assigned in
Unicode, returns nil for both values.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:hangul-syllable-
type
character

Returns the Hangul syllable type of character. The syllable type can be one of :l, :v, :t, :lv,
or :lvt. If the character is not a Hangul syllable or Jamo, returns nil

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:east-asian-width
character

Returns the East Asian Width property of character as one of the keywords :n (Narrow), :a
(Ambiguous), :h (Halfwidth), :w (Wide), :f (Fullwidth), or :na (Not applicable)

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:script character
Returns the Script property of character as a keyword. If character does not have a known
script, returns :unknown

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:char-block character
Returns the Unicode block in which character resides as a keyword. If character does not
have a known block, returns :no-block

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:unicode-1-name
character

Returns the name assigned to character in Unicode 1.0 if it is distinct from the name currently
assigned to character. Otherwise, returns nil. This property has been officially obsoleted by
the Unicode standard, and is only included for backwards compatibility.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:proplist-p character
property

Returns t if character has the specified property. property is a keyword representing one of
the properties from PropList.txt, with underscores replaced by dashes.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:uppercase-p
character

Returns t if character has the Unicode property Uppercase and nil otherwise

Chapter 7: Beyond the ANSI Standard 63

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:lowercase-p
character

Returns t if character has the Unicode property Lowercase and nil otherwise

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:cased-p character
Returns t if character has a (Unicode) case, and nil otherwise

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:case-ignorable-p
character

Returns t if character is Case Ignorable as defined in Unicode 6.3, Chapter 3

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:alphabetic-p
character

Returns t if character is Alphabetic according to the Unicode standard and nil otherwise

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:ideographic-p
character

Returns t if character has the Unicode property Ideographic, which loosely corresponds to the
set of "Chinese characters"

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:math-p character
Returns t if character is a mathematical symbol according to Unicode and nil otherwise

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:whitespace-p
character

Returns t if character is whitespace according to Unicode and nil otherwise

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:soft-dotted-p
character

Returns t if character has a soft dot (such as the dots on i and j) which disappears when
accents are placed on top of it. and nil otherwise

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:hex-digit-p
character &key ascii

Returns t if character is a hexadecimal digit and nil otherwise. If :ascii is non-NIL, fullwidth
equivalents of the Latin letters A through f are excluded.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:default-ignorable-
p
character

Returns t if character is a Default Ignorable Code Point

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:grapheme-break-
class
char

Returns the grapheme breaking class of character, as specified in uax #29.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:word-break-class
char

Returns the word breaking class of character, as specified in uax #29.

Chapter 7: Beyond the ANSI Standard 64

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:sentence-break-
class
char

Returns the sentence breaking class of character, as specified in uax #29.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:line-break-class
character &key resolve

Returns the line breaking class of character, as specified in uax #14. If :resolve is nil, returns
the character class found in the property file. If :resolve is non-NIL, centain line-breaking
classes will be mapped to othec classes as specified in the applicable standards. Addinionally, if
:resolve is :east-asian, Ambigious (class :AI) characters will be mapped to the Ideographic
(:ID) class instead of Alphabetic (:AL).

7.8.2 String operations

SBCL can normalize strings using:

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:normalize-string
string &optional form filter

Normalize string to the Unicode normalization form form. Acceptable values for form are :nfd,
:nfc, :nfkd, and :nfkc. If filter is a function it is called on each decomposed character and
only characters for which it returns t are collected.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:normalized-p string
&optional form

Tests if string is normalized to form

SBCL implements the full range of Unicode case operations with the functions

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:uppercase string
&key locale

Returns the full uppercase of string according to the Unicode standard. The result is not
guaranteed to have the same length as the input. If :locale is nil, no language-specific case
transformations are applied. If :locale is a keyword representing a two-letter iso country code,
the case transforms of that locale are used. If :locale is t, the user’s current locale is used
(Unix and Win32 only).

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:lowercase string
&key locale

Returns the full lowercase of string according to the Unicode standard. The result is not
guaranteed to have the same length as the input. :locale has the same semantics as the
:locale argument to uppercase.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:titlecase string
&key locale

Returns the titlecase of string. The resulting string can be longer than the input. :locale
has the same semantics as the :locale argument to uppercase.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:casefold string
Returns the full casefolding of string according to the Unicode standard. Casefolding removes
case information in a way that allows the results to be used for case-insensitive comparisons.
The result is not guaranteed to have the same length as the input.

Chapter 7: Beyond the ANSI Standard 65

It also extends standard Common Lisp case functions such as string-upcase and string-
downcase to support a subset of Unicode’s casing behavior. Specifically, a character is both-case-p
if its case mapping in Unicode is one-to-one and invertable.

The sb-unicode package also provides functions for collating/sorting strings according to the
Unicode Collation Algorithm.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:unicode< string1
string2 &key start1 end1 start2 end2

Determines whether STRING1 sorts before STRING2 using the Unicode Collation Algorithm,
The function uses an untailored Default Unicode Collation Element Table to produce the sort
keys. The function uses the Shifted method for dealing with variable-weight characters, as
described in uts #10

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:unicode= string1
string2 &key start1 end1 start2 end2 strict

Determines whether STRING1 and STRING2 are canonically equivalent according to Unicode.
The start and end arguments behave like the arguments to STRING=. If :strict is nil,
UNICODE= tests compatibility equavalence instead.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:unicode-equal
string1 string2 &key start1 end1 start2 end2 strict

Determines whether STRING1 and STRING2 are canonically equivalent after casefoldin8 (that
is, ignoring case differences) according to Unicode. The start and end arguments behave like
the arguments to STRING=. If :strict is nil, UNICODE= tests compatibility equavalence
instead.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:unicode<= string1
string2 &key start1 end1 start2 end2

Tests if STRING1 and STRING2 are either UNICODE< or UNICODE=

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:unicode> string1
string2 &key start1 end1 start2 end2

Tests if STRING2 is UNICODE< STRING1.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:unicode>= string1
string2 &key start1 end1 start2 end2

Tests if STRING1 and STRING2 are either UNICODE= or UNICODE>

The following functions are provided for detecting visually confusable strings:

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:confusable-p
string1 string2 &key start1 end1 start2 end2

Determines whether STRING1 and STRING2 could be visually confusable according to the
idna confusableSummary.txt table

7.8.3 Breaking strings

The sb-unicode package includes several functions for breaking a Unicode string into useful parts.

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:graphemes string
Breaks string into graphemes acording to the default grapheme breaking rules specified in uax
#29, returning a list of strings.

Chapter 7: Beyond the ANSI Standard 66

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:words string
Breaks string into words acording to the default word breaking rules specified in uax #29.
Returns a list of strings

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:sentences string
Breaks string into sentences acording to the default sentence breaking rules specified in uax
#29

[Function]\smallertt\phantomconcurrency:\llapsb-unicode:lines string &key
margin

Breaks string into lines that are no wider than :margin according to the line breaking rules
outlined in uax #14. Combining marks will always be kept together with their base characters,
and spaces (but not other types of whitespace) will be removed from the end of lines. If :margin
is unspecified, it defaults to 80 characters

7.9 Customization Hooks for Users

The toplevel repl prompt may be customized, and the function that reads user input may be
replaced completely.

The behaviour of require when called with only one argument is implementation-defined. In
SBCL, require behaves in the following way:

[Function]\smallertt\phantomconcurrency:\llapcl:require module-name
&optional pathnames

Loads a module, unless it already has been loaded. pathnames, if supplied, is a designator
for a list of pathnames to be loaded if the module needs to be. If pathnames is not supplied,
functions from the list *module-provider-functions* are called in order with module-name
as an argument, until one of them returns non-NIL. User code is responsible for calling provide
to indicate a successful load of the module.

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*module-provider-
functions*

See function documentation for require.

Although SBCL does not provide a resident editor, the ed function can be customized to hook
into user-provided editing mechanisms as follows:

[Function]\smallertt\phantomconcurrency:\llapcl:ed &optional x
Starts the editor (on a file or a function if named). Functions from the list *ed-functions* are
called in order with x as an argument until one of them returns non-NIL; these functions are
responsible for signalling a file-error to indicate failure to perform an operation on the file
system.

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*ed-functions*
See function documentation for ed.

Conditions of type warning and style-warning are sometimes signaled at runtime, especially
during execution of Common Lisp defining forms such as defun, defmethod, etc. To muffle these
warnings at runtime, SBCL provides a variable sb-ext:*muffled-warnings*:

[Variable]\smallertt\phantomconcurrency:\llapsb-ext:*muffled-warnings*
A type that ought to specify a subtype of warning. Whenever a warning is signaled, if the
warning is of this type and is not handled by any other handler, it will be muffled.

Chapter 7: Beyond the ANSI Standard 67

7.10 Tools To Help Developers

SBCL provides a profiler and other extensions to the ANSI trace facility. For more information,
see [Macro common-lisp:trace], page 38.

The debugger supports a number of options. Its documentation is accessed by typing help at
the debugger prompt. See Chapter 5 [Debugger], page 29.

Documentation for inspect is accessed by typing help at the inspect prompt.

7.11 Resolution of Name Conflicts

The ANSI standard (section 11.1.1.2.5) requires that name conflicts in packages be resolvable in
favour of any of the conflicting symbols. In the interactive debugger, this is achieved by prompting
for the symbol in whose favour the conflict should be resolved; for programmatic use, the sb-
ext:resolve-conflict restart should be invoked with one argument, which should be a member
of the list returned by the condition accessor sb-ext:name-conflict-symbols.

7.12 Hash Table Extensions

Hash table extensions supported by SBCL are all controlled by keyword arguments to make-hash-
table.

[Function]\smallertt\phantomconcurrency:\llapcl:make-hash-table &key test
size rehash-size rehash-threshold hash-function weakness synchronized

Create and return a new hash table. The keywords are as follows:

:test Determines how keys are compared. Must a designator for one of the standard
hash table tests, or a hash table test defined using sb-ext:define-hash-table-
test. Additionally, when an explicit hash-function is provided (see below), any
two argument equivalence predicate can be used as the test.

:size A hint as to how many elements will be put in this hash table.

:rehash-size
Indicates how to expand the table when it fills up. If an integer, add space for
that many elements. If a floating point number (which must be greater than 1.0),
multiply the size by that amount.

:rehash-threshold
Indicates how dense the table can become before forcing a rehash. Can be any
positive number <=1, with density approaching zero as the threshold approaches 0.
Density 1 means an average of one entry per bucket.

:hash-function
If nil (the default), a hash function based on the test argument is used, which
then must be one of the standardized hash table test functions, or one for which a
default hash function has been defined using sb-ext:define-hash-table-test. If
hash-function is specified, the test argument can be any two argument predicate
consistent with it. The hash-function is expected to return a non-negative fixnum
hash code.

:weakness
When :weakness is not nil, garbage collection may remove entries from the hash
table. The value of :weakness specifies how the presence of a key or value in the
hash table preserves their entries from garbage collection.
Valid values are:
:key means that the key of an entry must be live to guarantee that the entry is
preserved.

Chapter 7: Beyond the ANSI Standard 68

:value means that the value of an entry must be live to guarantee that the entry
is preserved.
:key-and-value means that both the key and the value must be live to guarantee
that the entry is preserved.
:key-or-value means that either the key or the value must be live to guarantee
that the entry is preserved.
nil (the default) means that entries are always preserved.

:synchronized
If nil (the default), the hash-table may have multiple concurrent readers, but results
are undefined if a thread writes to the hash-table concurrently with another reader
or writer. If t, all concurrent accesses are safe, but note that clhs 3.6 (Traversal
Rules and Side Effects) remains in force. See also: sb-ext:with-locked-hash-
table. This keyword argument is experimental, and may change incompatibly or
be removed in the future.

[Macro]\smallertt\phantomconcurrency:\llapsb-ext:define-hash-table-test
name hash-function

Defines name as a new kind of hash table test for use with the :test argument to make-hash-
table, and associates a default hash-function with it.
name must be a symbol naming a global two argument equivalence predicate. Afterwards both
’name and #’name can be used with :test argument. In both cases hash-table-test will
return the symbol name.
hash-function must be a symbol naming a global hash function consistent with the predicate, or
be a lambda form implementing one in the current lexical environment. The hash function must
compute the same hash code for any two objects for which name returns true, and subsequent
calls with already hashed objects must always return the same hash code.
Note: The :hash-function keyword argument to make-hash-table can be used to override
the specified default hash-function.
Attempting to define name in a locked package as hash-table test causes a package lock violation.
Examples:

;;; 1.

;; We want to use objects of type FOO as keys (by their
;; names.) EQUALP would work, but would make the names
;; case-insensitive -- which we don’t want.
(defstruct foo (name nil :type (or null string)))

;; Define an equivalence test function and a hash function.
(defun foo-name= (f1 f2) (equal (foo-name f1) (foo-name f2)))
(defun sxhash-foo-name (f) (sxhash (foo-name f)))

(define-hash-table-test foo-name= sxhash-foo-name)

;; #’foo-name would work too.
(defun make-foo-table () (make-hash-table :test ’foo-name=))

;;; 2.

(defun == (x y) (= x y))

Chapter 7: Beyond the ANSI Standard 69

(define-hash-table-test ==
(lambda (x)
;; Hash codes must be consistent with test, so
;; not (SXHASH X), since
;; (= 1 1.0) => T
;; (= (SXHASH 1) (SXHASH 1.0)) => NIL
;; Note: this doesn’t deal with complex numbers or
;; bignums too large to represent as double floats.
(sxhash (coerce x ’double-float))))

;; #’== would work too
(defun make-number-table () (make-hash-table :test ’==))

[Macro]\smallertt\phantomconcurrency:\llapsb-ext:with-locked-hash-table
(hash-table) &body body

Limits concurrent accesses to hash-table for the duration of body. If hash-table is synchro-
nized, body will execute with exclusive ownership of the table. If hash-table is not synchro-
nized, body will execute with other with-locked-hash-table bodies excluded -- exclusion of
hash-table accesses not surrounded by with-locked-hash-table is unspecified.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:hash-table-
synchronized-p
instance

Returns t if hash-table is synchronized.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:hash-table-weakness ht
Return the weakness of hash-table which is one of nil, :key, :value, :key-and-value, :key-
or-value.

7.13 Random Number Generation

The initial value of *random-state* is the same each time SBCL is started. This makes it possible
for user code to obtain repeatable pseudo random numbers using only standard-provided func-
tionality. See seed-random-state below for an SBCL extension that allows to seed the random
number generator from given data for an additional possibility to achieve this. Non-repeatable
random numbers can always be obtained using (make-random-state t).

The sequence of numbers produced by repeated calls to random starting with the same random
state and using the same sequence of limit arguments is guaranteed to be reproducible only in the
same version of SBCL on the same platform, using the same code under the same evaluator mode
and compiler optimization qualities. Just two examples of differences that may occur otherwise:
calls to random can be compiled differently depending on how much is known about the limit
argument at compile time, yielding different results even if called with the same argument at run
time, and the results can differ depending on the machine’s word size, for example for limits that
are fixnums under 64-bit word size but bignums under 32-bit word size.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:seed-random-state
&optional state

Make a random state object. The optional state argument specifies a seed for deterministic
pseudo-random number generation.
As per the Common Lisp standard for make-random-state,
• If state is nil or not supplied, return a copy of the default *random-state*.
• If state is a random state, return a copy of it.

Chapter 7: Beyond the ANSI Standard 70

• If state is t, return a randomly initialized state (using operating-system provided random-
ness where available, otherwise a poor substitute based on internal time and pid).

As a supported sbcl extension, we also support receiving as a seed an object of the following
types:

• (simple-array (unsigned-byte 8) (*))

• unsigned-byte

While we support arguments of any size and will mix the provided bits into the random state,
it is probably overkill to provide more than 256 bits worth of actual information.

This particular sbcl version also accepts an argument of the following type: (simple-array
(unsigned-byte 32) (*))

This particular sbcl version uses the popular MT19937 prng algorithm, and its internal state
only effectively contains about 19937 bits of information. http://www.math.sci.hiroshima-
u.ac.jp/~m-mat/MT/emt.html

Some notes on random floats: The standard doesn’t prescribe a specific method of generating
random floats. The following paragraph describes SBCL’s current implementation and should be
taken purely informational, that is, user code should not depend on any of its specific properties.
The method used has been chosen because it is common, conceptually simple and fast.

To generate random floats, SBCL evaluates code that has an equivalent effect as

(* limit
(float (/ (random (expt 2 23)) (expt 2 23)) 1.0f0))

(for single-floats) and correspondingly (with 52 and 1.0d0 instead of 23 and 1.0f0) for double-
floats. Note especially that this means that zero is a possible return value occurring with probability
(expt 2 -23) respectively (expt 2 -52). Also note that there exist twice as many equidistant
floats between 0 and 1 as are generated. For example, the largest number that (random 1.0f0)
ever returns is (float (/ (1- (expt 2 23)) (expt 2 23)) 1.0f0) while (float (/ (1- (expt 2
24)) (expt 2 24)) 1.0f0) is the largest single-float less than 1. This is a side effect of the fact
that the implementation uses the fastest possible conversion from bits to floats.

SBCL currently uses the Mersenne Twister as its random number generator, specifically the
32-bit version under both 32- and 64-bit word size. The seeding algorithm has been improved
several times by the authors of the Mersenne Twister; SBCL uses the third version (from 2002)
which is still the most recent as of June 2012. The implementation has been tested to provide
output identical to the recommended C implementation.

While the Mersenne Twister generates random numbers of much better statistical quality than
other widely used generators, it uses only linear operations modulo 2 and thus fails some statistical
tests4. For example, the distribution of ranks of (sufficiently large) random binary matrices is
much distorted compared to the theoretically expected one when the matrices are generated by the
Mersenne Twister. Thus, applications that are sensitive to this aspect should use a different type
of generator.

7.14 Miscellaneous Extensions

[Function]\smallertt\phantomconcurrency:\llapsb-ext:array-storage-vector
array

Returns the underlying storage vector of array, which must be a non-displaced array.

4 See chapter 7 "Testing widely used RNGs" in TestU01: A C Library for Empirical Testing of Random Number
Generators by Pierre L’Ecuyer and Richard Simard, ACM Transactions on Mathematical Software, Vol. 33,
article 22, 2007.

Chapter 7: Beyond the ANSI Standard 71

In sbcl, if array is a of type (simple-array * (*)), it is its own storage vector. Multidimen-
sional arrays, arrays with fill pointers, and adjustable arrays have an underlying storage vector
with the same array-element-type as array, which this function returns.

Important note: the underlying vector is an implementation detail. Even though this function
exposes it, changes in the implementation may cause this function to be removed without further
warning.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:delete-directory
pathspec &key recursive

Deletes the directory designated by pathspec (a pathname designator). Returns the truename
of the directory deleted.

If recursive is false (the default), signals an error unless the directory is empty. If recursive
is true, first deletes all files and subdirectories. If recursive is true and the directory contains
symbolic links, the links are deleted, not the files and directories they point to.

Signals an error if pathspec designates a file or a symbolic link instead of a directory, or if the
directory could not be deleted for any reason.

Both

(DELETE-DIRECTORY "/tmp/foo")
(DELETE-DIRECTORY "/tmp/foo/")

delete the "foo" subdirectory of "/tmp", or signal an error if it does not exist or if is a file or a
symbolic link.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:get-time-of-day
Return the number of seconds and microseconds since the beginning of the unix epoch (January
1st 1970.)

[Macro]\smallertt\phantomconcurrency:\llapsb-ext:wait-for test-form &key
timeout

Wait until test-form evaluates to true, then return its primary value. If timeout is provided,
waits at most approximately timeout seconds before returning nil.

If with-deadline has been used to provide a global deadline, signals a deadline-timeout if
test-form doesn’t evaluate to true before the deadline.

Experimental: subject to change without prior notice.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:assert-version->=
&rest subversions

Asserts that the current sbcl is of version equal to or greater than the version specified in the
arguments. A continuable error is signaled otherwise.

The arguments specify a sequence of subversion numbers in big endian order. They are compared
lexicographically with the runtime version, and versions are treated as though trailed by an
unbounded number of 0s.

For example, (assert-version->= 1 1 4) asserts that the current sbcl is version 1.1.4[.0.0...] or
greater, and (assert-version->= 1) that it is version 1[.0.0...] or greater.

Chapter 7: Beyond the ANSI Standard 72

7.15 Stale Extensions

SBCL has inherited from CMUCL various hooks to allow the user to tweak and monitor the garbage
collection process. These are somewhat stale code, and their interface might need to be cleaned
up. If you have urgent need of them, look at the code in ‘src/code/gc.lisp’ and bring it up on
the developers’ mailing list.

SBCL has various hooks inherited from CMUCL, like sb-ext:float-denormalized-p, to allow
a program to take advantage of IEEE floating point arithmetic properties which aren’t conveniently
or efficiently expressible using the ANSI standard. These look good, and their interface looks good,
but IEEE support is slightly broken due to a stupid decision to remove some support for infinities
(because it wasn’t in the ANSI spec and it didn’t occur to me that it was in the IEEE spec). If
you need this stuff, take a look at the code and bring it up on the developers’ mailing list.

7.16 Efficiency Hacks

The sb-ext:purify function causes SBCL first to collect all garbage, then to mark all uncollected
objects as permanent, never again attempting to collect them as garbage. This can cause a large
increase in efficiency when using a primitive garbage collector, or a more moderate increase in
efficiency when using a more sophisticated garbage collector which is well suited to the program’s
memory usage pattern. It also allows permanent code to be frozen at fixed addresses, a precondition
for using copy-on-write to share code between multiple Lisp processes. This is less important with
modern generational garbage collectors, but not all SBCL platforms use such a garbage collector.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:purify &key
root-structures environment-name

This function optimizes garbage collection by moving all currently live objects into non-collected
storage. root-structures is an optional list of objects which should be copied first to maximize
locality.
defstruct structures defined with the (:pure t) option are moved into read-only storage, fur-
ther reducing gc cost. List and vector slots of pure structures are also moved into read-only
storage.
environment-name is unused.
This function is a no-op on platforms using the generational garbage collector (x86, x86-64, ppc,
arm, arm64).

The sb-ext:truly-the special form declares the type of the result of the operations, producing
its argument; the declaration is not checked. In short: don’t use it.

[Special Operator]\smallertt\phantomconcurrency:\llapsb-ext:truly-the
value-type form

Specifies that the values returned by form conform to the value-type, and causes the compiler
to trust this information unconditionally.
Consequences are undefined if any result is not of the declared type -- typical symptoms in-
cluding memory corruptions. Use with great care.

The sb-ext:freeze-type declaration declares that a type will never change, which can make
type testing (typep, etc.) more efficient for structure types.

Chapter 8: Foreign Function Interface 73

8 Foreign Function Interface

This chapter describes SBCL’s interface to C programs and libraries (and, since C interfaces are a
sort of lingua franca of the Unix world, to other programs and libraries in general.)

Note: In the modern Lisp world, the usual term for this functionality is Foreign Func-
tion Interface, or FFI, where despite the mention of “function” in this term, FFI also
refers to direct manipulation of C data structures as well as functions. The traditional
CMUCL terminology is Alien Interface, and while that older terminology is no longer
used much in the system documentation, it still reflected in names in the implementa-
tion, notably in the name of the SB-ALIEN package.

8.1 Introduction to the Foreign Function Interface

Because of Lisp’s emphasis on dynamic memory allocation and garbage collection, Lisp implemen-
tations use non-C-like memory representations for objects. This representation mismatch creates
friction when a Lisp program must share objects with programs which expect C data. There are
three common approaches to establishing communication:

• The burden can be placed on the foreign program (and programmer) by requiring the knowledge
and use of the representations used internally by the Lisp implementation. This can require
a considerable amount of “glue” code on the C side, and that code tends to be sensitively
dependent on the internal implementation details of the Lisp system.

• The Lisp system can automatically convert objects back and forth between the Lisp and foreign
representations. This is convenient, but translation becomes prohibitively slow when large or
complex data structures must be shared. This approach is supported by the SBCL FFI, and
used automatically when passing integers and strings.

• The Lisp program can directly manipulate foreign objects through the use of extensions to the
Lisp language.

SBCL, like CMUCL before it, relies primarily on the automatic conversion and direct manipula-
tion approaches. The SB-ALIEN package provides a facility wherein foreign values of simple scalar
types are automatically converted and complex types are directly manipulated in their foreign
representation. Additionally the lower-level System Area Pointers (or SAPs) can be used where
necessary to provide untyped access to foreign memory.

Any foreign objects that can’t automatically be converted into Lisp values are represented by
objects of type alien-value. Since Lisp is a dynamically typed language, even foreign objects
must have a run-time type; this type information is provided by encapsulating the raw pointer to
the foreign data within an alien-value object.

The type language and operations on foreign types are intentionally similar to those of the C
language.

8.2 Foreign Types

Alien types have a description language based on nested list structure. For example the C type

struct foo {
int a;
struct foo *b[100];

};

has the corresponding SBCL FFI type

(struct foo
(a int)
(b (array (* (struct foo)) 100)))

Chapter 8: Foreign Function Interface 74

8.2.1 Defining Foreign Types

Types may be either named or anonymous. With structure and union types, the name is part of
the type specifier, allowing recursively defined types such as:

(struct foo (a (* (struct foo))))

An anonymous structure or union type is specified by using the name nil. The with-alien
macro defines a local scope which “captures” any named type definitions. Other types are not
inherently named, but can be given named abbreviations using the define-alien-type macro.

8.2.2 Foreign Types and Lisp Types

The foreign types form a subsystem of the SBCL type system. An alien type specifier provides a
way to use any foreign type as a Lisp type specifier. For example,

(typep foo ’(alien (* int)))

can be used to determine whether foo is a pointer to a foreign int. alien type specifiers can
be used in the same ways as ordinary Lisp type specifiers (like string.) Alien type declarations
are subject to the same precise type checking as any other declaration. See Section 4.2.2 [Precise
Type Checking], page 22.

Note that the type identifiers used in the foreign type system overlap with native Lisp type
specifiers in some cases. For example, the type specifier (alien single-float) is identical to
single-float, since foreign floats are automatically converted to Lisp floats. When type-of is
called on an alien value that is not automatically converted to a Lisp value, then it will return an
alien type specifier.

8.2.3 Foreign Type Specifiers

Note: All foreign type names are exported from the sb-alien package. Some foreign type names
are also symbols in the common-lisp package, in which case they are reexported from the sb-alien
package, so that e.g. it is legal to refer to sb-alien:single-float.

These are the basic foreign type specifiers:

• The foreign type specifier (* foo) describes a pointer to an object of type foo. A pointed-to
type foo of t indicates a pointer to anything, similar to void * in ANSI C. A null alien pointer
can be detected with the sb-alien:null-alien function.

• The foreign type specifier (array foo &rest dimensions) describes array of the specified
dimensions, holding elements of type foo. Note that (unlike in C) (* foo) and (array foo)
are considered to be different types when type checking is done. If equivalence of pointer and
array types is desired, it may be explicitly coerced using sb-alien:cast.
Arrays are accessed using sb-alien:deref, passing the indices as additional arguments. El-
ements are stored in column-major order (as in C), so the first dimension determines only
the size of the memory block, and not the layout of the higher dimensions. An array whose
first dimension is variable may be specified by using nil as the first dimension. Fixed-size
arrays can be allocated as array elements, structure slots or sb-alien:with-alien variables.
Dynamic arrays can only be allocated using sb-alien:make-alien.

• The foreign type specifier (sb-alien:struct name &rest fields) describes a structure type
with the specified name and fields. Fields are allocated at the same offsets used by the
implementation’s C compiler, as guessed by the SBCL internals. An optional :alignment
keyword argument can be specified for each field to explicitly control the alignment of a field.
If name is nil then the structure is anonymous.
If a named foreign struct specifier is passed to define-alien-type or with-alien, then this
defines, respectively, a new global or local foreign structure type. If no fields are specified,
then the fields are taken from the current (local or global) alien structure type definition of
name.

Chapter 8: Foreign Function Interface 75

• The foreign type specifier (sb-alien:union name &rest fields) is similar to sb-
alien:struct, but describes a union type. All fields are allocated at the same offset, and the
size of the union is the size of the largest field. The programmer must determine which field
is active from context.

• The foreign type specifier (sb-alien:enum name &rest specs) describes an enumeration type
that maps between integer values and symbols. If name is nil, then the type is anonymous.
Each element of the specs list is either a Lisp symbol, or a list (symbol value). value is an
integer. If value is not supplied, then it defaults to one greater than the value for the preceding
spec (or to zero if it is the first spec).

• The foreign type specifier (sb-alien:signed &optional bits) specifies a signed integer with
the specified number of bits precision. The upper limit on integer precision is determined by
the machine’s word size. If bits is not specified, the maximum size will be used.

• The foreign type specifier (integer &optional bits) is equivalent to the corresponding type
specifier using sb-alien:signed instead of integer.

• The foreign type specifier (sb-alien:unsigned &optional bits) is like corresponding type
specifier using sb-alien:signed except that the variable is treated as an unsigned integer.

• The foreign type specifier (boolean &optional bits) is similar to an enumeration type, but
maps from Lisp nil and t to C 0 and 1 respectively. bits determines the amount of storage
allocated to hold the truth value.

• The foreign type specifier single-float describes a floating-point number in IEEE single-
precision format.

• The foreign type specifier double-float describes a floating-point number in IEEE double-
precision format.

• The foreign type specifier (function result-type &rest arg-types) describes a foreign
function that takes arguments of the specified arg-types and returns a result of type result-
type. Note that the only context where a foreign function type is directly specified is in the
argument to sb-alien:alien-funcall. In all other contexts, foreign functions are represented
by foreign function pointer types: (* (function ...)).

• The foreign type specifier sb-alien:system-area-pointer describes a pointer which is rep-
resented in Lisp as a system-area-pointer object. SBCL exports this type from sb-alien
because CMUCL did, but tentatively (as of the first draft of this section of the manual, SBCL
0.7.6) it is deprecated, since it doesn’t seem to be required by user code.

• The foreign type specifier sb-alien:void is used in function types to declare that no useful
value is returned. Using alien-funcall to call a void foreign function will return zero values.

• The foreign type specifier (sb-alien:c-string &key external-format element-type not-
null) is similar to (* char), but is interpreted as a null-terminated string, and is automatically
converted into a Lisp string when accessed; or if the pointer is C NULL or 0, then accessing it
gives Lisp nil unless not-null is true, in which case a type-error is signalled.
External format conversion is automatically done when Lisp strings are passed to foreign
code, or when foreign strings are passed to Lisp code. If the type specifier has an explicit
external-format, that external format will be used. Otherwise a default external format
that has been determined at SBCL startup time based on the current locale settings will be
used. For example, when the following alien routine is called, the Lisp string given as argument
is converted to an ebcdic octet representation.

(define-alien-routine test int (str (c-string :external-format :ebcdic-us)))

Lisp strings of type base-string are stored with a trailing NUL termination, so no copying
(either by the user or the implementation) is necessary when passing them to foreign code,
assuming that the external-format and element-type of the c-string type are compatible
with the internal representation of the string. For an SBCL built with Unicode support that
means an external-format of :ascii and an element-type of base-char. Without Unicode

Chapter 8: Foreign Function Interface 76

support the external-format can also be :iso-8859-1, and the element-type can also be
character. If the external-format or element-type is not compatible, or the string is a
(simple-array character (*)), this data is copied by the implementation as required.
Assigning a Lisp string to a c-string structure field or variable stores the contents of the
string to the memory already pointed to by that variable. When a foreign object of type
(* char) is assigned to a c-string, then the c-string pointer is assigned to. This allows
c-string pointers to be initialized. For example:

(cl:in-package "CL-USER") ; which USEs package "SB-ALIEN"

(define-alien-type nil (struct foo (str c-string)))

(defun make-foo (str)
(let ((my-foo (make-alien (struct foo))))
(setf (slot my-foo ’str) (make-alien char (length str))

(slot my-foo ’str) str)
my-foo))

Storing Lisp NIL in a c-string writes C NULL to the variable.
• sb-alien also exports translations of these C type specifiers as foreign type specifiers: char,

short, int, long, unsigned-char, unsigned-short, unsigned-int, unsigned-long, float,
double, size-t, and off-t.

8.3 Operations On Foreign Values

This section describes how to read foreign values as Lisp values, how to coerce foreign values to
different kinds of foreign values, and how to dynamically allocate and free foreign variables.

8.3.1 Accessing Foreign Values

[Function]\smallertt\phantomconcurrency:\llapsb-alien:deref
pointer-or-array &rest indices

The sb-alien:deref function returns the value pointed to by a foreign pointer, or the value of
a foreign array element. When dereferencing a pointer, an optional single index can be specified
to give the equivalent of C pointer arithmetic; this index is scaled by the size of the type pointed
to. When dereferencing an array, the number of indices must be the same as the number of
dimensions in the array type. deref can be set with setf to assign a new value.

[Function]\smallertt\phantomconcurrency:\llapsb-alien:slot struct-or-union
slot-name

The sb-alien:slot function extracts the value of the slot named slot-name from a foreign
struct or union. If struct-or-union is a pointer to a structure or union, then it is automatically
dereferenced. sb-alien:slot can be set with setf to assign a new value. Note that slot-
name is evaluated, and need not be a compile-time constant (but only constant slot accesses are
efficiently compiled).

8.3.1.1 Untyped memory

As noted at the beginning of the chapter, the System Area Pointer facilities allow untyped access to
foreign memory. SAPs can be converted to and from the usual typed foreign values using sap-alien
and alien-sap (described elsewhere), and also to and from integers - raw machine addresses. They
should thus be used with caution; corrupting the Lisp heap or other memory with SAPs is trivial.

[Function]\smallertt\phantomconcurrency:\llapsb-sys:int-sap
machine-address

Creates a SAP pointing at the virtual address machine-address.

Chapter 8: Foreign Function Interface 77

[Function]\smallertt\phantomconcurrency:\llapsb-sys:sap-ref-32 sap offset
Access the value of the memory location at offset bytes from sap. This form may also be used
with setf to alter the memory at that location.

[Function]\smallertt\phantomconcurrency:\llapsb-sys:sap= sap1 sap2
Compare sap1 and sap2 for equality.

Similarly named functions exist for accessing other sizes of word, other comparisons, and other
conversions. The reader is invited to use apropos and describe for more details

(apropos "sap" :sb-sys)

8.3.2 Coercing Foreign Values

[Macro]\smallertt\phantomconcurrency:\llapsb-alien:addr alien-expr
The sb-alien:addr macro returns a pointer to the location specified by alien-expr, which must
be either a foreign variable, a use of sb-alien:deref, a use of sb-alien:slot, or a use of
sb-alien:extern-alien.

[Macro]\smallertt\phantomconcurrency:\llapsb-alien:cast foreign-value
new-type

The sb-alien:cast macro converts foreign-value to a new foreign value with the specified new-
type. Both types, old and new, must be foreign pointer, array or function types. Note that the
resulting Lisp foreign variable object is not eq to the argument, but it does refer to the same
foreign data bits.

[Macro]\smallertt\phantomconcurrency:\llapsb-alien:sap-alien sap type
The sb-alien:sap-alien macro converts sap (a system area pointer) to a foreign value with
the specified type. type is not evaluated.

The type must be some foreign pointer, array, or record type.

[Function]\smallertt\phantomconcurrency:\llapsb-alien:alien-sap
foreign-value

The sb-alien:alien-sap function returns the SAP which points to alien-value’s data.

The foreign-value must be of some foreign pointer, array, or record type.

8.3.3 Foreign Dynamic Allocation

Lisp code can call the C standard library functions malloc and free to dynamically allocate and
deallocate foreign variables. The Lisp code shares the same allocator with foreign C code, so it’s
OK for foreign code to call free on the result of Lisp sb-alien:make-alien, or for Lisp code to
call sb-alien:free-alien on foreign objects allocated by C code.

[Macro]\smallertt\phantomconcurrency:\llapsb-alien:make-alien type
&optional size

Allocate an alien of type type in foreign heap, and return an alien pointer to it. The allocated
memory is not initialized, and may contain garbage. The memory is allocated using malloc(3),
so it can be passed to foreign functions which use free(3), or released using free-alien.

For alien stack allocation, see macro with-alien.

The type argument is not evaluated. If size is supplied, how it is interpreted depends on type:

• When type is a foreign array type, an array of that type is allocated, and a pointer to it is
returned. Note that you must use deref to first access the array through the pointer.

If supplied, size is used as the first dimension for the array.

Chapter 8: Foreign Function Interface 78

• When type is any other foreign type, then an object for that type is allocated, and a pointer
to it is returned. So (make-alien int) returns a (* int).
If size is specified, then a block of that many objects is allocated, with the result pointing
to the first one.

Examples:
(defvar *foo* (make-alien (array char 10)))
(type-of *foo*) ; => (alien (* (array (signed 8) 10)))
(setf (deref (deref foo) 0) 10) ; => 10

(make-alien char 12) ; => (alien (* (signed 8)))

[Function]\smallertt\phantomconcurrency:\llapsb-alien:make-alien-string
string &rest rest &key start end external-format null-terminate

Copy part of string delimited by start and end into freshly allocated foreign memory, freeable
using free(3) or free-alien. Returns the allocated string as a (* char) alien, and the number
of bytes allocated as secondary value.
The string is encoded using external-format. If null-terminate is true (the default), the
alien string is terminated by an additional null byte.

[Function]\smallertt\phantomconcurrency:\llapsb-alien:free-alien alien
Dispose of the storage pointed to by alien. The alien must have been allocated by make-alien,
make-alien-string or malloc(3).

8.4 Foreign Variables

Both local (stack allocated) and external (C global) foreign variables are supported.

8.4.1 Local Foreign Variables

[Macro]\smallertt\phantomconcurrency:\llapsb-alien:with-alien
var-definitions &body body

The with-alien macro establishes local foreign variables with the specified alien types and
names. This form is analogous to defining a local variable in C: additional storage is allocated,
and the initial value is copied. This form is less analogous to LET-allocated Lisp variables, since
the variables can’t be captured in closures: they live only for the dynamic extent of the body,
and referring to them outside is a gruesome error.
The var-definitions argument is a list of variable definitions, each of the form

(name type &optional initial-value)

The names of the variables are established as symbol-macros; the bindings have lexical scope,
and may be assigned with setq or setf.
The with-alien macro also establishes a new scope for named structures and unions. Any type
specified for a variable may contain named structure or union types with the slots specified.
Within the lexical scope of the binding specifiers and body, a locally defined foreign structure
type foo can be referenced by its name using (struct foo).

8.4.2 External Foreign Variables

External foreign names are strings, and Lisp names are symbols. When an external foreign value
is represented using a Lisp variable, there must be a way to convert from one name syntax into the
other. The macros extern-alien, define-alien-variable and define-alien-routine use this
conversion heuristic:
• Alien names are converted to Lisp names by uppercasing and replacing underscores with hy-

phens.

Chapter 8: Foreign Function Interface 79

• Conversely, Lisp names are converted to alien names by lowercasing and replacing hyphens
with underscores.

• Both the Lisp symbol and alien string names may be separately specified by using a list of the
form

(alien-string lisp-symbol)

[Macro]\smallertt\phantomconcurrency:\llapsb-alien:define-alien-variable
name type

The define-alien-variable macro defines name as an external foreign variable of the specified
foreign type. name and type are not evaluated. The Lisp name of the variable (see above)
becomes a global alien variable. Global alien variables are effectively “global symbol macros”;
a reference to the variable fetches the contents of the external variable. Similarly, setting the
variable stores new contents – the new contents must be of the declared type. Someday, they
may well be implemented using the ANSI define-symbol-macro mechanism, but as of SBCL
0.7.5, they are still implemented using an older more-or-less parallel mechanism inherited from
CMUCL.
For example, to access a C-level counter foo, one could write

(define-alien-variable "foo" int)
;; Now it is possible to get the value of the C variable foo simply by
;; referencing that Lisp variable:
(print foo)
(setf foo 14)
(incf foo)

[Function]\smallertt\phantomconcurrency:\llapsb-alien:get-errno
Since in modern C libraries, the errno “variable” is typically no longer a variable, but some
bizarre artificial construct which behaves superficially like a variable within a given thread, it
can no longer reliably be accessed through the ordinary define-alien-variable mechanism.
Instead, SBCL provides the operator sb-alien:get-errno to allow Lisp code to read it.

[Macro]\smallertt\phantomconcurrency:\llapsb-alien:extern-alien name type
The extern-alien macro returns an alien with the specified type which points to an externally
defined value. name is not evaluated, and may be either a string or a symbol. type is an
unevaluated alien type specifier.

8.5 Foreign Data Structure Examples

Now that we have alien types, operations and variables, we can manipulate foreign data structures.
This C declaration

struct foo {
int a;
struct foo *b[100];

};

can be translated into the following alien type:
(define-alien-type nil
(struct foo
(a int)
(b (array (* (struct foo)) 100))))

Once the foo alien type has been defined as above, the C expression
struct foo f;
f.b[7].a;

can be translated in this way:

Chapter 8: Foreign Function Interface 80

(with-alien ((f (struct foo)))
(slot (deref (slot f ’b) 7) ’a)
;;
;; Do something with f...
)

Or consider this example of an external C variable and some accesses:

struct c_struct {
short x, y;
char a, b;
int z;
c_struct *n;

};
extern struct c_struct *my_struct;
my_struct->x++;
my_struct->a = 5;
my_struct = my_struct->n;

which can be manipulated in Lisp like this:

(define-alien-type nil
(struct c-struct

(x short)
(y short)
(a char)
(b char)
(z int)
(n (* c-struct))))

(define-alien-variable "my_struct" (* c-struct))
(incf (slot my-struct ’x))
(setf (slot my-struct ’a) 5)
(setq my-struct (slot my-struct ’n))

8.6 Loading Shared Object Files

Foreign object files can be loaded into the running Lisp process by calling load-shared-object.

[Function]\smallertt\phantomconcurrency:\llapsb-alien:load-shared-object
pathname &key dont-save

Load a shared library / dynamic shared object file / similar foreign container specified by
designated pathname, such as a .so on an elf platform.

Locating the shared object follows standard rules of the platform, consult the manual
page for dlopen(3) for details. Typically paths specified by environment variables such as
LD LIBRARY PATH are searched if the pathname has no directory, but on some systems (eg.
Mac os X) search may happen even if pathname is absolute. (On Windows LoadLibrary is
used instead of dlopen(3).)

On non-Windows platforms calling load-shared-object again with a pathname equal to the
designated pathname of a previous call will replace the old definitions; if a symbol was previously
referenced through the object and is not present in the reloaded version an error will be signalled.
Reloading may not work as expected if user or library-code has called dlopen(3) on the same
shared object.

load-shared-object interacts with sb-ext:save-lisp-and-die:

1. If dont-save is true (default is NIL), the shared object will be dropped when save-lisp-
and-die is called -- otherwise shared objects are reloaded automatically when a saved core

Chapter 8: Foreign Function Interface 81

starts up. Specifying dont-save can be useful when the location of the shared object on startup
is uncertain.
2. On most platforms references in compiled code to foreign symbols in shared objects (such as
those generated by DEFINE-ALIEN-ROUTINE) remain valid across save-lisp-and-die. On
those platforms where this is not supported, a warning will be signalled when the core is saved
-- this is orthogonal from dont-save.

[Function]\smallertt\phantomconcurrency:\llapsb-alien:unload-shared-object
pathname

Unloads the shared object loaded earlier using the designated pathname with load-shared-
object, to the degree supported on the platform.
Experimental.

8.7 Foreign Function Calls

The foreign function call interface allows a Lisp program to call many functions written in languages
that use the C calling convention.

Lisp sets up various signal handling routines and other environment information when it first
starts up, and expects these to be in place at all times. The C functions called by Lisp should
not change the environment, especially the signal handlers: the signal handlers installed by Lisp
typically have interesting flags set (e.g to request machine context information, or for signal delivery
on an alternate stack) which the Lisp runtime relies on for correct operation. Precise details of
how this works may change without notice between versions; the source, or the brain of a friendly
SBCL developer, is the only documentation. Users of a Lisp built with the :sb-thread feature
should also read the section about threads, Chapter 12 [Threading], page 104.

8.7.1 The alien-funcall Primitive

[Function]\smallertt\phantomconcurrency:\llapsb-alien:alien-funcall
alien-function &rest arguments

The alien-funcall function is the foreign function call primitive: alien-function is called with
the supplied arguments and its C return value is returned as a Lisp value. The alien-function is
an arbitrary run-time expression; to refer to a constant function, use extern-alien or a value
defined by define-alien-routine.
The type of alien-function must be (alien (function ...)) or (alien (* (function
...))). The function type is used to determine how to call the function (as though it was
declared with a prototype.) The type need not be known at compile time, but only known-type
calls are efficiently compiled. Limitations:
• Structure type return values are not implemented.
• Passing of structures by value is not implemented.

Here is an example which allocates a (struct foo), calls a foreign function to initialize it, then
returns a Lisp vector of all the (* (struct foo)) objects filled in by the foreign call:

;; Allocate a foo on the stack.
(with-alien ((f (struct foo)))
;; Call some C function to fill in foo fields.
(alien-funcall (extern-alien "mangle_foo" (function void (* foo)))

(addr f))
;; Find how many foos to use by getting the A field.
(let* ((num (slot f ’a))

(result (make-array num)))
;; Get a pointer to the array so that we don’t have to keep extracting it:

Chapter 8: Foreign Function Interface 82

(with-alien ((a (* (array (* (struct foo)) 100)) (addr (slot f ’b))))
;; Loop over the first N elements and stash them in the result vector.
(dotimes (i num)
(setf (svref result i) (deref (deref a) i)))

;; Voila.
result)))

8.7.2 The define-alien-routine Macro

[Macro]\smallertt\phantomconcurrency:\llapsb-alien:define-alien-routine
name result-type &rest arg-specifiers

The define-alien-routine macro is a convenience for automatically generating Lisp interfaces
to simple foreign functions. The primary feature is the parameter style specification, which
translates the C pass-by-reference idiom into additional return values.
name is usually a string external symbol, but may also be a symbol Lisp name or a list of the
foreign name and the Lisp name. If only one name is specified, the other is automatically derived
as for extern-alien. result-type is the alien type of the return value.
Each element of the arg-specifiers list specifies an argument to the foreign function, and is of
the form

(aname atype &optional style)

aname is the symbol name of the argument to the constructed function (for documentation).
atype is the alien type of corresponding foreign argument. The semantics of the actual call are
the same as for alien-funcall. style specifies how this argument should be handled at call and
return time, and should be one of the following:
• :in specifies that the argument is passed by value. This is the default. :in arguments have

no corresponding return value from the Lisp function.
• :copy is similar to :in, but the argument is copied to a pre-allocated object and a pointer

to this object is passed to the foreign routine.
• :out specifies a pass-by-reference output value. The type of the argument must be a pointer

to a fixed-sized object (such as an integer or pointer). :out and :in-out style cannot be
used with pointers to arrays, records or functions. An object of the correct size is allocated
on the stack, and its address is passed to the foreign function. When the function returns,
the contents of this location are returned as one of the values of the Lisp function (and the
location is automatically deallocated).

• :in-out is a combination of :copy and :out. The argument is copied to a pre-allocated
object and a pointer to this object is passed to the foreign routine. On return, the contents
of this location is returned as an additional value.

Note: Any efficiency-critical foreign interface function should be inline expanded,
which can be done by preceding the define-alien-routine call with:

(declaim (inline lisp-name))

In addition to avoiding the Lisp call overhead, this allows pointers, word-integers
and floats to be passed using non-descriptor representations, avoiding consing.)

8.7.3 define-alien-routine Example

Consider the C function cfoo with the following calling convention:
void
cfoo (str, a, i)

char *str;
char *a; /* update */
int *i; /* out */

Chapter 8: Foreign Function Interface 83

{
/* body of cfoo(...) */

}

This can be described by the following call to define-alien-routine:
(define-alien-routine "cfoo" void
(str c-string)
(a char :in-out)
(i int :out))

The Lisp function cfoo will have two arguments (str and a) and two return values (a and i).

8.7.4 Calling Lisp From C

Calling Lisp functions from C is sometimes possible, but is extremely hackish and poorly supported
as of SBCL 0.7.5. See funcall0 . . . funcall3 in the runtime system. The arguments must be
valid SBCL object descriptors (so that e.g. fixnums must be left-shifted by 2.) As of SBCL 0.7.5,
the format of object descriptors is documented only by the source code and, in parts, by the old
CMUCL ‘INTERNALS’ documentation.

Note that the garbage collector moves objects, and won’t be able to fix up any references in C
variables. There are three mechanisms for coping with this:
1. The sb-ext:purify moves all live Lisp data into static or read-only areas such that it will

never be moved (or freed) again in the life of the Lisp session
2. sb-sys:with-pinned-objects is a macro which arranges for some set of objects to be pinned

in memory for the dynamic extent of its body forms. On ports which use the generational
garbage collector (as of SBCL 0.8.3, only the x86) this has a page granularity - i.e. the entire
4k page or pages containing the objects will be locked down. On other ports it is implemented
by turning off GC for the duration (so could be said to have a whole-world granularity).

3. Disable GC, using the without-gcing macro.

8.8 Step-By-Step Example of the Foreign Function Interface

This section presents a complete example of an interface to a somewhat complicated C function.
Suppose you have the following C function which you want to be able to call from Lisp in the

file ‘test.c’
struct c_struct
{
int x;
char *s;

};

struct c_struct *c_function (i, s, r, a)
int i;
char *s;
struct c_struct *r;
int a[10];

{
int j;
struct c_struct *r2;

printf("i = %d\n", i);
printf("s = %s\n", s);
printf("r->x = %d\n", r->x);
printf("r->s = %s\n", r->s);

Chapter 8: Foreign Function Interface 84

for (j = 0; j < 10; j++) printf("a[%d] = %d.\n", j, a[j]);
r2 = (struct c_struct *) malloc (sizeof(struct c_struct));
r2->x = i + 5;
r2->s = "a C string";
return(r2);

};

It is possible to call this C function from Lisp using the file ‘test.lisp’ containing

(cl:defpackage "TEST-C-CALL" (:use "CL" "SB-ALIEN" "SB-C-CALL"))
(cl:in-package "TEST-C-CALL")

;;; Define the record C-STRUCT in Lisp.
(define-alien-type nil

(struct c-struct
(x int)
(s c-string)))

;;; Define the Lisp function interface to the C routine. It returns a
;;; pointer to a record of type C-STRUCT. It accepts four parameters:
;;; I, an int; S, a pointer to a string; R, a pointer to a C-STRUCT
;;; record; and A, a pointer to the array of 10 ints.
;;;
;;; The INLINE declaration eliminates some efficiency notes about heap
;;; allocation of alien values.
(declaim (inline c-function))
(define-alien-routine c-function

(* (struct c-struct))
(i int)
(s c-string)
(r (* (struct c-struct)))
(a (array int 10)))

;;; a function which sets up the parameters to the C function and
;;; actually calls it
(defun call-cfun ()
(with-alien ((ar (array int 10))

(c-struct (struct c-struct)))
(dotimes (i 10) ; Fill array.
(setf (deref ar i) i))

(setf (slot c-struct ’x) 20)
(setf (slot c-struct ’s) "a Lisp string")

(with-alien ((res (* (struct c-struct))
(c-function 5 "another Lisp string" (addr c-struct) ar)))

(format t "~&back from C function~%")
(multiple-value-prog1

(values (slot res ’x)
(slot res ’s))

;; Deallocate result. (after we are done referring to it:
;; "Pillage, *then* burn.")
(free-alien res)))))

Chapter 8: Foreign Function Interface 85

To execute the above example, it is necessary to compile the C routine, e.g.: ‘cc -c test.c
&& ld -shared -o test.so test.o’ (In order to enable incremental loading with some linkers, you
may need to say ‘cc -G 0 -c test.c’)

Once the C code has been compiled, you can start up Lisp and load it in: ‘sbcl’. Lisp should
start up with its normal prompt.

Within Lisp, compile the Lisp file. (This step can be done separately. You don’t have to
recompile every time.) ‘(compile-file "test.lisp")’

Within Lisp, load the foreign object file to define the necessary symbols: ‘(load-shared-object
"test.so")’.

Now you can load the compiled Lisp (“fasl”) file into Lisp: ‘(load "test.fasl")’ And once
the Lisp file is loaded, you can call the Lisp routine that sets up the parameters and calls the C
function: ‘(test-c-call::call-cfun)’

The C routine should print the following information to standard output:
i = 5
s = another Lisp string
r->x = 20
r->s = a Lisp string
a[0] = 0.
a[1] = 1.
a[2] = 2.
a[3] = 3.
a[4] = 4.
a[5] = 5.
a[6] = 6.
a[7] = 7.
a[8] = 8.
a[9] = 9.

After return from the C function, the Lisp wrapper function should print the following output:
back from C function

And upon return from the Lisp wrapper function, before the next prompt is printed, the Lisp
read-eval-print loop should print the following return values:

10
"a C string"

Chapter 9: Pathnames 86

9 Pathnames

9.1 Lisp Pathnames

There are many aspects of ANSI Common Lisp’s pathname support which are implementation-
defined and so need documentation.

9.1.1 Home Directory Specifiers

SBCL accepts the keyword :home and a list of the form (:home "username") as a directory com-
ponent immediately following :absolute.

:home is represented in namestrings by ~/ and (:home "username" by ~username/ at the start
of the namestring. Tilde-characters elsewhere in namestrings represent themselves.

Home directory specifiers are resolved to home directory of the current or specified user by
native-namestring, which is used by the implementation to translate pathnames before passing
them on to operating system specific routines.

Using (:home "user") form on Windows signals an error.

9.1.2 The SYS Logical Pathname Host

The logical pathname host named by "SYS" exists in SBCL. Its logical-pathname-translations
may be set by the site or the user applicable to point to the locations of the system’s sources; in
particular, the core system’s source files match the logical pathname "SYS:SRC;**;*.*.*", and
the contributed modules’ source files match "SYS:CONTRIB;**;*.*.*".

[Function]\smallertt\phantomconcurrency:\llapsb-ext:set-sbcl-source-
location
pathname

Initialize the sys logical host based on pathname, which should be the top-level directory of the
sbcl sources. This will replace any existing translations for "SYS:SRC;", "SYS:CONTRIB;",
and "SYS:OUTPUT;". Other "SYS:" translations are preserved.

9.2 Native Filenames

In some circumstances, what is wanted is a Lisp pathname object which corresponds to a string
produced by the Operating System. In this case, some of the default parsing rules are inappropriate:
most filesystems do not have a native understanding of wild pathnames; such functionality is often
provided by shells above the OS, often in mutually-incompatible ways.

To allow the user to deal with this, the following functions are provided: parse-native-
namestring and native-pathname return the closest equivalent Lisp pathname to a given string
(appropriate for the Operating System), while native-namestring converts a non-wild pathname
designator to the equivalent native namestring, if possible. Some Lisp pathname concepts (such
as the :back directory component) have no direct equivalents in most Operating Systems; the
behaviour of native-namestring is unspecified if an inappropriate pathname designator is passed
to it. Additionally, note that conversion from pathname to native filename and back to pathname
should not be expected to preserve equivalence under equal.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:parse-native-
namestring thing &optional host defaults &key start end junk-allowed
as-directory

Convert thing into a pathname, using the native conventions appropriate for the pathname host
host, or if not specified the host of defaults. If thing is a string, the parse is bounded by start
and end, and error behaviour is controlled by junk-allowed, as with parse-namestring. For
file systems whose native conventions allow directories to be indicated as files, if as-directory
is true, return a pathname denoting thing as a directory.

Chapter 9: Pathnames 87

[Function]\smallertt\phantomconcurrency:\llapsb-ext:native-pathname
pathspec

Convert pathspec (a pathname designator) into a pathname, assuming the operating system
native pathname conventions.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:native-namestring
pathname &key as-file

Construct the full native (name)string form of pathname. For file systems whose native con-
ventions allow directories to be indicated as files, if as-file is true and the name, type, and
version components of pathname are all nil or :unspecific, construct a string that names the
directory according to the file system’s syntax for files.

Because some file systems permit the names of directories to be expressed in multiple ways, it
is occasionally necessary to parse a native file name “as a directory name” or to produce a native
file name that names a directory “as a file”. For these cases, parse-native-namestring accepts
the keyword argument as-directory to force a filename to parse as a directory, and native-
namestring accepts the keyword argument as-file to force a pathname to unparse as a file. For
example,

; On Unix, the directory "/tmp/" can be denoted by "/tmp/" or "/tmp".
; Under the default rules for native filenames, these parse and
; unparse differently.
(defvar *p*)
(setf *p* (parse-native-namestring "/tmp/")) ⇒ #P"/tmp/"
(pathname-name *p*) ⇒ NIL
(pathname-directory *p*) ⇒ (:ABSOLUTE "tmp")
(native-namestring *p*) ⇒ "/tmp/"

(setf *p* (parse-native-namestring "/tmp")) ⇒ #P"/tmp"
(pathname-name *p*) ⇒ "tmp"
(pathname-directory *p*) ⇒ (:ABSOLUTE)
(native-namestring *p*) ⇒ "/tmp"

; A non-NIL AS-DIRECTORY argument to PARSE-NATIVE-NAMESTRING forces
; both the second string to parse the way the first does.
(setf *p* (parse-native-namestring "/tmp"

nil *default-pathname-defaults*
:as-directory t)) ⇒ #P"/tmp/"

(pathname-name *p*) ⇒ NIL
(pathname-directory *p*) ⇒ (:ABSOLUTE "tmp")

; A non-NIL AS-FILE argument to NATIVE-NAMESTRING forces the pathname
; parsed from the first string to unparse as the second string.
(setf *p* (parse-native-namestring "/tmp/")) ⇒ #P"/tmp/"
(native-namestring *p* :as-file t) ⇒ "/tmp"

Chapter 10: Streams 88

10 Streams

Streams which read or write Lisp character data from or to the outside world – files, sockets or
other external entities – require the specification of a conversion between the external, binary data
and the Lisp characters. In ANSI Common Lisp, this is done by specifying the :external-format
argument when the stream is created. The major information required is an encoding, specified by
a keyword naming that encoding; however, it is also possible to specify refinements to that encoding
as additional options to the external format designator.

In addition, SBCL supports various extensions of ANSI Common Lisp streams:

Bivalent Streams
A type of stream that can read and write both character and (unsigned-byte 8)
values.

Gray Streams
User-overloadable CLOS classes whose instances can be used as Lisp streams (e.g.
passed as the first argument to format).

Simple Streams
The bundled contrib module sb-simple-streams implements a subset of the Franz Al-
legro simple-streams proposal.

10.1 External Formats

The encodings supported by SBCL as external formats are named by keyword. Each encoding has
a canonical name, which will be encoding returned by stream-external-format, and a number of
aliases for convenience, as shown in the table below:

:ASCII :US-ASCII, :ANSI_X3.4-1968, :ISO-646, :ISO-646-US, :|646|

:CP1250 :|cp1250|, :WINDOWS-1250, :|windows-1250|

:CP1251 :|cp1251|, :WINDOWS-1251, :|windows-1251|

:CP1252 :|cp1252|, :WINDOWS-1252, :|windows-1252|

:CP1253 :|cp1253|, :WINDOWS-1253, :|windows-1253|

:CP1254 :|cp1254|

:CP1255 :|cp1255|, :WINDOWS-1255, :|windows-1255|

:CP1256 :|cp1256|, :WINDOWS-1256, :|windows-1256|

:CP1257 :|cp1257|, :WINDOWS-1257, :|windows-1257|

:CP1258 :|cp1258|, :WINDOWS-1258, :|windows-1258|

:CP437 :|cp437|

:CP850 :|cp850|

:CP852 :|cp852|

:CP855 :|cp855|

:CP857 :|cp857|

:CP860 :|cp860|

:CP861 :|cp861|

:CP862 :|cp862|

:CP863 :|cp863|

Chapter 10: Streams 89

:CP864 :|cp864|

:CP865 :|cp865|

:CP866 :|cp866|

:CP869 :|cp869|

:CP874 :|cp874|

:EBCDIC-US
:CP037, :|cp037|, :IBM-037, :IBM037

:EUC-JP :EUCJP, :|eucJP|

:GBK :CP936

:ISO-8859-10
:|iso-8859-10|, :LATIN-6, :|latin-6|

:ISO-8859-11
:|iso-8859-11|

:ISO-8859-13
:|iso-8859-13|, :LATIN-7, :|latin-7|

:ISO-8859-14
:|iso-8859-14|, :LATIN-8, :|latin-8|

:ISO-8859-2
:|iso-8859-2|, :LATIN-2, :|latin-2|

:ISO-8859-3
:|iso-8859-3|, :LATIN-3, :|latin-3|

:ISO-8859-4
:|iso-8859-4|, :LATIN-4, :|latin-4|

:ISO-8859-5
:|iso-8859-5|

:ISO-8859-6
:|iso-8859-6|

:ISO-8859-7
:|iso-8859-7|

:ISO-8859-8
:|iso-8859-8|

:ISO-8859-9
:|iso-8859-9|, :LATIN-5, :|latin-5|

:KOI8-R :|koi8-r|

:KOI8-U :|koi8-u|

:LATIN-1 :LATIN1, :ISO-8859-1, :ISO8859-1

:LATIN-9 :LATIN9, :ISO-8859-15, :ISO8859-15

:MAC-ROMAN
:|mac-roman|, :|MacRoman|, :MAC, :|mac|, :MACINTOSH, :|macintosh|

:SHIFT_JIS
:SJIS, :|Shift_JIS|, :CP932

Chapter 10: Streams 90

:UCS-2BE :UCS2BE

:UCS-2LE :UCS2LE

:UCS-4BE :UCS4BE

:UCS-4LE :UCS4LE

:UTF-16BE
:UTF16BE

:UTF-16LE
:UTF16LE

:UTF-32BE
:UTF32BE

:UTF-32LE
:UTF32LE

:UTF-8 :UTF8

:X-MAC-CYRILLIC
:|x-mac-cyrillic|

In situations where an external file format designator is required, such as the :external-format
argument in calls to open or with-open-file, users may supply the name of an encoding to denote
the external format which is applying that encoding to Lisp characters.

In addition to the basic encoding for an external format, options controlling various special cases
may be passed, by using a list (whose first element must be an encoding name and whose rest is
a plist) as an external file format designator. At present, the only supported key in the plist is
:replacement, where the corresponding value is a string designator which is used as a replacement
when an encoding or decoding error happens, handling those errors without user intervention; for
example:

(with-open-file (i pathname :external-format ’(:utf-8 :replacement #\?))
(read-line i))

will read the first line of pathname, replacing any invalid utf-8 sequences with question marks.

10.2 Bivalent Streams

A bivalent stream can be used to read and write both character and (unsigned-byte 8) values.
A bivalent stream is created by calling open with the argument :element-type :default. On
such a stream, both binary and character data can be read and written with the usual input and
output functions.

Streams are not created bivalent by default for performance reasons. Bivalent streams
are incompatible with fast-read-char, an internal optimization in SBCL’s stream
machinery that bulk-converts octets to characters and implements a fast path through
read-char.

10.3 Gray Streams

The Gray Streams interface is a widely supported extension that provides for definition of CLOS-
extensible stream classes. Gray stream classes are implemented by adding methods to generic
functions analogous to Common Lisp’s standard I/O functions. Instances of Gray stream classes
may be used with any I/O operation where a non-Gray stream can, provided that all required
methods have been implemented suitably.

Chapter 10: Streams 91

10.3.1 Gray Streams classes

The defined Gray Stream classes are these:

[Class]\smallertt\phantomconcurrency:\llapsb-gray:fundamental-stream
Class precedence list: \llwfundamental-stream%, \llwstandard-object%, \llwstream%,
\llwt%

Base class for all Gray streams.

[Class]\smallertt\phantomconcurrency:\llapsb-gray:fundamental-input-
stream

Class precedence list: \llwfundamental-input-stream%, \llwfundamental-stream%,
\llwstandard-object%, \llwstream%, \llwt%

Superclass of all Gray input streams.

The function input-stream-p will return true of any generalized instance of fundamental-input-
stream.

[Class]\smallertt\phantomconcurrency:\llapsb-gray:fundamental-output-
stream

Class precedence list: \llwfundamental-output-stream%, \llwfundamental-stream%,
\llwstandard-object%, \llwstream%, \llwt%

Superclass of all Gray output streams.

The function output-stream-p will return true of any generalized instance of fundamental-output-
stream.

[Class]\smallertt\phantomconcurrency:\llapsb-gray:fundamental-binary-
stream

Class precedence list: \llwfundamental-binary-stream%, \llwfundamental-stream%,
\llwstandard-object%, \llwstream%, \llwt%

Superclass of all Gray streams whose element-type is a subtype of unsigned-byte or signed-byte.

Note that instantiable subclasses of fundamental-binary-stream should provide (or inherit) an ap-
plicable method for the generic function stream-element-type.

[Class]\smallertt\phantomconcurrency:\llapsb-gray:fundamental-character-
stream

Class precedence list: \llwfundamental-character-stream%, \llwfundamental-stream%,
\llwstandard-object%, \llwstream%, \llwt%

Superclass of all Gray streams whose element-type is a subtype of character.

[Class]\smallertt\phantomconcurrency:\llapsb-gray:fundamental-binary-
input-stream

Class precedence list: \llwfundamental-binary-input-stream%, \llwfundamental-
input-stream%, \llwfundamental-binary-stream%, \llwfundamental-stream%,
\llwstandard-object%, \llwstream%, \llwt%

Superclass of all Gray input streams whose element-type is a subtype of unsigned-byte or signed-
byte.

[Class]\smallertt\phantomconcurrency:\llapsb-gray:fundamental-binary-
output-stream

Class precedence list: \llwfundamental-binary-output-stream%, \llwfundamental-
output-stream%, \llwfundamental-binary-stream%, \llwfundamental-stream%,
\llwstandard-object%, \llwstream%, \llwt%

Superclass of all Gray output streams whose element-type is a subtype of unsigned-byte or
signed-byte.

Chapter 10: Streams 92

[Class]\smallertt\phantomconcurrency:\llapsb-gray:fundamental-character-
input-stream

Class precedence list: \llwfundamental-character-input-stream%, \llwfundamental-
input-stream%, \llwfundamental-character-stream%, \llwfundamental-stream%,
\llwstandard-object%, \llwstream%, \llwt%

Superclass of all Gray input streams whose element-type is a subtype of character.

[Class]\smallertt\phantomconcurrency:\llapsb-gray:fundamental-character-
output-stream

Class precedence list: \llwfundamental-character-output-stream%, \llwfundamental-
output-stream%, \llwfundamental-character-stream%, \llwfundamental-stream%,
\llwstandard-object%, \llwstream%, \llwt%

Superclass of all Gray output streams whose element-type is a subtype of character.

10.3.2 Methods common to all streams

These generic functions can be specialized on any generalized instance of fundamental-stream.

[Generic Function]\smallertt\phantomconcurrency:\llapcl:stream-element-type
stream

Return a type specifier for the kind of object returned by the stream. The class fundamental-
character-stream provides a default method which returns character.

[Generic Function]\smallertt\phantomconcurrency:\llapcl:close stream &key
abort

Close the given stream. No more I/O may be performed, but inquiries may still be made. If
:abort is true, an attempt is made to clean up the side effects of having created the stream.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-file-
position stream &optional
position-spec

Used by file-position. Returns or changes the current position within stream.

10.3.3 Input stream methods

These generic functions may be specialized on any generalized instance of fundamental-input-
stream.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-clear-
input
stream

This is like cl:clear-input, but for Gray streams, returning nil. The default method does
nothing.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-read-
sequence stream seq &optional start
end

This is like cl:read-sequence, but for Gray streams.

10.3.4 Character input stream methods

These generic functions are used to implement subclasses of fundamental-input-stream:

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-peek-
char
stream

This is used to implement peek-char; this corresponds to peek-type of nil. It returns either
a character or :eof. The default method calls stream-read-char and stream-unread-char.

Chapter 10: Streams 93

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-read-
char-no-hang
stream

This is used to implement read-char-no-hang. It returns either a character, or nil if no
input is currently available, or :eof if end-of-file is reached. The default method provided by
fundamental-character-input-stream simply calls stream-read-char; this is sufficient for
file streams, but interactive streams should define their own method.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-read-
char
stream

Read one character from the stream. Return either a character object, or the symbol :eof if the
stream is at end-of-file. Every subclass of fundamental-character-input-stream must define
a method for this function.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-read-
line
stream

This is used by read-line. A string is returned as the first value. The second value is true if
the string was terminated by end-of-file instead of the end of a line. The default method uses
repeated calls to stream-read-char.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-listen
stream

This is used by listen. It returns true or false. The default method uses stream-read-char-
no-hang and stream-unread-char. Most streams should define their own method since it will
usually be trivial and will always be more efficient than the default method.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-unread-
char stream
character

Undo the last call to stream-read-char, as in unread-char. Return nil. Every subclass of
fundamental-character-input-stream must define a method for this function.

10.3.5 Output stream methods

These generic functions are used to implement subclasses of fundamental-output-stream:

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-clear-
output
stream

This is like cl:clear-output, but for Gray streams: clear the given output stream. The default
method does nothing.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-finish-
output
stream

Attempts to ensure that all output sent to the Stream has reached its destination, and only then
returns false. Implements finish-output. The default method does nothing.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-force-
output
stream

Attempts to force any buffered output to be sent. Implements force-output. The default
method does nothing.

Chapter 10: Streams 94

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-write-
sequence stream seq &optional start
end

This is like cl:write-sequence, but for Gray streams.

10.3.6 Character output stream methods

These generic functions are used to implement subclasses of fundamental-character-output-stream:

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-
advance-to-column stream
column

Write enough blank space so that the next character will be written at the specified column.
Returns true if the operation is successful, or nil if it is not supported for this stream. This is
intended for use by by pprint and format ~T. The default method uses stream-line-column
and repeated calls to stream-write-char with a #space character; it returns nil if stream-
line-column returns nil.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-fresh-
line
stream

Outputs a new line to the Stream if it is not positioned at the beginning of a line. Returns t
if it output a new line, nil otherwise. Used by fresh-line. The default method uses stream-
start-line-p and stream-terpri.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-line-
column
stream

Return the column number where the next character will be written, or nil if that is not
meaningful for this stream. The first column on a line is numbered 0. This function is used in
the implementation of pprint and the format ~T directive. For every character output stream
class that is defined, a method must be defined for this function, although it is permissible for
it to always return nil.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-line-
length
stream

Return the stream line length or nil.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-start-
line-p
stream

Is stream known to be positioned at the beginning of a line? It is permissible for an imple-
mentation to always return nil. This is used in the implementation of fresh-line. Note
that while a value of 0 from stream-line-column also indicates the beginning of a line, there
are cases where stream-start-line-p can be meaningfully implemented although stream-
line-column can’t be. For example, for a window using variable-width characters, the column
number isn’t very meaningful, but the beginning of the line does have a clear meaning. The de-
fault method for stream-start-line-p on class fundamental-character-output-stream uses
stream-line-column, so if that is defined to return nil, then a method should be provided for
either stream-start-line-p or stream-fresh-line.

Chapter 10: Streams 95

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-terpri
stream

Writes an end of line, as for terpri. Returns nil. The default method does (stream-write-
char stream #NEWLINE).

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-write-
char stream
character

Write character to stream and return character. Every subclass of fundamental-character-
output-stream must have a method defined for this function.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-write-
string stream string &optional start
end

This is used by write-string. It writes the string to the stream, optionally delimited by start
and end, which default to 0 and nil. The string argument is returned. The default method
provided by fundamental-character-output-stream uses repeated calls to stream-write-
char.

10.3.7 Binary stream methods

The following generic functions are available for subclasses of fundamental-binary-stream:

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-read-
byte
stream

Used by read-byte; returns either an integer, or the symbol :eof if the stream is at end-of-file.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-gray:stream-write-
byte stream
integer

Implements write-byte; writes the integer to the stream and returns the integer as the result.

10.3.8 Gray Streams examples

Below are two classes of stream that can be conveniently defined as wrappers for Common Lisp
streams. These are meant to serve as examples of minimal implementations of the protocols
that must be followed when defining Gray streams. Realistic uses of the Gray Streams API
would implement the various methods that can do I/O in batches, such as stream-read-line,
stream-write-string, stream-read-sequence, and stream-write-sequence.

10.3.8.1 Character counting input stream

It is occasionally handy for programs that process input files to count the number of characters
and lines seen so far, and the number of characters seen on the current line, so that useful messages
may be reported in case of parsing errors, etc. Here is a character input stream class that keeps
track of these counts. Note that all character input streams must implement stream-read-char
and stream-unread-char.

(defclass wrapped-stream (fundamental-stream)
((stream :initarg :stream :reader stream-of)))

(defmethod stream-element-type ((stream wrapped-stream))
(stream-element-type (stream-of stream)))

(defmethod close ((stream wrapped-stream) &key abort)
(close (stream-of stream) :abort abort))

Chapter 10: Streams 96

(defclass wrapped-character-input-stream
(wrapped-stream fundamental-character-input-stream)

())

(defmethod stream-read-char ((stream wrapped-character-input-stream))
(read-char (stream-of stream) nil :eof))

(defmethod stream-unread-char ((stream wrapped-character-input-stream)
char)

(unread-char char (stream-of stream)))

(defclass counting-character-input-stream
(wrapped-character-input-stream)

((char-count :initform 1 :accessor char-count-of)
(line-count :initform 1 :accessor line-count-of)
(col-count :initform 1 :accessor col-count-of)
(prev-col-count :initform 1 :accessor prev-col-count-of)))

(defmethod stream-read-char ((stream counting-character-input-stream))
(with-accessors ((inner-stream stream-of) (chars char-count-of)

(lines line-count-of) (cols col-count-of)
(prev prev-col-count-of)) stream

(let ((char (call-next-method)))
(cond ((eql char :eof)

:eof)
((char= char #\Newline)
(incf lines)
(incf chars)
(setf prev cols)
(setf cols 1)
char)
(t
(incf chars)
(incf cols)
char)))))

(defmethod stream-unread-char ((stream counting-character-input-stream)
char)

(with-accessors ((inner-stream stream-of) (chars char-count-of)
(lines line-count-of) (cols col-count-of)
(prev prev-col-count-of)) stream

(cond ((char= char #\Newline)
(decf lines)
(decf chars)
(setf cols prev))
(t
(decf chars)
(decf cols)
char))

(call-next-method)))

Chapter 10: Streams 97

The default methods for stream-read-char-no-hang, stream-peek-char, stream-listen,
stream-clear-input, stream-read-line, and stream-read-sequence should be sufficient
(though the last two will probably be slower than methods that forwarded directly).

Here’s a sample use of this class:

(with-input-from-string (input "1 2
3 :foo ")
(let ((counted-stream (make-instance ’counting-character-input-stream

:stream input)))
(loop for thing = (read counted-stream) while thing

unless (numberp thing) do
(error "Non-number ~S (line ~D, column ~D)" thing

(line-count-of counted-stream)
(- (col-count-of counted-stream)

(length (format nil "~S" thing))))
end
do (print thing))))

1
2
3
Non-number :FOO (line 2, column 5)
[Condition of type SIMPLE-ERROR]

10.3.8.2 Output prefixing character stream

One use for a wrapped output stream might be to prefix each line of text with a timestamp,
e.g., for a logging stream. Here’s a simple stream that does this, though without any fancy line-
wrapping. Note that all character output stream classes must implement stream-write-char and
stream-line-column.

(defclass wrapped-stream (fundamental-stream)
((stream :initarg :stream :reader stream-of)))

(defmethod stream-element-type ((stream wrapped-stream))
(stream-element-type (stream-of stream)))

(defmethod close ((stream wrapped-stream) &key abort)
(close (stream-of stream) :abort abort))

(defclass wrapped-character-output-stream
(wrapped-stream fundamental-character-output-stream)

((col-index :initform 0 :accessor col-index-of)))

(defmethod stream-line-column ((stream wrapped-character-output-stream))
(col-index-of stream))

(defmethod stream-write-char ((stream wrapped-character-output-stream)
char)

(with-accessors ((inner-stream stream-of) (cols col-index-of)) stream
(write-char char inner-stream)
(if (char= char #\Newline)

(setf cols 0)
(incf cols))))

Chapter 10: Streams 98

(defclass prefixed-character-output-stream
(wrapped-character-output-stream)

((prefix :initarg :prefix :reader prefix-of)))

(defgeneric write-prefix (prefix stream)
(:method ((prefix string) stream) (write-string prefix stream))
(:method ((prefix function) stream) (funcall prefix stream)))

(defmethod stream-write-char ((stream prefixed-character-output-stream)
char)

(with-accessors ((inner-stream stream-of) (cols col-index-of)
(prefix prefix-of)) stream

(when (zerop cols)
(write-prefix prefix inner-stream))

(call-next-method)))

As with the example input stream, this implements only the minimal protocol. A
production implementation should also provide methods for at least stream-write-line,
stream-write-sequence.

And here’s a sample use of this class:
(flet ((format-timestamp (stream)

(apply #’format stream "[~2@*~2,’ D:~1@*~2,’0D:~0@*~2,’0D] "
(multiple-value-list (get-decoded-time)))))

(let ((output (make-instance ’prefixed-character-output-stream
:stream *standard-output*
:prefix #’format-timestamp)))

(loop for string in ’("abc" "def" "ghi") do
(write-line string output)
(sleep 1))))

[0:30:05] abc
[0:30:06] def
[0:30:07] ghi
NIL

10.4 Simple Streams

Simple streams are an extensible streams protocol that avoids some problems with Gray streams.
Documentation about simple streams is available at:
http://www.franz.com/support/documentation/6.2/doc/streams.htm

The implementation should be considered Alpha-quality; the basic framework is there, but many
classes are just stubs at the moment.

See ‘SYS:CONTRIB;SB-SIMPLE-STREAMS;SIMPLE-STREAM-TEST.LISP’ for things that should
work.

Known differences to the ACL behaviour:
• open not return a simple-stream by default. This can be adjusted; see default-open-class in

the file cl.lisp
• write-vector is unimplemented.

http://www.franz.com/support/documentation/6.2/doc/streams.htm

Chapter 11: Package Locks 99

11 Package Locks

None of the following sections apply to SBCL built without package locking support.

warning: The interface described here is experimental: incompatible changes in future
SBCL releases are possible, even expected: the concept of “implementation packages”
and the associated operators may be renamed; more operations (such as naming restarts
or catch tags) may be added to the list of operations violating package locks.

11.1 Package Lock Concepts

11.1.1 Package Locking Overview

Package locks protect against unintentional modifications of a package: they provide similar pro-
tection to user packages as is mandated to common-lisp package by the ANSI specification. They
are not, and should not be used as, a security measure.

Newly created packages are by default unlocked (see the :lock option to defpackage).

The package common-lisp and SBCL internal implementation packages are locked by default,
including sb-ext.

It may be beneficial to lock common-lisp-user as well, to ensure that various libraries don’t
pollute it without asking, but this is not currently done by default.

11.1.2 Implementation Packages

Each package has a list of associated implementation packages. A locked package, and the symbols
whose home package it is, can be modified without violating package locks only when *package*
is bound to one of the implementation packages of the locked package.

Unless explicitly altered by defpackage, sb-ext:add-implementation-package, or
sb-ext:remove-implementation-package each package is its own (only) implementation
package.

11.1.3 Package Lock Violations

11.1.3.1 Lexical Bindings and Declarations

Lexical bindings or declarations that violate package locks cause a compile-time warning, and a
runtime program-error when the form that violates package locks would be executed.

A complete listing of operators affect by this is: let, let*, flet, labels, macrolet, and
symbol-macrolet, declare.

Package locks affecting both lexical bindings and declarations can be disabled locally with sb-
ext:disable-package-locks declaration, and re-enabled with sb-ext:enable-package-locks
declaration.

Example:

(in-package :locked)

(defun foo () ...)

(defmacro with-foo (&body body)
‘(locally (declare (disable-package-locks locked:foo))

(flet ((foo () ...))
(declare (enable-package-locks locked:foo)) ; re-enable for body
,@body)))

Chapter 11: Package Locks 100

11.1.3.2 Other Operations

If an non-lexical operation violates a package lock, a continuable error that is of a subtype of
sb-ext:package-lock-violation (subtype of package-error) is signalled when the operation is
attempted.

Additional restarts may be established for continuable package lock violations for interactive
use.

The actual type of the error depends on circumstances that caused the violation: operations on
packages signal errors of type sb-ext:package-locked-error, and operations on symbols signal
errors of type sb-ext:symbol-package-locked-error.

11.1.4 Package Locks in Compiled Code

11.1.4.1 Interned Symbols

If file-compiled code contains interned symbols, then loading that code into an image without the
said symbols will not cause a package lock violation, even if the packages in question are locked.

11.1.4.2 Other Limitations on Compiled Code

With the exception of interned symbols, behaviour is unspecified if package locks affecting compiled
code are not the same during loading of the code or execution.

Specifically, code compiled with packages unlocked may or may not fail to signal package-lock-
violations even if the packages are locked at runtime, and code compiled with packages locked may
or may not signal spurious package-lock-violations at runtime even if the packages are unlocked.

In practice all this means that package-locks have a negligible performance penalty in compiled
code as long as they are not violated.

11.1.5 Operations Violating Package Locks

11.1.5.1 Operations on Packages

The following actions cause a package lock violation if the package operated on is locked, and
package is not an implementation package of that package, and the action would cause a change
in the state of the package (so e.g. exporting already external symbols is never a violation). Package
lock violations caused by these operations signal errors of type sb-ext:package-locked-error.
1. Shadowing a symbol in a package.
2. Importing a symbol to a package.
3. Uninterning a symbol from a package.
4. Exporting a symbol from a package.
5. Unexporting a symbol from a package.
6. Changing the packages used by a package.
7. Renaming a package.
8. Deleting a package.
9. Adding a new package local nickname to a package.

10. Removing an existing package local nickname to a package.

11.1.5.2 Operations on Symbols

Following actions cause a package lock violation if the home package of the symbol operated on is
locked, and *package* is not an implementation package of that package. Package lock violations
caused by these action signal errors of type sb-ext:symbol-package-locked-error.

These actions cause only one package lock violation per lexically apparent violated package.
Example:

Chapter 11: Package Locks 101

;;; Packages FOO and BAR are locked.
;;;
;;; Two lexically apparent violated packages: exactly two
;;; package-locked-errors will be signalled.

(defclass foo:point ()
((x :accessor bar:x)
(y :accessor bar:y)))

1. Binding or altering its value lexically or dynamically, or establishing it as a symbol-macro.
Exceptions:
− If the symbol is not defined as a constant, global symbol-macro or a global dynamic

variable, it may be lexically bound or established as a local symbol macro.
− If the symbol is defined as a global dynamic variable, it may be assigned or bound.

2. Defining, undefining, or binding it, or its setf name as a function.
Exceptions:
− If the symbol is not defined as a function, macro, or special operator it and its setf name

may be lexically bound as a function.
3. Defining, undefining, or binding it as a macro or compiler macro.

Exceptions:
− If the symbol is not defined as a function, macro, or special operator it may be lexically

bound as a macro.
4. Defining it as a type specifier or structure.
5. Defining it as a declaration with a declaration proclamation.
6. Declaring or proclaiming it special.
7. Declaring or proclaiming its type or ftype.

Exceptions:
− If the symbol may be lexically bound, the type of that binding may be declared.
− If the symbol may be lexically bound as a function, the ftype of that binding may be

declared.
8. Defining a setf expander for it.
9. Defining it as a method combination type.

10. Using it as the class-name argument to setf of find-class.
11. Defining it as a hash table test using sb-ext:define-hash-table-test.

11.2 Package Lock Dictionary

[Declaration]\smallertt\phantomconcurrency:\llapsb-ext:disable-package-
locks

Syntax: (sb-ext:disable-package-locks symbol*)

Disables package locks affecting the named symbols during compilation in the lexical scope of
the declaration. Disabling locks on symbols whose home package is unlocked, or disabling an
already disabled lock, has no effect.

[Declaration]\smallertt\phantomconcurrency:\llapsb-ext:enable-package-
locks

Syntax: (sb-ext:enable-package-locks symbol*)

Re-enables package locks affecting the named symbols during compilation in the lexical scope
of the declaration. Enabling locks that were not first disabled with sb-ext:disable-package-
locks declaration, or enabling locks that are already enabled has no effect.

Chapter 11: Package Locks 102

[Condition]\smallertt\phantomconcurrency:\llapsb-ext:package-lock-
violation

Class precedence list: \llwpackage-lock-violation%, \llwpackage-error%, \llwerror%,
\llwserious-condition%, \llwcondition%, \llwt%

Subtype of cl:package-error. A subtype of this error is signalled when a package-lock is
violated.

[Condition]\smallertt\phantomconcurrency:\llapsb-ext:package-locked-error
Class precedence list: \llwpackage-locked-error%, \llwpackage-lock-violation%,
\llwpackage-error%, \llwerror%, \llwserious-condition%, \llwcondition%, \llwt%

Subtype of sb-ext:package-lock-violation. An error of this type is signalled when an oper-
ation on a package violates a package lock.

[Condition]\smallertt\phantomconcurrency:\llapsb-ext:symbol-package-
locked-error

Class precedence list: \llwsymbol-package-locked-error%, \llwpackage-lock-
violation%, \llwpackage-error%, \llwerror%, \llwserious-condition%,
\llwcondition%, \llwt%

Subtype of sb-ext:package-lock-violation. An error of this type is signalled when an oper-
ation on a symbol violates a package lock. The symbol that caused the violation is accessed by
the function sb-ext:package-locked-error-symbol.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:package-locked-error-
symbol
symbol-package-locked-error

Returns the symbol that caused the symbol-package-locked-error condition.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:package-locked-p
package

Returns t when package is locked, nil otherwise. Signals an error if package doesn’t designate
a valid package.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:lock-package package
Locks package and returns t. Has no effect if package was already locked. Signals an error if
package is not a valid package designator

[Function]\smallertt\phantomconcurrency:\llapsb-ext:unlock-package package
Unlocks package and returns t. Has no effect if package was already unlocked. Signals an error
if package is not a valid package designator.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:package-implemented-
by-list
package

Returns a list containing the implementation packages of package. Signals an error if package
is not a valid package designator.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:package-implements-
list
package

Returns the packages that package is an implementation package of. Signals an error if package
is not a valid package designator.

Chapter 11: Package Locks 103

[Function]\smallertt\phantomconcurrency:\llapsb-ext:add-implementation-
package packages-to-add &optional
package

Adds packages-to-add as implementation packages of package. Signals an error if package or
any of the packages-to-add is not a valid package designator.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:remove-implementation-
package packages-to-remove &optional
package

Removes packages-to-remove from the implementation packages of package. Signals an error
if package or any of the packages-to-remove is not a valid package designator.

[Macro]\smallertt\phantomconcurrency:\llapsb-ext:without-package-locks
&body body

Ignores all runtime package lock violations during the execution of body. Body can begin with
declarations.

[Macro]\smallertt\phantomconcurrency:\llapsb-ext:with-unlocked-packages
(&rest packages) &body forms

Unlocks packages for the dynamic scope of the body. Signals an error if any of packages is not
a valid package designator.

[Macro]\smallertt\phantomconcurrency:\llapcl:defpackage name [[option]]* ⇒
package

Options are extended to include the following:
• :lock boolean

If the argument to :lock is t, the package is initially locked. If :lock is not provided it
defaults to nil.

• :implement package-designator*
The package is added as an implementation package to the packages named. If :implement
is not provided, it defaults to the package itself.

Example:
(defpackage "FOO" (:export "BAR") (:lock t) (:implement))
(defpackage "FOO-INT" (:use "FOO") (:implement "FOO" "FOO-INT"))

;;; is equivalent to

(defpackage "FOO") (:export "BAR"))
(lock-package "FOO")
(remove-implementation-package "FOO" "FOO")
(defpackage "FOO-INT" (:use "BAR"))
(add-implementation-package "FOO-INT" "FOO")

Chapter 12: Threading 104

12 Threading

SBCL supports a fairly low-level threading interface that maps onto the host operating system’s
concept of threads or lightweight processes. This means that threads may take advantage of hard-
ware multiprocessing on machines that have more than one CPU, but it does not allow Lisp control
of the scheduler. This is found in the SB-THREAD package.

Threads are part of the default build on x86[-64]/ARM64 Linux and Windows.
They are also supported on: x86[-64] Darwin (Mac OS X), x86[-64] FreeBSD, x86 SunOS (So-

laris), PPC Linux, ARM64 Linux. On these platforms threads must be explicitly enabled at
build-time, see ‘INSTALL’ for directions.

12.1 Threading basics

(make-thread (lambda () (write-line "Hello, world")))

12.1.1 Thread Objects

[Structure]\smallertt\phantomconcurrency:\llapsb-thread:thread
Class precedence list: \llwthread%, \llwstructure-object%, \llwt%

Thread type. Do not rely on threads being structs as it may change in future versions.

[Variable]\smallertt\phantomconcurrency:\llapsb-thread:*current-thread*
Bound in each thread to the thread itself.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:list-all-threads
Return a list of the live threads. Note that the return value is potentially stale even before the
function returns, as new threads may be created and old ones may exit at any time.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:thread-alive-p
thread

Return t if thread is still alive. Note that the return value is potentially stale even before the
function returns, as the thread may exit at any time.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:thread-name instance
Name of the thread. Can be assigned to using setf. Thread names can be arbitrary printable
objects, and need not be unique.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:main-thread-p
&optional thread

True if thread, defaulting to current thread, is the main thread of the process.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:main-thread
Returns the main thread of the process.

12.1.2 Making, Returning From, Joining, and Yielding Threads

[Function]\smallertt\phantomconcurrency:\llapsb-thread:make-thread function
&key name arguments ephemeral

Create a new thread of name that runs function with the argument list designator provided
(defaults to no argument). Thread exits when the function returns. The return values of
function are kept around and can be retrieved by join-thread.
Invoking the initial abort restart established by make-thread terminates the thread.
See also: return-from-thread, abort-thread.

Chapter 12: Threading 105

[Macro]\smallertt\phantomconcurrency:\llapsb-thread:return-from-thread
values-form &key allow-exit

Unwinds from and terminates the current thread, with values from values-form as the results
visible to join-thread.
If current thread is the main thread of the process (see MAIN-THREAD-P), signals an error
unless allow-exit is true, as terminating the main thread would terminate the entire process.
If allow-exit is true, returning from the main thread is equivalent to calling sb-ext:exit with
:code 0 and :abort nil.
See also: abort-thread and sb-ext:exit.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:abort-thread &key
allow-exit

Unwinds from and terminates the current thread abnormally, causing join-thread on current
thread to signal an error unless a default-value is provided.
If current thread is the main thread of the process (see MAIN-THREAD-P), signals an error
unless allow-exit is true, as terminating the main thread would terminate the entire process.
If allow-exit is true, aborting the main thread is equivalent to calling sb-ext:exit code 1
and :abort nil.
Invoking the initial abort restart established by make-thread is equivalent to calling abort-
thread in other than main threads. However, whereas abort restart may be rebound, abort-
thread always unwinds the entire thread. (Behaviour of the initial abort restart for main thread
depends on the :toplevel argument to sb-ext:save-lisp-and-die.)
See also: return-from-thread and sb-ext:exit.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:join-thread thread
&key default timeout

Suspend current thread until thread exits. Return the result values of the thread function.
If thread does not exit within timeout seconds and default is supplied, return two values:
1) default 2) :timeout. If default is not supplied, signal a join-thread-error with join-
thread-problem equal to :timeout.
If thread does not exit normally (i.e. aborted) and default is supplied, return two values:
1) default 2) :abort. If default is not supplied, signal a join-thread-error with join-
thread-problem equal to :abort.
If thread is the current thread, signal a join-thread-error with join-thread-problem equal
to :self-join.
Trying to join the main thread causes join-thread to block until timeout occurs or the process
exits: when the main thread exits, the entire process exits.
note: Return convention in case of a timeout is experimental and subject to change.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:thread-yield
Yield the processor to other threads.

12.1.3 Asynchronous Operations

[Function]\smallertt\phantomconcurrency:\llapsb-thread:interrupt-thread
thread function

Interrupt thread and make it run function.
The interrupt is asynchronous, and can occur anywhere with the exception of sections protected
using sb-sys:without-interrupts.
function is called with interrupts disabled, under sb-sys:allow-with-interrupts. Since
functions such as grab-mutex may try to enable interrupts internally, in most cases function

Chapter 12: Threading 106

should either enter sb-sys:with-interrupts to allow nested interrupts, or sb-sys:without-
interrupts to prevent them completely.
When a thread receives multiple interrupts, they are executed in the order they were sent --
first in, first out.
This means that a great degree of care is required to use interrupt-thread safely and sanely in
a production environment. The general recommendation is to limit uses of interrupt-thread
for interactive debugging, banning it entirely from production environments -- it is simply
exceedingly hard to use correctly.
With those caveats in mind, what you need to know when using it:
• If calling function causes a non-local transfer of control (ie. an unwind), all normal cleanup

forms will be executed.
However, if the interrupt occurs during cleanup forms of an unwind-protect, it is just as
if that had happened due to a regular go, throw, or return-from: the interrupted cleanup
form and those following it in the same unwind-protect do not get executed.
sbcl tries to keep its own internals asynch-unwind-safe, but this is frankly an unreasonable
expectation for third party libraries, especially given that asynch-unwind-safety does not
compose: a function calling only asynch-unwind-safe function isn’t automatically asynch-
unwind-safe.
This means that in order for an asynch unwind to be safe, the entire callstack at the point
of interruption needs to be asynch-unwind-safe.

• In addition to asynch-unwind-safety you must consider the issue of reentrancy. interrupt-
thread can cause function that are never normally called recursively to be re-entered during
their dynamic contour, which may cause them to misbehave. (Consider binding of special
variables, values of global variables, etc.)

Taken together, these two restrict the "safe" things to do using interrupt-thread to a fairly
minimal set. One useful one -- exclusively for interactive development use is using it to force
entry to debugger to inspect the state of a thread:

(interrupt-thread thread #’break)

Short version: be careful out there.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:terminate-thread
thread

Terminate the thread identified by thread, by interrupting it and causing it to call sb-
ext:abort-thread with :allow-exit t.
The unwind caused by terminate-thread is asynchronous, meaning that eg. thread executing

(let (foo)
(unwind-protect

(progn
(setf foo (get-foo))
(work-on-foo foo))

(when foo
;; An interrupt occurring inside the cleanup clause
;; will cause cleanups from the current UNWIND-PROTECT
;; to be dropped.
(release-foo foo))))

might miss calling release-foo despite get-foo having returned true if the interrupt occurs
inside the cleanup clause, eg. during execution of release-foo.
Thus, in order to write an asynch unwind safe unwind-protect you need to use without-
interrupts:

Chapter 12: Threading 107

(let (foo)
(sb-sys:without-interrupts
(unwind-protect

(progn
(setf foo (sb-sys:allow-with-interrupts

(get-foo)))
(sb-sys:with-local-interrupts
(work-on-foo foo)))

(when foo
(release-foo foo)))))

Since most libraries using unwind-protect do not do this, you should never assume that un-
known code can safely be terminated using terminate-thread.

12.1.4 Miscellaneous Operations

[Function]\smallertt\phantomconcurrency:\llapsb-thread:symbol-value-in-
thread symbol thread &optional
errorp

Return the local value of symbol in thread, and a secondary value of t on success.
If the value cannot be retrieved (because the thread has exited or because it has no local binding
for NAME) and errorp is true signals an error of type symbol-value-in-thread-error; if
errorp is false returns a primary value of nil, and a secondary value of nil.
Can also be used with setf to change the thread-local value of symbol.
symbol-value-in-thread is primarily intended as a debugging tool, and not as a mechanism
for inter-thread communication.

12.1.5 Error Conditions

[Condition]\smallertt\phantomconcurrency:\llapsb-thread:thread-error
Class precedence list: \llwthread-error%, \llwerror%, \llwserious-condition%,
\llwcondition%, \llwt%

Conditions of type thread-error are signalled when thread operations fail. The offending
thread is initialized by the :thread initialization argument and read by the function thread-
error-thread.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:thread-error-thread
condition

Return the offending thread that the thread-error pertains to.

[Condition]\smallertt\phantomconcurrency:\llapsb-thread:interrupt-thread-
error

Class precedence list: \llwinterrupt-thread-error%, \llwthread-error%, \llwerror%,
\llwserious-condition%, \llwcondition%, \llwt%

Signalled when interrupting a thread fails because the thread has already exited. The offending
thread can be accessed using thread-error-thread.

[Condition]\smallertt\phantomconcurrency:\llapsb-thread:join-thread-error
Class precedence list: \llwjoin-thread-error%, \llwthread-error%, \llwerror%,
\llwserious-condition%, \llwcondition%, \llwt%

Signalled when joining a thread fails due to abnormal exit of the thread to be joined. The
offending thread can be accessed using thread-error-thread.

Chapter 12: Threading 108

12.2 Special Variables

The interaction of special variables with multiple threads is mostly as one would expect, with
behaviour very similar to other implementations.
• global special values are visible across all threads;
• bindings (e.g. using LET) are local to the thread;
• threads do not inherit dynamic bindings from the parent thread

The last point means that
(defparameter *x* 0)
(let ((*x* 1))
(sb-thread:make-thread (lambda () (print *x*))))

prints 0 and not 1 as of 0.9.6.

12.3 Atomic Operations

Following atomic operations are particularly useful for implementing lockless algorithms.

[Macro]\smallertt\phantomconcurrency:\llapsb-ext:atomic-decf place &optional
diff

Atomically decrements place by diff, and returns the value of place before the decrement.
place must access one of the following:
• a defstruct slot with declared type (unsigned-byte 32) or aref of a (simple-array

(unsigned-byte 32) (*)) The type sb-ext:word can be used for these purposes.
• car or cdr (respectively first or REST) of a cons.
• a variable defined using defglobal with a proclaimed type of fixnum.

Macroexpansion is performed on place before expanding atomic-decf.
Decrementing is done using modular arithmetic, which is well-defined over two different domains:
• For structures and arrays, the operation accepts and produces an (unsigned-byte 32),

and diff must be of type (signed-byte 32). atomic-decf of #x0 by one results in
#xFFFFFFFF being stored in place.

• For other places, the domain is fixnum, and diff must be a fixnum. atomic-decf of
#x-20000000 by one results in #x1FFFFFFF being stored in place.

diff defaults to 1.
experimental: Interface subject to change.

[Macro]\smallertt\phantomconcurrency:\llapsb-ext:atomic-incf place &optional
diff

Atomically increments place by diff, and returns the value of place before the increment.
place must access one of the following:
• a defstruct slot with declared type (unsigned-byte 32) or aref of a (simple-array

(unsigned-byte 32) (*)) The type sb-ext:word can be used for these purposes.
• car or cdr (respectively first or REST) of a cons.
• a variable defined using defglobal with a proclaimed type of fixnum.

Macroexpansion is performed on place before expanding atomic-incf.
Incrementing is done using modular arithmetic, which is well-defined over two different domains:
• For structures and arrays, the operation accepts and produces an (unsigned-byte 32), and

diff must be of type (signed-byte 32). atomic-incf of #xFFFFFFFF by one results in
#x0 being stored in place.

Chapter 12: Threading 109

• For other places, the domain is fixnum, and diff must be a fixnum. atomic-incf of
#x1FFFFFFF by one results in #x-20000000 being stored in place.

diff defaults to 1.
experimental: Interface subject to change.

[Macro]\smallertt\phantomconcurrency:\llapsb-ext:atomic-pop place
Like pop, but atomic. place may be read multiple times before the operation completes -- the
write does not occur until such time that no other thread modified place between the read and
the write.
Works on all CASable places.

[Macro]\smallertt\phantomconcurrency:\llapsb-ext:atomic-push obj place
Like push, but atomic. place may be read multiple times before the operation completes --
the write does not occur until such time that no other thread modified place between the read
and the write.
Works on all CASable places.

[Macro]\smallertt\phantomconcurrency:\llapsb-ext:atomic-update place
update-fn &rest arguments

Updates place atomically to the value returned by calling function designated by update-fn
with arguments and the previous value of place.
place may be read and update-fn evaluated and called multiple times before the update suc-
ceeds: atomicity in this context means that the value of place did not change between the time
it was read, and the time it was replaced with the computed value.
place can be any place supported by sb-ext:compare-and-swap.
Examples:

;;; Conses T to the head of FOO-LIST.
(defstruct foo list)
(defvar *foo* (make-foo))
(atomic-update (foo-list *foo*) #’cons t)

(let ((x (cons :count 0)))
(mapc #’sb-thread:join-thread

(loop repeat 1000
collect (sb-thread:make-thread

(lambda ()
(loop repeat 1000

do (atomic-update (cdr x) #’1+)
(sleep 0.00001))))))

;; Guaranteed to be (:COUNT . 1000000) -- if you replace
;; atomic update with (INCF (CDR X)) above, the result becomes
;; unpredictable.
x)

[Macro]\smallertt\phantomconcurrency:\llapsb-ext:compare-and-swap place old
new

Atomically stores new in place if old matches the current value of place. Two values are
considered to match if they are eq. Returns the previous value of place: if the returned value
is eq to old, the swap was carried out.
place must be an CAS-able place. Built-in CAS-able places are accessor forms whose car is
one of the following:

Chapter 12: Threading 110

car, cdr, first, rest, svref, symbol-plist, symbol-value, svref, slot-value
sb-mop:standard-instance-access, sb-mop:funcallable-standard-instance-access,
or the name of a defstruct created accessor for a slot whose declared type is either fixnum or
t. Results are unspecified if the slot has a declared type other than fixnum or t.
In case of slot-value, if the slot is unbound, slot-unbound is called unless old is eq to sb-
pcl:+slot-unbound+ in which case sb-pcl:+slot-unbound+ is returned and new is assigned to
the slot. Additionally, the results are unspecified if there is an applicable method on either sb-
mop:slot-value-using-class, (setf sb-mop:slot-value-using-class), or sb-mop:slot-
boundp-using-class.
Additionally, the place can be a anything for which a CAS-expansion has been specified using
defcas, define-cas-expander, or for which a CAS-function has been defined. (See sb-ext:cas
for more information.)

CAS Protocol

Our compare-and-swap is user-extensible using a protocol similar to setf, allowing users to add
CAS support to new places via e.g. defcas.

At the same time, new atomic operations can be built on top of CAS using get-cas-expansion.
See atomic-update, atomic-push, and atomic-pop for examples of how to do this.

[Macro]\smallertt\phantomconcurrency:\llapsb-ext:cas place old new
Synonym for compare-and-swap.
Additionally defun, defgeneric, defmethod, flet, and labels can be also used to define
CAS-functions analogously to SETF-functions:

(defvar *foo* nil)

(defun (cas foo) (old new)
(cas (symbol-value ’*foo*) old new))

First argument of a cas function is the expected old value, and the second argument of is the
new value. Note that the system provides no automatic atomicity for cas functions, nor can it
verify that they are atomic: it is up to the implementor of a cas function to ensure its atomicity.
experimental: Interface subject to change.

[Macro]\smallertt\phantomconcurrency:\llapsb-ext:define-cas-expander
accessor lambda-list &body body

Analogous to define-setf-expander. Defines a CAS-expansion for accessor. body must
return six values as specified in get-cas-expansion.
Note that the system provides no automatic atomicity for cas expansion, nor can it verify that
they are atomic: it is up to the implementor of a cas expansion to ensure its atomicity.
experimental: Interface subject to change.

[Macro]\smallertt\phantomconcurrency:\llapsb-ext:defcas accessor lambda-list
function &optional docstring

Analogous to short-form defsetf. Defines function as responsible for compare-and-swap on
places accessed using accessor. lambda-list must correspond to the lambda-list of the acces-
sor.
Note that the system provides no automatic atomicity for cas expansions resulting from defcas,
nor can it verify that they are atomic: it is up to the user of defcas to ensure that the function
specified is atomic.
experimental: Interface subject to change.

Chapter 12: Threading 111

[Function]\smallertt\phantomconcurrency:\llapsb-ext:get-cas-expansion place
&optional environment

Analogous to get-setf-expansion. Returns the following six values:
• list of temporary variables
• list of value-forms whose results those variable must be bound
• temporary variable for the old value of place
• temporary variable for the new value of place
• form using the aforementioned temporaries which performs the compare-and-swap operation

on place

• form using the aforementioned temporaries with which to perform a volatile read of place

Example:
(get-cas-expansion ’(car x))
; => (#:CONS871), (X), #:OLD872, #:NEW873,
; (SB-KERNEL:%COMPARE-AND-SWAP-CAR #:CONS871 #:OLD872 :NEW873).
; (CAR #:CONS871)

(defmacro my-atomic-incf (place &optional (delta 1) &environment env)
(multiple-value-bind (vars vals old new cas-form read-form)

(get-cas-expansion place env)
(let ((delta-value (gensym "DELTA")))
‘(let* (,@(mapcar ’list vars vals)

(,old ,read-form)
(,delta-value ,delta)
(,new (+ ,old ,delta-value)))

(loop until (eq ,old (setf ,old ,cas-form))
do (setf ,new (+ ,old ,delta-value)))

,new))))

experimental: Interface subject to change.

12.4 Mutex Support

Mutexes are used for controlling access to a shared resource. One thread is allowed to hold the
mutex, others which attempt to take it will be made to wait until it’s free. Threads are woken in
the order that they go to sleep.

(defpackage :demo (:use "CL" "SB-THREAD" "SB-EXT"))

(in-package :demo)

(defvar *a-mutex* (make-mutex :name "my lock"))

(defun thread-fn ()
(format t "Thread ~A running ~%" *current-thread*)
(with-mutex (*a-mutex*)
(format t "Thread ~A got the lock~%" *current-thread*)
(sleep (random 5)))

(format t "Thread ~A dropped lock, dying now~%" *current-thread*))

(make-thread #’thread-fn)
(make-thread #’thread-fn)

[Structure]\smallertt\phantomconcurrency:\llapsb-thread:mutex
Class precedence list: \llwmutex%, \llwstructure-object%, \llwt%

Chapter 12: Threading 112

Mutex type.

[Macro]\smallertt\phantomconcurrency:\llapsb-thread:with-mutex (mutex
&key wait-p timeout value) &body body

Acquire mutex for the dynamic scope of body. If wait-p is true (the default), and the mutex is
not immediately available, sleep until it is available.
If timeout is given, it specifies a relative timeout, in seconds, on how long the system should
try to acquire the lock in the contested case.
If the mutex isn’t acquired successfully due to either wait-p or timeout, the body is not
executed, and with-mutex returns nil.
Otherwise body is executed with the mutex held by current thread, and with-mutex returns
the values of body.
Historically with-mutex also accepted a value argument, which when provided was used as the
new owner of the mutex instead of the current thread. This is no longer supported: if value is
provided, it must be either nil or the current thread.

[Macro]\smallertt\phantomconcurrency:\llapsb-thread:with-recursive-lock
(mutex &key wait-p timeout) &body body

Acquire mutex for the dynamic scope of body.
If wait-p is true (the default), and the mutex is not immediately available or held by the current
thread, sleep until it is available.
If timeout is given, it specifies a relative timeout, in seconds, on how long the system should
try to acquire the lock in the contested case.
If the mutex isn’t acquired successfully due to either wait-p or timeout, the body is not
executed, and with-recursive-lock returns nil.
Otherwise body is executed with the mutex held by current thread, and with-recursive-lock
returns the values of body.
Unlike with-mutex, which signals an error on attempt to re-acquire an already held mutex,
with-recursive-lock allows recursive lock attempts to succeed.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:make-mutex &key
name

Create a mutex.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:mutex-name instance
The name of the mutex. Setfable.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:mutex-owner mutex
Current owner of the mutex, nil if the mutex is free. Naturally, this is racy by design (another
thread may acquire the mutex after this function returns), it is intended for informative purposes.
For testing whether the current thread is holding a mutex see holding-mutex-p.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:mutex-value mutex
Current owner of the mutex, nil if the mutex is free. May return a stale value, use mutex-owner
instead.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:grab-mutex mutex
&key waitp timeout

Acquire mutex for the current thread. If waitp is true (the default) and the mutex is not
immediately available, sleep until it is available.

Chapter 12: Threading 113

If timeout is given, it specifies a relative timeout, in seconds, on how long grab-mutex should
try to acquire the lock in the contested case.
If grab-mutex returns t, the lock acquisition was successful. In case of waitp being nil, or an
expired timeout, grab-mutex may also return nil which denotes that grab-mutex did -not-
acquire the lock.
Notes:
• grab-mutex is not interrupt safe. The correct way to call it is:

(WITHOUT-INTERRUPTS ... (allow-with-interrupts (grab-mutex ...)) ...)
without-interrupts is necessary to avoid an interrupt unwinding the call while the mutex
is in an inconsistent state while allow-with-interrupts allows the call to be interrupted
from sleep.

• (grab-mutex <mutex> :timeout 0.0) differs from (grab-mutex <mutex> :waitp nil) in
that the former may signal a deadline-timeout if the global deadline was due already on
entering grab-mutex.
The exact interplay of grab-mutex and deadlines are reserved to change in future versions.

• It is recommended that you use with-mutex instead of calling grab-mutex directly.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:release-mutex mutex
&key if-not-owner

Release mutex by setting it to nil. Wake up threads waiting for this mutex.
release-mutex is not interrupt safe: interrupts should be disabled around calls to it.
If the current thread is not the owner of the mutex then it silently returns without doing anything
(if if-not-owner is :PUNT), signals a warning (if if-not-owner is :WARN), or releases the
mutex anyway (if if-not-owner is :FORCE).

12.5 Semaphores

Semaphores are among other things useful for keeping track of a countable resource, e.g. messages
in a queue, and sleep when the resource is exhausted.

[Structure]\smallertt\phantomconcurrency:\llapsb-thread:semaphore
Class precedence list: \llwsemaphore%, \llwstructure-object%, \llwt%

Semaphore type. The fact that a semaphore is a structure-object should be considered an
implementation detail, and may change in the future.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:make-semaphore &key
name count

Create a semaphore with the supplied count and name.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:signal-semaphore
semaphore &optional n

Increment the count of semaphore by n. If there are threads waiting on this semaphore, then n
of them is woken up.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:wait-on-semaphore
semaphore &key n timeout notification

Decrement the count of semaphore by n if the count would not be negative.
Else blocks until the semaphore can be decremented. Returns the new count of semaphore on
success.
If timeout is given, it is the maximum number of seconds to wait. If the count cannot be
decremented in that time, returns nil without decrementing the count.

Chapter 12: Threading 114

If notification is given, it must be a semaphore-notification object whose semaphore-
notification-status is nil. If wait-on-semaphore succeeds and decrements the count, the
status is set to t.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:try-semaphore
semaphore &optional n notification

Try to decrement the count of semaphore by n. If the count were to become negative, punt and
return nil, otherwise return the new count of semaphore.
If notification is given it must be a semaphore notification object with semaphore-
notification-status of nil. If the count is decremented, the status is set to
t.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:semaphore-count
instance

Returns the current count of the semaphore instance.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:semaphore-name
instance

The name of the semaphore instance. Setfable.

[Structure]\smallertt\phantomconcurrency:\llapsb-thread:semaphore-
notification

Class precedence list: \llwsemaphore-notification%, \llwstructure-object%, \llwt%

Semaphore notification object. Can be passed to wait-on-semaphore and try-semaphore as
the :notification argument. Consequences are undefined if multiple threads are using the
same notification object in parallel.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:make-semaphore-
notification

Constructor for semaphore-notification objects. semaphore-notification-status is ini-
tially nil.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:semaphore-
notification-status
semaphore-notification

Returns t if a wait-on-semaphore or try-semaphore using semaphore-notification has suc-
ceeded since the notification object was created or cleared.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:clear-semaphore-
notification
semaphore-notification

Resets the semaphore-notification object for use with another call to wait-on-semaphore
or try-semaphore.

12.6 Waitqueue/condition variables

These are based on the POSIX condition variable design, hence the annoyingly CL-conflicting
name. For use when you want to check a condition and sleep until it’s true. For example: you have
a shared queue, a writer process checking “queue is empty” and one or more readers that need to
know when “queue is not empty”. It sounds simple, but is astonishingly easy to deadlock if another
process runs when you weren’t expecting it to.

There are three components:

Chapter 12: Threading 115

• the condition itself (not represented in code)
• the condition variable (a.k.a. waitqueue) which proxies for it
• a lock to hold while testing the condition

Important stuff to be aware of:
• when calling condition-wait, you must hold the mutex. condition-wait will drop the mutex

while it waits, and obtain it again before returning for whatever reason;
• likewise, you must be holding the mutex around calls to condition-notify;
• a process may return from condition-wait in several circumstances: it is not guaranteed that

the underlying condition has become true. You must check that the resource is ready for
whatever you want to do to it.
(defvar *buffer-queue* (make-waitqueue))
(defvar *buffer-lock* (make-mutex :name "buffer lock"))

(defvar *buffer* (list nil))

(defun reader ()
(with-mutex (*buffer-lock*)
(loop
(condition-wait *buffer-queue* *buffer-lock*)
(loop
(unless *buffer* (return))
(let ((head (car *buffer*)))
(setf *buffer* (cdr *buffer*))
(format t "reader ~A woke, read ~A~%"

current-thread head))))))

(defun writer ()
(loop
(sleep (random 5))
(with-mutex (*buffer-lock*)
(let ((el (intern

(string (code-char
(+ (char-code #\A) (random 26)))))))

(setf *buffer* (cons el *buffer*)))
(condition-notify *buffer-queue*))))

(make-thread #’writer)
(make-thread #’reader)
(make-thread #’reader)

[Structure]\smallertt\phantomconcurrency:\llapsb-thread:waitqueue
Class precedence list: \llwwaitqueue%, \llwstructure-object%, \llwt%

Waitqueue type.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:make-waitqueue &key
name

Create a waitqueue.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:waitqueue-name
instance

The name of the waitqueue. Setfable.

Chapter 12: Threading 116

[Function]\smallertt\phantomconcurrency:\llapsb-thread:condition-wait
queue mutex &key timeout

Atomically release mutex and start waiting on queue until another thread wakes us up using
either condition-notify or condition-broadcast on queue, at which point we re-acquire
mutex and return t.
Spurious wakeups are possible.
If timeout is given, it is the maximum number of seconds to wait, including both waiting for the
wakeup and the time to re-acquire mutex. When neither a wakeup nor a re-acquisition occurs
within the given time, returns nil without re-acquiring mutex.
If condition-wait unwinds, it may do so with or without mutex being held.
Important: Since condition-wait may return without condition-notify or condition-
broadcast having occurred, the correct way to write code that uses condition-wait is to
loop around the call, checking the associated data:

(defvar *data* nil)
(defvar *queue* (make-waitqueue))
(defvar *lock* (make-mutex))

;; Consumer
(defun pop-data (&optional timeout)
(with-mutex (*lock*)
(loop until *data*

do (or (condition-wait *queue* *lock* :timeout timeout)
;; Lock not held, must unwind without touching *data*.
(return-from pop-data nil)))

(pop *data*)))

;; Producer
(defun push-data (data)
(with-mutex (*lock*)
(push data *data*)
(condition-notify *queue*)))

[Function]\smallertt\phantomconcurrency:\llapsb-thread:condition-notify
queue &optional n

Notify n threads waiting on queue.
important: The same mutex that is used in the corresponding condition-wait must be held
by this thread during this call.

[Function]\smallertt\phantomconcurrency:\llapsb-thread:condition-broadcast
queue

Notify all threads waiting on queue.
important: The same mutex that is used in the corresponding condition-wait must be held
by this thread during this call.

12.7 Barriers

These are based on the Linux kernel barrier design, which is in turn based on the Alpha CPU
memory model. They are presently implemented for x86, x86-64, PPC, and ARM64 systems, and
behave as compiler barriers on all other CPUs.

In addition to explicit use of the sb-thread:barrier macro, the following functions and macros
also serve as :memory barriers:

Chapter 12: Threading 117

• sb-ext:atomic-decf, sb-ext:atomic-incf, sb-ext:atomic-push, and sb-ext:atomic-
pop.

• sb-ext:compare-and-swap.
• sb-thread:grab-mutex, sb-thread:release-mutex, sb-thread:with-mutex and

sb-thread:with-recursive-lock.
• sb-thread:signal-semaphore, sb-thread:try-semaphore and sb-thread:wait-on-

semaphore.
• sb-thread:condition-wait, sb-thread:condition-notify and sb-thread:condition-

broadcast.

[Macro]\smallertt\phantomconcurrency:\llapsb-thread:barrier (kind) &body
forms

Insert a barrier in the code stream, preventing some sort of reordering.
kind should be one of:

:compiler
Prevent the compiler from reordering memory access across the barrier.

:memory Prevent the cpu from reordering any memory access across the barrier.

:read Prevent the cpu from reordering any read access across the barrier.

:write Prevent the cpu from reordering any write access across the barrier.

:data-dependency
Prevent the cpu from reordering dependent memory reads across the barrier (re-
quiring reads before the barrier to complete before any reads after the barrier that
depend on them). This is a weaker form of the :read barrier.

forms is an implicit progn, evaluated before the barrier. barrier returns the values of the last
form in forms.
The file "memory-barriers.txt" in the Linux kernel documentation is highly recommended read-
ing for anyone programming at this level.

12.8 Sessions/Debugging

If the user has multiple views onto the same Lisp image (for example, using multiple terminals,
or a windowing system, or network access) they are typically set up as multiple sessions such
that each view has its own collection of foreground/background/stopped threads. A thread which
wishes to create a new session can use sb-thread:with-new-session to remove itself from the
current session (which it shares with its parent and siblings) and create a fresh one. # See also
sb-thread:make-listener-thread.

Within a single session, threads arbitrate between themselves for the user’s attention. A thread
may be in one of three notional states: foreground, background, or stopped. When a background
process attempts to print a repl prompt or to enter the debugger, it will stop and print a message
saying that it has stopped. The user at his leisure may switch to that thread to find out what
it needs. If a background thread enters the debugger, selecting any restart will put it back into
the background before it resumes. Arbitration for the input stream is managed by calls to sb-
thread:get-foreground (which may block) and sb-thread:release-foreground.

12.9 Foreign threads

Direct calls to pthread_create (instead of MAKE-THREAD) create threads that SBCL is not aware
of, these are called foreign threads. Currently, it is not possible to run Lisp code in such threads.
This means that the Lisp side signal handlers cannot work. The best solution is to start foreign
threads with signals blocked, but since third party libraries may create threads, it is not always

Chapter 12: Threading 118

feasible to do so. As a workaround, upon receiving a signal in a foreign thread, SBCL changes the
thread’s sigmask to block all signals that it wants to handle and resends the signal to the current
process which should land in a thread that does not block it, that is, a Lisp thread.

The resignalling trick cannot work for synchronously triggered signals (SIGSEGV and co), take
care not to trigger any. Resignalling for synchronously triggered signals in foreign threads is subject
to --lose-on-corruption, see Section 3.3.1 [Runtime Options], page 14.

12.10 Implementation (Linux x86/x86-64)

Threading is implemented using pthreads and some Linux specific bits like futexes.
On x86 the per-thread local bindings for special variables is achieved using the %fs segment

register to point to a per-thread storage area. This may cause interesting results if you link to
foreign code that expects threading or creates new threads, and the thread library in question uses
%fs in an incompatible way. On x86-64 the r12 register has a similar role.

Queues require the sys_futex() system call to be available: this is the reason for the NPTL
requirement. We test at runtime that this system call exists.

Garbage collection is done with the existing Conservative Generational GC. Allocation is done in
small (typically 8k) regions: each thread has its own region so this involves no stopping. However,
when a region fills, a lock must be obtained while another is allocated, and when a collection is
required, all processes are stopped. This is achieved by sending them signals, which may make for
interesting behaviour if they are interrupted in system calls. The streams interface is believed to
handle the required system call restarting correctly, but this may be a consideration when making
other blocking calls e.g. from foreign library code.

Large amounts of the SBCL library have not been inspected for thread-safety. Some of the
obviously unsafe areas have large locks around them, so compilation and fasl loading, for example,
cannot be parallelized. Work is ongoing in this area.

A new thread by default is created in the same POSIX process group and session as the thread
it was created by. This has an impact on keyboard interrupt handling: pressing your terminal’s intr
key (typically Control-C) will interrupt all processes in the foreground process group, including
Lisp threads that SBCL considers to be notionally ‘background’. This is undesirable, so background
threads are set to ignore the SIGINT signal.

sb-thread:make-listener-thread in addition to creating a new Lisp session makes a new
POSIX session, so that pressing Control-C in one window will not interrupt another listener - this
has been found to be embarrassing.

Chapter 13: Timers 119

13 Timers

SBCL supports a system-wide event scheduler implemented on top of setitimer that also works
with threads but does not require a separate scheduler thread.

The following example schedules a timer that writes “Hello, word” after two seconds.
(schedule-timer (make-timer (lambda ()

(write-line "Hello, world")
(force-output)))

2)

It should be noted that writing timer functions requires special care, as the dynamic environ-
ment in which they run is unpredictable: dynamic variable bindings, locks held, etc, all depend
on whatever code was running when the timer fired. The following example should serve as a
cautionary tale:

(defvar *foo* nil)

(defun show-foo ()
(format t "~&foo=~S~%" *foo*)
(force-output t))

(defun demo ()
(schedule-timer (make-timer #’show-foo) 0.5)
(schedule-timer (make-timer #’show-foo) 1.5)
(let ((*foo* t))
(sleep 1.0))

(let ((*foo* :surprise!))
(sleep 2.0)))

13.1 Timer Dictionary

[Structure]\smallertt\phantomconcurrency:\llapsb-ext:timer
Class precedence list: \llwtimer%, \llwstructure-object%, \llwt%

Timer type. Do not rely on timers being structs as it may change in future versions.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:make-timer function &key
name thread

Create a timer that runs function when triggered.
If a thread is supplied, function is run in that thread. If thread is t, a new thread is created for
function each time the timer is triggered. If thread is nil, function is run in an unspecified
thread.
When thread is not t, interrupt-thread is used to run function and the ordering guarantees
of interrupt-thread apply. In that case, function runs with interrupts disabled but with-
interrupts is allowed.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:timer-name timer
Return the name of timer.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:timer-scheduled-p timer
&key delta

See if timer will still need to be triggered after delta seconds from now. For timers with a
repeat interval it returns true.

Chapter 13: Timers 120

[Function]\smallertt\phantomconcurrency:\llapsb-ext:schedule-timer timer
time &key repeat-interval absolute-p catch-up

Schedule timer to be triggered at time. If absolute-p then time is universal time, but non-
integral values are also allowed, else time is measured as the number of seconds from the current
time.
If repeat-interval is given, timer is automatically rescheduled upon expiry.
If repeat-interval is non-NIL, the Boolean catch-up controls whether timer will "catch up"
by repeatedly calling its function without delay in case calls are missed because of a clock
discontinuity such as a suspend and resume cycle of the computer. The default is nil, i.e. do
not catch up.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:unschedule-timer timer
Cancel timer. Once this function returns it is guaranteed that timer shall not be triggered
again and there are no unfinished triggers.

[Function]\smallertt\phantomconcurrency:\llapsb-ext:list-all-timers
Return a list of all timers in the system.

Chapter 14: Networking 121

14 Networking

The sb-bsd-sockets module provides a thinly disguised BSD socket API for SBCL. Ideas have
been stolen from the BSD socket API for C and Graham Barr’s IO::Socket classes for Perl.

Sockets are represented as CLOS objects, and the API naming conventions attempt to balance
between the BSD names and good lisp style.

14.1 Sockets Overview

Most of the functions are modelled on the BSD socket API. BSD sockets are widely supported,
portably (“portable” by Unix standards, at least) available on a variety of systems, and documented.
There are some differences in approach where we have taken advantage of some of the more useful
features of Common Lisp - briefly:

• Where the C API would typically return -1 and set errno, sb-bsd-sockets signals an error.
All the errors are subclasses of sb-bsd-sockets:socket-condition and generally correspond
one for one with possible errno values.

• We use multiple return values in many places where the C API would use pass-by-reference
values.

• We can often avoid supplying an explicit length argument to functions because we already
know how long the argument is.

• IP addresses and ports are represented in slightly friendlier fashion than "network-endian
integers".

14.2 General Sockets

[Class]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:socket
Class precedence list: \llwsocket%, \llwstandard-object%, \llwt%

Slots:

• protocol — initarg: :protocol; reader: sb-bsd-sockets:socket-protocol
Protocol used by the socket. If a keyword, the symbol-name of the keyword will be passed to
get-protocol-by-name downcased, and the returned value used as protocol. Other values
are used as-is.

• type — initarg: :type; reader: sb-bsd-sockets:socket-type
Type of the socket: :stream or :datagram.

Common superclass of all sockets, not meant to be directly instantiated.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:socket-
bind socket &rest
address

Bind socket to address, which may vary according to socket family. For the inet family, pass
address and port as two arguments; for file address family sockets, pass the filename string.
See also bind(2)

[Generic Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:socket-
accept
socket

Perform the accept(2) call, returning a newly-created connected socket and the peer address as
multiple values

Chapter 14: Networking 122

[Generic Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:socket-
connect socket &rest
address

Perform the connect(2) call to connect socket to a remote peer. No useful return value.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:socket-
peername
socket

Return SOCKET’s peer; depending on the address family this may return multiple values

[Generic Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:socket-
name
socket

Return the address (as vector of bytes) and port that socket is bound to, as multiple values.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:socket-
receive socket buffer length &key oob peek waitall dontwait
element-type

Read length octets from socket into buffer (or a freshly-consed buffer if NIL), using
recvfrom(2). If length is nil, the length of buffer is used, so at least one of these two
arguments must be non-NIL. If buffer is supplied, it had better be of an element type one octet
wide. Returns the buffer, its length, and the address of the peer that sent it, as multiple values.
On datagram sockets, sets MSG TRUNC so that the actual packet length is returned even if
the buffer was too small.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:socket-
send socket buffer length &key address external-format oob eor dontroute dontwait
nosignal confirm more

Send length octets from buffer into socket, using sendto(2). If buffer is a string, it will
converted to octets according to external-format. If length is nil, the length of the octet
buffer is used. The format of address depends on the socket type (for example for inet domain
sockets it would be a list of an ip address and a port). If no socket address is provided, send(2)
will be called instead. Returns the number of octets written.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:socket-
listen socket
backlog

Mark socket as willing to accept incoming connections. The integer backlog defines the maxi-
mum length that the queue of pending connections may grow to before new connection attempts
are refused. See also listen(2)

[Generic Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:socket-
open-p
socket

Return true if socket is open; otherwise, return false.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:socket-
close socket &key
abort

Close socket, unless it was already closed.
If socket-make-stream has been called, calls close using abort on that stream. Otherwise
closes the socket file descriptor using close(2).

Chapter 14: Networking 123

[Generic Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:socket-
shutdown socket &key
direction

Indicate that no communication in direction will be performed on socket.

direction has to be one of :input, :output or :io.

After a shutdown, no input and/or output of the indicated direction can be performed on
socket.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:socket-
make-stream socket &key input output element-type external-format buffering
timeout auto-close serve-events

Find or create a stream that can be used for io on socket (which must be connected). Specify
whether the stream is for input, output, or both (it is an error to specify neither).

element-type and external-format are as per open.

timeout specifies a read timeout for the stream.

[Method]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:socket-make-
stream (socket socket) &key input output (element-type (quote character)) (buffering
full) (external-format default) timeout auto-close serve-events

Default method for socket objects.

element-type defaults to character, to construct a bivalent stream, capable of both binary
and character io use :default.

Acceptable values for buffering are :full, :line and :none, default is :full, ie. output is
buffered till it is explicitly flushed using close or finish-output. (force-output forces some
output to be flushed: to ensure all buffered output is flused use finish-output.)

Streams have no timeout by default. If one is provided, it is the number of seconds the system
will at most wait for input to appear on the socket stream when trying to read from it.

If auto-close is true, the underlying os socket is automatically closed after the stream and the
socket have been garbage collected. Default is false.

If serve-events is true, blocking io on the socket will dispatch to the recursive event loop.
Default is false.

The stream for socket will be cached, and a second invocation of this method will return the
same stream. This may lead to oddities if this function is invoked with inconsistent arguments
(e.g., one might request an input stream and get an output stream in response).

[Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:socket-error
where &optional errno

[Generic Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:non-
blocking-mode
socket

Is socket in non-blocking mode?

14.3 Socket Options

A subset of socket options are supported, using a fairly general framework which should make it
simple to add more as required - see ‘SYS:CONTRIB;SB-BSD-SOCKETS:SOCKOPT.LISP’ for details.
The name mapping from C is fairly straightforward: SO_RCVLOWAT becomes sockopt-receive-
low-water and (setf sockopt-receive-low-water).

Chapter 14: Networking 124

[Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:sockopt-reuse-
address
socket

Return the value of the so-reuseaddr socket option for socket. This can also be updated with
setf.

[Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:sockopt-keep-
alive
socket

Return the value of the so-keepalive socket option for socket. This can also be updated with
setf.

[Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:sockopt-oob-
inline
socket

Return the value of the so-oobinline socket option for socket. This can also be updated with
setf.

[Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:sockopt-bsd-
compatible
socket

Return the value of the so-bsdcompat socket option for socket. This can also be updated with
setf. Available only on Linux.

[Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:sockopt-pass-
credentials
socket

Return the value of the so-passcred socket option for socket. This can also be updated with
setf. Available only on Linux.

[Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:sockopt-debug
socket

Return the value of the so-debug socket option for socket. This can also be updated with
setf.

[Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:sockopt-dont-
route
socket

Return the value of the so-dontroute socket option for socket. This can also be updated with
setf.

[Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:sockopt-
broadcast
socket

Return the value of the so-broadcast socket option for socket. This can also be updated with
setf.

[Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:sockopt-tcp-
nodelay
socket

Return the value of the tcp-nodelay socket option for socket. This can also be updated with
setf.

Chapter 14: Networking 125

14.4 INET Domain Sockets

The TCP and UDP sockets that you know and love. Some representation issues:

• IPv4 Internet addresses are represented by vectors of (unsigned-byte 8) - viz. #(127 0 0 1).
Ports are just integers: 6010. No conversion between network- and host-order data is needed
from the user of this package.

• IPv6 Internet addresses are represented by vectors of 16 (unsigned-byte 8) - viz. #(0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1). Ports are just integers. As for IPv4 addresses, no conversion between
network- and host-order data is needed from the user of this package.

• Socket addresses are represented by the two values for address and port, so for example,
(socket-connect socket #(192 168 1 1) 80) for IPv4 and (socket-connect socket #(0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1) 80) for IPv6.

[Class]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:inet-socket
Class precedence list: \llwinet-socket%, \llwsocket%, \llwstandard-object%, \llwt%

Class representing tcp and udp over IPv4 sockets.

Examples:

(make-instance ’sb-bsd-sockets:inet-socket :type :stream :protocol :tcp)

(make-instance ’sb-bsd-sockets:inet-socket :type :datagram :protocol :udp)

[Class]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:inet6-socket
Class precedence list: \llwinet6-socket%, \llwsocket%, \llwstandard-object%, \llwt%

Class representing tcp and udp over IPv6 sockets.

Examples:

(make-instance ’sb-bsd-sockets:inet6-socket :type :stream :protocol :tcp)

(make-instance ’sb-bsd-sockets:inet6-socket :type :datagram :protocol :udp)

[Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:make-inet-
address
dotted-quads

Return a vector of octets given a string dotted-quads in the format "127.0.0.1". Signals an
error if the string is malformed.

[Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:make-inet6-
address
colon-separated-integers

Return a vector of octets given a string representation of an IPv6 address colon-separated-
integers. Signal an error if the string is malformed.

[Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:get-protocol-
by-name
name

Given a protocol name, return the protocol number, the protocol name, and a list of protocol
aliases

Chapter 14: Networking 126

14.5 Local (Unix) Domain Sockets

Local domain (AF_LOCAL) sockets are also known as Unix-domain sockets, but were renamed by
POSIX presumably on the basis that they may be available on other systems too.

A local socket address is a string, which is used to create a node in the local filesystem. This
means of course that they cannot be used across a network.

[Class]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:local-socket
Class precedence list: \llwlocal-socket%, \llwsocket%, \llwstandard-object%, \llwt%

Class representing local domain (AF LOCAL) sockets, also known as unix-domain sockets.

14.6 Name Service

Presently name service is implemented by calling out to the getaddrinfo(3) and gethostinfo(3),
or to gethostbyname(3) gethostbyaddr(3) on platforms where the preferred functions are not
available. The exact details of the name resolving process (for example the choice of whether DNS
or a hosts file is used for lookup) are platform dependent.

[Class]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:host-ent
Class precedence list: \llwhost-ent%, \llwstandard-object%, \llwt%

Slots:
• name — initarg: :name; reader: sb-bsd-sockets:host-ent-name

The name of the host
• addresses — initarg: :addresses; reader: sb-bsd-sockets:host-ent-addresses

A list of addresses for this host.

This class represents the results of an address lookup.

[Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:get-host-by-
name
node

Returns a host-ent instance for node or signals a name-service-error.
Another host-ent instance containing zero, one or more IPv6 addresses may be returned as a
second return value.
node may also be an ip address in dotted quad notation or some other weird stuff - see getad-
drinfo(3) for the details.

[Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:get-host-by-
address
address

Returns a host-ent instance for address, which should be a vector of (integer 0 255) with 4
elements in case of an IPv4 address and 16 elements in case of an IPv6 address, or signals a
name-service-error. See gethostbyaddr(3) for details.

[Generic Function]\smallertt\phantomconcurrency:\llapsb-bsd-sockets:host-
ent-address
host-ent

Return some valid address for host-ent.

Chapter 15: Profiling 127

15 Profiling

SBCL includes both a deterministic profiler, that can collect statistics on individual functions, and
a more “modern” statistical profiler.

Inlined functions do not appear in the results reported by either.

15.1 Deterministic Profiler

The package sb-profile provides a classic, per-function-call profiler.

note: When profiling code executed by multiple threads in parallel, the consing at-
tributed to each function is inaccurate.

[Macro]\smallertt\phantomconcurrency:\llapsb-profile:profile &rest names
profile Name*

If no names are supplied, return the list of profiled functions.

If names are supplied, wrap profiling code around the named functions. As in trace, the names
are not evaluated. A symbol names a function. A string names all the functions named by
symbols in the named package. If a function is already profiled, then unprofile and reprofile
(useful to notice function redefinition.) If a name is undefined, then we give a warning and
ignore it. See also unprofile, report and reset.

[Macro]\smallertt\phantomconcurrency:\llapsb-profile:unprofile &rest names
Unwrap any profiling code around the named functions, or if no names are given, unprofile all
profiled functions. A symbol names a function. A string names all the functions named by
symbols in the named package. names defaults to the list of names of all currently profiled
functions.

[Function]\smallertt\phantomconcurrency:\llapsb-profile:report &key limit
print-no-call-list

Report results from profiling. The results are approximately adjusted for profiling overhead.
The compensation may be rather inaccurate when bignums are involved in runtime calculation,
as in a very-long-running Lisp process.

If limit is set to an integer, only the top limit results are reported. If print-no-call-list
is t (the default) then a list of uncalled profiled functions are listed.

[Function]\smallertt\phantomconcurrency:\llapsb-profile:reset
Reset the counters for all profiled functions.

15.2 Statistical Profiler

The sb-sprof module, loadable by

(require :sb-sprof)

provides an alternate profiler which works by taking samples of the program execution at regular
intervals, instead of instrumenting functions like sb-profile:profile does. You might find sb-
sprof more useful than the deterministic profiler when profiling functions in the common-lisp-
package, SBCL internals, or code where the instrumenting overhead is excessive.

Additionally sb-sprof includes a limited deterministic profiler which can be used for reporting
the amounts of calls to some functions during

Chapter 15: Profiling 128

15.2.1 Example Usage

(in-package :cl-user)

(require :sb-sprof)

(declaim (optimize speed))

(defun cpu-test-inner (a i)
(logxor a

(* i 5)
(+ a i)))

(defun cpu-test (n)
(let ((a 0))
(dotimes (i (expt 2 n) a)
(setf a (cpu-test-inner a i)))))

;;;; CPU profiling

;;; Take up to 1000 samples of running (CPU-TEST 26), and give a flat
;;; table report at the end. Profiling will end one the body has been
;;; evaluated once, whether or not 1000 samples have been taken.
(sb-sprof:with-profiling (:max-samples 1000

:report :flat
:loop nil)

(cpu-test 26))

;;; Record call counts for functions defined on symbols in the CL-USER
;;; package.
(sb-sprof:profile-call-counts "CL-USER")

;;; Take 1000 samples of running (CPU-TEST 24), and give a flat
;;; table report at the end. The body will be re-evaluated in a loop
;;; until 1000 samples have been taken. A sample count will be printed
;;; after each iteration.
(sb-sprof:with-profiling (:max-samples 1000

:report :flat
:loop t
:show-progress t)

(cpu-test 24))

;;;; Allocation profiling

(defun foo (&rest args)
(mapcar (lambda (x) (float x 1d0)) args))

(defun bar (n)
(declare (fixnum n))
(apply #’foo (loop repeat n collect n)))

(sb-sprof:with-profiling (:max-samples 10000
:mode :alloc

Chapter 15: Profiling 129

:report :flat)
(bar 1000))

15.2.2 Output

The flat report format will show a table of all functions that the profiler encountered on the call
stack during sampling, ordered by the number of samples taken while executing that function.

Self Total Cumul
Nr Count % Count % Count % Calls Function

--
1 69 24.4 97 34.3 69 24.4 67108864 CPU-TEST-INNER
2 64 22.6 64 22.6 133 47.0 - SB-VM::GENERIC-+
3 39 13.8 256 90.5 172 60.8 1 CPU-TEST
4 31 11.0 31 11.0 203 71.7 - SB-KERNEL:TWO-ARG-XOR

For each function, the table will show three absolute and relative sample counts. The Self column
shows samples taken while directly executing that function. The Total column shows samples taken
while executing that function or functions called from it (sampled to a platform-specific depth).
The Cumul column shows the sum of all Self columns up to and including that line in the table.

Additionally the Calls column will record the amount of calls that were made to the function
during the profiling run. This value will only be reported for functions that have been explicitly
marked for call counting with profile-call-counts.

The profiler also hooks into the disassembler such that instructions which have been sampled are
annotated with their relative frequency of sampling. This information is not stored across different
sampling runs.

; 6CF: 702E JO L4 ; 6/242 samples
; 6D1: D1E3 SHL EBX, 1
; 6D3: 702A JO L4
; 6D5: L2: F6C303 TEST BL, 3 ; 2/242 samples
; 6D8: 756D JNE L8
; 6DA: 8BC3 MOV EAX, EBX ; 5/242 samples
; 6DC: L3: 83F900 CMP ECX, 0 ; 4/242 samples

15.2.3 Platform support

This module is known not to work consistently on the Alpha platform, for technical reasons related
to the implementation of a machine language idiom for marking sections of code to be treated as
atomic by the garbage collector; However, it should work on other platforms, and the deficiency on
the Alpha will eventually be rectified.

Allocation profiling is only supported on SBCL builds that use the generational garbage collector.
Tracking of call stacks at a depth of more than two levels is only supported on x86 and x86-64.

15.2.4 Macros

[Macro]\smallertt\phantomconcurrency:\llapsb-sprof:with-profiling (&key
sample-interval alloc-interval max-samples reset mode loop max-depth show-progress
threads report) &body body

Evaluate body with statistical profiling turned on. If loop is true, loop around the body until a
sufficient number of samples has been collected. Returns the values from the last evaluation of
body.
In multithreaded operation, only the thread in which with-profiling was evaluated will be
profiled by default. If you want to profile multiple threads, invoke the profiler with start-
profiling.
The following keyword args are recognized:

Chapter 15: Profiling 130

:sample-interval <n>
Take a sample every <n> seconds. Default is *sample-interval*.

:alloc-interval <n>
Take a sample every time <n> allocation regions (approximately 8kB) have been
allocated since the last sample. Default is *alloc-interval*.

:mode <mode>
If :cpu, run the profiler in cpu profiling mode. If :alloc, run the profiler in alloca-
tion profiling mode. If :time, run the profiler in wallclock profiling mode.

:max-samples <max>
Repeat evaluating body until <max> samples are taken. Default is *max-samples*.

:max-depth <max>
Maximum call stack depth that the profiler should consider. Only has an effect on
x86 and x86-64.

:report <type>
If specified, call report with :type <type> at the end.

:reset <bool>
It true, call reset at the beginning.

:threads <list-form>
Form that evaluates to the list threads to profile, or :all to indicate that all threads
should be profiled. Defaults to the current thread. (Note: start-profiling de-
faults to all threads.)
:threads has no effect on call-counting at the moment.
On some platforms (eg. Darwin) the signals used by the profiler are not properly
delivered to threads in proportion to their cpu usage when doing :cpu profiling. If
you see empty call graphs, or are obviously missing several samples from certain
threads, you may be falling afoul of this. In this case using :mode :time is likely to
work better.

:loop <bool>
If false (the default), evaluate body only once. If true repeatedly evaluate body.

[Macro]\smallertt\phantomconcurrency:\llapsb-sprof:with-sampling
(&optional on) &body body

Evaluate body with statistical sampling turned on or off.

15.2.5 Functions

[Function]\smallertt\phantomconcurrency:\llapsb-sprof:report &key type max
min-percent call-graph sort-by sort-order stream show-progress

Report statistical profiling results. The following keyword args are recognized:

:type <type>
Specifies the type of report to generate. If :flat, show flat report, if :graph show
a call graph and a flat report. If nil, don’t print out a report.

:stream <stream>
Specify a stream to print the report on. Default is *standard-output*.

:max <max>
Don’t show more than <max> entries in the flat report.

:min-percent <min-percent>
Don’t show functions taking less than <min-percent> of the total time in the flat
report.

Chapter 15: Profiling 131

:sort-by <column>
If :samples, sort flat report by number of samples taken. If :cumulative-samples,
sort flat report by cumulative number of samples taken (shows how much time each
function spent on stack.) Default is *report-sort-by*.

:sort-order <order>
If :descending, sort flat report in descending order. If :ascending, sort flat report
in ascending order. Default is *report-sort-order*.

:show-progress <bool>
If true, print progress messages while generating the call graph.

:call-graph <graph>
Print a report from <graph> instead of the latest profiling results.

Value of this function is a call-graph object representing the resulting call-graph, or nil if
there are no samples (eg. right after calling reset.)
Profiling is stopped before the call graph is generated.

[Function]\smallertt\phantomconcurrency:\llapsb-sprof:reset
Reset the profiler.

[Function]\smallertt\phantomconcurrency:\llapsb-sprof:start-profiling &key
max-samples mode sample-interval alloc-interval max-depth threads sampling

Start profiling statistically in the current thread if not already profiling. The following keyword
args are recognized:

:sample-interval <n>
Take a sample every <n> seconds. Default is *sample-interval*.

:alloc-interval <n>
Take a sample every time <n> allocation regions (approximately 8kB) have been
allocated since the last sample. Default is *alloc-interval*.

:mode <mode>
If :cpu, run the profiler in cpu profiling mode. If :alloc, run the profiler in alloca-
tion profiling mode. If :time, run the profiler in wallclock profiling mode.

:max-samples <max>
Maximum number of samples. Default is *max-samples*.

:max-depth <max>
Maximum call stack depth that the profiler should consider. Only has an effect on
x86 and x86-64.

:threads <list>
List threads to profile, or :all to indicate that all threads should be profiled. De-
faults to :all. (Note: with-profiling defaults to the current thread.)
:threads has no effect on call-counting at the moment.
On some platforms (eg. Darwin) the signals used by the profiler are not properly
delivered to threads in proportion to their cpu usage when doing :cpu profiling. If
you see empty call graphs, or are obviously missing several samples from certain
threads, you may be falling afoul of this.

:sampling <bool>
If true, the default, start sampling right away. If false, start-sampling can be used
to turn sampling on.

Chapter 15: Profiling 132

[Function]\smallertt\phantomconcurrency:\llapsb-sprof:stop-profiling
Stop profiling if profiling.

[Function]\smallertt\phantomconcurrency:\llapsb-sprof:profile-call-counts
&rest names

Mark the functions named by names as being subject to call counting during statistical profiling.
If a string is used as a name, it will be interpreted as a package name. In this case call counting
will be done for all functions with names like x or (setf x), where x is a symbol with the
package as its home package.

[Function]\smallertt\phantomconcurrency:\llapsb-sprof:unprofile-call-
counts

Clear all call counting information. Call counting will be done for no functions during statistical
profiling.

15.2.6 Variables

[Variable]\smallertt\phantomconcurrency:\llapsb-sprof:*max-samples*
Default number of traces taken. This variable is somewhat misnamed: each trace may actually
consist of an arbitrary number of samples, depending on the depth of the call stack.

[Variable]\smallertt\phantomconcurrency:\llapsb-sprof:*sample-interval*
Default number of seconds between samples.

15.2.7 Credits

sb-sprof is an SBCL port, with enhancements, of Gerd Moellmann’s statistical profiler for
CMUCL.

Chapter 16: Contributed Modules 133

16 Contributed Modules

SBCL comes with a number of modules that are not part of the core system. These are loaded via
(require :modulename) (see Section 7.9 [Customization Hooks for Users], page 66). This section
contains documentation (or pointers to documentation) for some of the contributed modules.

Chapter 16: Contributed Modules 134

16.1 sb-aclrepl

The sb-aclrepl module offers an Allegro CL-style Read-Eval-Print Loop for SBCL, with integrated
inspector. Adding a debugger interface is planned.

16.1.1 Usage

To start sb-aclrepl as your read-eval-print loop, put the form
(require ’sb-aclrepl)

in your ‘~/.sbclrc’ initialization file.

16.1.2 Example Initialization

Here’s a longer example of a ‘~/.sbclrc’ file that shows off some of the features of sb-aclrepl:
(ignore-errors (require ’sb-aclrepl))

(when (find-package ’sb-aclrepl)
(push :aclrepl cl:*features*))

#+aclrepl
(progn
(setq sb-aclrepl:*max-history* 100)
(setf (sb-aclrepl:alias "asdc")

#’(lambda (sys) (asdf:operate ’asdf:compile-op sys)))
(sb-aclrepl:alias "l" (sys) (asdf:operate ’asdf:load-op sys))
(sb-aclrepl:alias "t" (sys) (asdf:operate ’asdf:test-op sys))
;; The 1 below means that two characaters ("up") are required
(sb-aclrepl:alias ("up" 1 "Use package") (package) (use-package package))
;; The 0 below means only the first letter ("r") is required,
;; such as ":r base64"
(sb-aclrepl:alias ("require" 0 "Require module") (sys) (require sys))
(setq cl:*features* (delete :aclrepl cl:*features*)))

Questions, comments, or bug reports should be sent to Kevin Rosenberg
(kevin@rosenberg.net).

16.1.3 Credits

Allegro CL is a registered trademark of Franz Inc.

mailto:kevin@rosenberg.net

Chapter 16: Contributed Modules 135

16.2 sb-concurrency

Additional data structures, synchronization primitives and tools for concurrent programming. Si-
miliar to Java’s java.util.concurrent package.

Chapter 16: Contributed Modules 136

16.2.1 Queue

sb-concurrency:queue is a lock-free, thread-safe FIFO queue datatype.

The implementation is based on An Optimistic Approach to Lock-Free FIFO Queues by Edya
Ladan-Mozes and Nir Shavit.

Before SBCL 1.0.38, this implementation resided in its own contrib (see Section 16.7 [sb-queue],
page 153) which is still provided for backwards-compatibility but which has since been deprecated.

[Structure]\smallertt\phantomconcurrency:\llapsb-concurrency:queue
Class precedence list: \llwqueue%, \llwstructure-object%, \llwt%

Lock-free thread safe fifo queue.
Use enqueue to add objects to the queue, and dequeue to remove them.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:dequeue queue
Retrieves the oldest value in queue and returns it as the primary value, and t as secondary
value. If the queue is empty, returns nil as both primary and secondary value.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:enqueue value
queue

Adds value to the end of queue. Returns value.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:list-queue-
contents
queue

Returns the contents of queue as a list without removing them from the queue. Mainly useful for
manual examination of queue state, as the list may be out of date by the time it is returned, and
concurrent dequeue operations may in the worse case force the queue-traversal to be restarted
several times.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:make-queue
&key name initial-contents

Returns a new queue with name and contents of the initial-contents sequence enqueued.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:queue-count
queue

Returns the number of objects in queue. Mainly useful for manual examination of queue state,
and in print-object methods: inefficient as it must walk the entire queue.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:queue-empty-p
queue

Returns t if queue is empty, nil otherwise.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:queue-name
instance

Name of a queue. Can be assigned to using setf. Queue names can be arbitrary printable
objects, and need not be unique.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:queuep object
Returns true if argument is a queue, nil otherwise.

Chapter 16: Contributed Modules 137

16.2.2 Mailbox (lock-free)

sb-concurrency:mailbox is a lock-free message queue where one or multiple ends can send mes-
sages to one or multiple receivers. The difference to [Section sb-concurrency:queue], page 136 is
that the receiving end may block until a message arrives.

Built on top of the [Structure sb-concurrency:queue], page 136 implementation.

[Structure]\smallertt\phantomconcurrency:\llapsb-concurrency:mailbox
Class precedence list: \llwmailbox%, \llwstructure-object%, \llwt%

Mailbox aka message queue.

send-message adds a message to the mailbox, receive-message waits till a message becomes
available, whereas receive-message-no-hang is a non-blocking variant, and receive-pending-
messages empties the entire mailbox in one go.

Messages can be arbitrary objects

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:list-mailbox-
messages
mailbox

Returns a fresh list containing all the messages in the mailbox. Does not remove messages from
the mailbox.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:mailbox-count
mailbox

Returns the number of messages currently in the mailbox.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:mailbox-empty-
p
mailbox

Returns true if mailbox is currently empty, nil otherwise.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:mailbox-name
instance

Name of a mailbox. SETFable.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:mailboxp object
Returns true if argument is a mailbox, nil otherwise.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:make-mailbox
&key name initial-contents

Returns a new mailbox with messages in initial-contents enqueued.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:receive-
message mailbox &key
timeout

Removes the oldest message from mailbox and returns it as the primary value, and a secondary
value of t. If mailbox is empty waits until a message arrives.

If timeout is provided, and no message arrives within the specified interval, returns primary
and secondary value of nil.

Chapter 16: Contributed Modules 138

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:receive-
message-no-hang
mailbox

The non-blocking variant of receive-message. Returns two values, the message removed from
mailbox, and a flag specifying whether a message could be received.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:receive-
pending-messages mailbox &optional
n

Removes and returns all (or at most N) currently pending messages from mailbox, or returns
nil if no messages are pending.
Note: Concurrent threads may be snarfing messages during the run of this function, so even
though x,y appear right next to each other in the result, does not necessarily mean that y was
the message sent right after x.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:send-message
mailbox message

Adds a message to mailbox. Message can be any object.

Chapter 16: Contributed Modules 139

16.2.3 Gates

sb-concurrency:gate is a synchronization object suitable for when multiple threads must wait
for a single event before proceeding.

[Structure]\smallertt\phantomconcurrency:\llapsb-concurrency:gate
Class precedence list: \llwgate%, \llwstructure-object%, \llwt%

gate type. Gates are synchronization constructs suitable for making multiple threads wait for
single event before proceeding.
Use wait-on-gate to wait for a gate to open, open-gate to open one, and close-gate to close
an open gate. gate-open-p can be used to test the state of a gate without blocking.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:close-gate
gate

Closes gate. Returns t if the gate was previously open, and nil if the gate was already closed.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:gate-name
instance

Name of a gate. SETFable.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:gate-open-p
gate

Returns true if gate is open.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:gatep object
Returns true if the argument is a gate.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:make-gate &key
name open

Makes a new gate. Gate will be initially open if open is true, and closed if open is nil (the
default.) name, if provided, is the name of the gate, used when printing the gate.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:open-gate gate
Opens gate. Returns t if the gate was previously closed, and nil if the gate was already open.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:wait-on-gate
gate &key timeout

Waits for gate to open, or timeout seconds to pass. Returns t if the gate was opened in time,
and nil otherwise.

Chapter 16: Contributed Modules 140

16.2.4 Frlocks, aka Fast Read Locks

[Structure]\smallertt\phantomconcurrency:\llapsb-concurrency:frlock
Class precedence list: \llwfrlock%, \llwstructure-object%, \llwt%

FRlock, aka Fast Read Lock.
Fast Read Locks allow multiple readers and one potential writer to operate in parallel while
providing for consistency for readers and mutual exclusion for writers.
Readers gain entry to protected regions without waiting, but need to retry if a writer operated
inside the region while they were reading. This makes frlocks very efficient when readers are
much more common than writers.
FRlocks are not suitable when it is not safe at all for readers and writers to operate on the same
data in parallel: they provide consistency, not exclusion between readers and writers. Hence
using an frlock to eg. protect an sbcl hash-table is unsafe. If multiple readers operating in
parallel with a writer would be safe but inconsistent without a lock, frlocks are suitable.
The recommended interface to use is frlock-read and frlock-write, but those needing it can
also use a lower-level interface.
Example:

;; Values returned by FOO are always consistent so that
;; the third value is the sum of the two first ones.
(let ((a 0)

(b 0)
(c 0)
(lk (make-frlock)))

(defun foo ()
(frlock-read (lk) a b c))

(defun bar (x y)
(frlock-write (lk)
(setf a x

b y
c (+ x y)))))

[Macro]\smallertt\phantomconcurrency:\llapsb-concurrency:frlock-read
(frlock) &body value-forms

Evaluates value-forms under frlock till it obtains a consistent set, and returns that as multiple
values.

[Macro]\smallertt\phantomconcurrency:\llapsb-concurrency:frlock-write
(frlock &key wait-p timeout) &body body

Executes body while holding frlock for writing.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:make-frlock
&key name

Returns a new frlock with name.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:frlock-name
instance

Name of an frlock. SETFable.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:frlock-read-
begin
frlock

Start a read sequence on frlock. Returns a read-token and an epoch to be validated later.
Using frlock-read instead is recommended.

Chapter 16: Contributed Modules 141

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:frlock-read-
end
frlock

Ends a read sequence on frlock. Returns a token and an epoch. If the token and epoch are
eql to the read-token and epoch returned by frlock-read-begin, the values read under the
frlock are consistent and can be used: if the values differ, the values are inconsistent and the
read must be restated.
Using frlock-read instead is recommended.
Example:

(multiple-value-bind (t0 e0) (frlock-read-begin *fr*)
(let ((a (get-a))

(b (get-b)))
(multiple-value-bind (t1 e1) (frlock-read-end *fr*)
(if (and (eql t0 t1) (eql e0 e1))

(list :a a :b b)
:aborted))))

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:grab-frlock-
write-lock frlock &key wait-p
timeout

Acquires frlock for writing, invalidating existing and future read-tokens for the duration. Re-
turns t on success, and nil if the lock wasn’t acquired due to eg. a timeout. Using frlock-write
instead is recommended.

[Function]\smallertt\phantomconcurrency:\llapsb-concurrency:release-
frlock-write-lock
frlock

Releases frlock after writing, allowing valid read-tokens to be acquired again. Signals an
error if the current thread doesn’t hold frlock for writing. Using frlock-write instead is
recommended.

Chapter 16: Contributed Modules 142

16.3 sb-cover

The sb-cover module provides a code coverage tool for SBCL. The tool has support for expression
coverage, and for some branch coverage. Coverage reports are only generated for code compiled
using compile-file with the value of the sb-cover:store-coverage-data optimization quality
set to 3.

As of SBCL 1.0.6 sb-cover is still experimental, and the interfaces documented here might
change in later versions.

16.3.1 Example Usage

;;; Load SB-COVER
(require :sb-cover)

;;; Turn on generation of code coverage instrumentation in the compiler
(declaim (optimize sb-cover:store-coverage-data))

;;; Load some code, ensuring that it’s recompiled with the new optimization
;;; policy.
(asdf:oos ’asdf:load-op :cl-ppcre-test :force t)

;;; Run the test suite.
(cl-ppcre-test:test)

;;; Produce a coverage report
(sb-cover:report "/tmp/report/")

;;; Turn off instrumentation
(declaim (optimize (sb-cover:store-coverage-data 0)))

16.3.2 Functions

[Function]\smallertt\phantomconcurrency:\llapsb-cover:report directory &key
form-mode external-format

Print a code coverage report of all instrumented files into directory. If directory does not
exist, it will be created. The main report will be printed to the file cover-index.html. The
external format of the source files can be specified with the external-format parameter.
If the keyword argument form-mode has the value :car, the annotations in the coverage report
will be placed on the CARs of any cons-forms, while if it has the value :whole the whole form will
be annotated (the default). The former mode shows explicitly which forms were instrumented,
while the latter mode is generally easier to read.

[Function]\smallertt\phantomconcurrency:\llapsb-cover:reset-coverage
Reset all coverage data back to the ‘Not executed‘ state.

[Function]\smallertt\phantomconcurrency:\llapsb-cover:clear-coverage
Clear all files from the coverage database. The files will be re-entered into the database when
the fasl files (produced by compiling store-coverage-data optimization policy set to 3) are
loaded again into the image.

[Function]\smallertt\phantomconcurrency:\llapsb-cover:save-coverage
Returns an opaque representation of the current code coverage state. The only operation that
may be done on the state is passing it to restore-coverage. The representation is guaranteed
to be readably printable. A representation that has been printed and read back will work
identically in restore-coverage.

Chapter 16: Contributed Modules 143

[Function]\smallertt\phantomconcurrency:\llapsb-cover:save-coverage-in-
file
pathname

Call save-coverage and write the results of that operation into the file designated by pathname.

[Function]\smallertt\phantomconcurrency:\llapsb-cover:restore-coverage
coverage-state

Restore the code coverage data back to an earlier state produced by save-coverage.

[Function]\smallertt\phantomconcurrency:\llapsb-cover:restore-coverage-
from-file
pathname

read the contents of the file designated by pathname and pass the result to restore-coverage.

Chapter 16: Contributed Modules 144

16.4 sb-grovel

The sb-grovel module helps in generation of foreign function interfaces. It aids in extracting
constants’ values from the C compiler and in generating SB-ALIEN structure and union types, see
Section 8.2.1 [Defining Foreign Types], page 74.

The ASDF(http://www.cliki.net/ASDF) component type GROVEL-CONSTANTS-FILE has
its PERFORM operation defined to write out a C source file, compile it, and run it. The output
from this program is Lisp, which is then itself compiled and loaded.

sb-grovel is used in a few contributed modules, and it is currently compatible only to SBCL.
However, if you want to use it, here are a few directions.

16.4.1 Using sb-grovel in your own ASDF system

1. Create a Lisp package for the foreign constants/functions to go into.
2. Make your system depend on the ’sb-grovel system.
3. Create a grovel-constants data file - for an example, see example-constants.lisp in the

contrib/sb-grovel/ directory in the SBCL source distribution.
4. Add it as a component in your system. e.g.

(eval-when (:compile-toplevel :load-toplevel :execute)
(require :sb-grovel))

(defpackage :example-package.system
(:use :cl :asdf :sb-grovel :sb-alien))

(in-package :example-package.system)

(defsystem example-system
:depends-on (sb-grovel)
:components
((:module "sbcl"

:components
((:file "defpackage")
(grovel-constants-file "example-constants"

:package :example-package)))))

Make sure to specify the package you chose in step 1
5. Build stuff.

16.4.2 Contents of a grovel-constants-file

The grovel-constants-file, typically named constants.lisp, comprises lisp expressions describing
the foreign things that you want to grovel for. A constants.lisp file contains two sections:

• a list of headers to include in the C program, for example:
("sys/types.h" "sys/socket.h" "sys/stat.h" "unistd.h" "sys/un.h"
"netinet/in.h" "netinet/in_systm.h" "netinet/ip.h" "net/if.h"
"netdb.h" "errno.h" "netinet/tcp.h" "fcntl.h" "signal.h")

• A list of sb-grovel clauses describing the things you want to grovel from the C compiler, for
example:

((:integer af-local
#+(or sunos solaris) "AF_UNIX"
#-(or sunos solaris) "AF_LOCAL"
"Local to host (pipes and file-domain).")

(:structure stat ("struct stat"

http://www.cliki.net/ASDF

Chapter 16: Contributed Modules 145

(integer dev "dev_t" "st_dev")
(integer atime "time_t" "st_atime")))

(:function getpid ("getpid" int)))

There are two types of things that sb-grovel can sensibly extract from the C compiler: constant
integers and structure layouts. It is also possible to define foreign functions in the constants.lisp
file, but these definitions don’t use any information from the C program; they expand directly
to sb-alien:define-alien-routine (see Section 8.7.2 [The define-alien-routine Macro], page 82)
forms.

Here’s how to use the grovel clauses:
• :integer - constant expressions in C. Used in this form:

(:integer lisp-variable-name "C expression" &optional doc export)

"C expression" will be typically be the name of a constant. But other forms are possible.
• :enum

(:enum lisp-type-name ((lisp-enumerated-name c-enumerated-name) ...)))

An sb-alien:enum type with name lisp-type-name will be defined. The symbols are the
lisp-enumerated-names, and the values are grovelled from the c-enumerated-names.

• :structure - alien structure definitions look like this:
(:structure lisp-struct-name ("struct c_structure"

(type-designator lisp-element-name
"c_element_type" "c_element_name"
:distrust-length nil)
; ...
))

type-designator is a reference to a type whose size (and type constraints) will be groveled
for. sb-grovel accepts a form of type designator that doesn’t quite conform to either lisp nor
sb-alien’s type specifiers. Here’s a list of type designators that sb-grovel currently accepts:
• integer - a C integral type; sb-grovel will infer the exact type from size information

extracted from the C program. All common C integer types can be grovelled for with this
type designator, but it is not possible to grovel for bit fields yet.

• (unsigned n) - an unsigned integer variable that is n bytes long. No size information
from the C program will be used.

• (signed n) - an signed integer variable that is n bytes long. No size information from the
C program will be used.

• c-string - an array of char in the structure. sb-grovel will use the array’s length from
the C program, unless you pass it the :distrust-length keyword argument with non-nil
value (this might be required for structures such as solaris’s struct dirent).

• c-string-pointer - a pointer to a C string, corresponding to the sb-alien:c-string
type (see Section 8.2.3 [Foreign Type Specifiers], page 74).

• (array alien-type) - An array of the previously-declared alien type. The array’s size
will be determined from the output of the C program and the alien type’s size.

• (array alien-type n) - An array of the previously-declared alien type. The array’s size
will be assumed as being n.

Note that c-string and c-string-pointer do not have the same meaning. If you declare
that an element is of type c-string, it will be treated as if the string is a part of the structure,
whereas if you declare that the element is of type c-string-pointer, a pointer to a string
will be the structure member.

• :function - alien function definitions are similar to define-alien-routine definitions, be-
cause they expand to such forms when the lisp program is loaded. See Section 8.7 [Foreign
Function Calls], page 81.

Chapter 16: Contributed Modules 146

(:function lisp-function-name ("alien_function_name" alien-return-type
(argument alien-type)
(argument2 alien-type)))

16.4.3 Programming with sb-grovel’s structure types

Let us assume that you have a grovelled structure definition:
(:structure mystruct ("struct my_structure"

(integer myint "int" "st_int")
(c-string mystring "char[]" "st_str")))

What can you do with it? Here’s a short interface document:
• Creating and destroying objects:

• Function (allocate-mystruct) - allocates an object of type mystructand returns a sys-
tem area pointer to it.

• Function (free-mystruct var) - frees the alien object pointed to by var.
• Macro (with-mystruct var ((member init) [...]) &body body) - allocates an object

of type mystruct that is valid in body. If body terminates or control unwinds out of
body, the object pointed to by var will be deallocated.

• Accessing structure members:
• (mystruct-myint var) and (mystruct-mystring var) return the value of the respective

fields in mystruct.
• (setf (mystruct-myint var) new-val) and (setf (mystruct-mystring var)

new-val) sets the value of the respective structure member to the value of new-val.
Notice that in (setf (mystruct-mystring var) new-val)’s case, new-val is a lisp
string.

16.4.3.1 Traps and Pitfalls

Basically, you can treat functions and data structure definitions that sb-grovel spits out as if they
were alien routines and types. This has a few implications that might not be immediately obvious
(especially if you have programmed in a previous version of sb-grovel that didn’t use alien types):
• You must take care of grovel-allocated structures yourself. They are alien types, so the garbage

collector will not collect them when you drop the last reference.
• If you use the with-mystruct macro, be sure that no references to the variable thus allocated

leaks out. It will be deallocated when the block exits.

Chapter 16: Contributed Modules 147

16.5 sb-md5

The sb-md5 module implements the RFC1321 MD5 Message Digest Algorithm. [FIXME cite]

[Function]\smallertt\phantomconcurrency:\llapsb-md5:md5sum-file pathname
Calculate the MD5 message-digest of the file specified by ‘pathname’.

[Function]\smallertt\phantomconcurrency:\llapsb-md5:md5sum-sequence
sequence &key start end

Calculate the MD5 message-digest of data in ‘sequence’, which should be a 1d simple-array
with element type (unsigned-byte 8). On cmu cl and sbcl non-simple and non-1d arrays with
this element-type are also supported. Use with strings is deprecated, since this will not work
correctly on implementations with ‘char-code-limit’ > 256 and ignores character-coding issues.
Use md5sum-string instead, or convert to the required (unsigned-byte 8) format through other
means before-hand.

[Function]\smallertt\phantomconcurrency:\llapsb-md5:md5sum-stream stream
Calculate an MD5 message-digest of the contents of ‘stream’. Its element-type has to be
(unsigned-byte 8). Use on character streams is deprecated, as this will not work correctly
on implementations with ‘char-code-limit’ > 256 and ignores character coding issues.

[Function]\smallertt\phantomconcurrency:\llapsb-md5:md5sum-string string
&key external-format start end

Calculate the MD5 message-digest of the binary representation of ‘string’ (as octets) in the
external format specified by ‘external-format’. The boundaries ‘start’ and ‘end’ refer to character
positions in the string, not to octets in the resulting binary representation. The permissible
external format specifiers are determined by the underlying implementation.

16.5.1 Credits

The implementation for CMUCL was largely done by Pierre Mai, with help from members of the
cmucl-help mailing list. Since CMUCL and SBCL are similar in many respects, it was not too
difficult to extend the low-level implementation optimizations for CMUCL to SBCL. Following
this, SBCL’s compiler was extended to implement efficient compilation of modular arithmetic (see
Section 6.3 [Modular arithmetic], page 43), which enabled the implementation to be expressed in
portable arithmetical terms, apart from the use of rotate-byte for bitwise rotation.

Chapter 16: Contributed Modules 148

16.6 sb-posix

Sb-posix is the supported interface for calling out to the operating system.1

The scope of this interface is “operating system calls on a typical Unixlike platform”. This is
section 2 of the Unix manual, plus section 3 calls that are (a) typically found in libc, but (b) not part
of the C standard. For example, we intend to provide support for opendir() and readdir(), but
not for printf(). That said, if your favourite system call is not included yet, you are encouraged
to submit a patch to the SBCL mailing list.

Some facilities are omitted where they offer absolutely no additional use over some portable
function, or would be actively dangerous to the consistency of Lisp. Not all functions are available
on all platforms.

16.6.1 Lisp names for C names

All symbols are in the SB-POSIX package. This package contains a Lisp function for each supported
Unix system call or function, a variable or constant for each supported Unix constant, an object
type for each supported Unix structure type, and a slot name for each supported Unix structure
member. A symbol name is derived from the C binding’s name, by (a) uppercasing, then (b)
removing leading underscores (#_) then replacing remaining underscore characters with the hyphen
(#\-). The requirement to uppercase is so that in a standard upcasing reader the user may write
sb-posix:creat instead of sb-posix:|creat| as would otherise be required.

No other changes to “Lispify” symbol names are made, so creat() becomes CREAT, not CREATE.
The user is encouraged not to (USE-PACKAGE :SB-POSIX) but instead to use the SB-POSIX:

prefix on all references, as some of the symbols symbols contained in the SB-POSIX package have
the same name as CL symbols (OPEN, CLOSE, SIGNAL etc).

16.6.2 Types

Generally, marshalling between Lisp and C data types is done using SBCL’s FFI. See Chapter 8
[Foreign Function Interface], page 73.

Some functions accept objects such as filenames or file descriptors. In the C binding to POSIX
these are represented as strings and small integers respectively. For the Lisp programmer’s conve-
nience we introduce designators such that CL pathnames or open streams can be passed to these
functions. For example, rename accepts both pathnames and strings as its arguments.

16.6.2.1 File-descriptors

[Type]\smallertt\phantomconcurrency:\llapsb-posix:file-descriptor
A fixnum designating a native file descriptor.
sb-sys:make-fd-stream can be used to construct a file-stream associated with a native file
descriptor.
Note that mixing I/O operations on a file-stream with operations directly on its descriptor
may produce unexpected results if the stream is buffered.

[Type]\smallertt\phantomconcurrency:\llapsb-posix:file-descriptor-
designator

Designator for a file-descriptor: either a fixnum designating itself, or a file-stream desig-
nating the underlying file-descriptor.

[Function]\smallertt\phantomconcurrency:\llapsb-posix:file-descriptor
file-descriptor

Converts file-descriptor-designator into a file-descriptor.

1 The functionality contained in the package SB-UNIX is for SBCL internal use only; its contents are likely to change
from version to version.

Chapter 16: Contributed Modules 149

16.6.2.2 Filenames

[Type]\smallertt\phantomconcurrency:\llapsb-posix:filename
A string designating a filename in native namestring syntax.
Note that native namestring syntax is distinct from Lisp namestring syntax:

(pathname "/foo*/bar")

is a wild pathname with a pattern-matching directory component. sb-ext:parse-native-
namestring may be used to construct Lisp pathnames that denote posix filenames as under-
stood by system calls, and sb-ext:native-namestring can be used to coerce them into strings
in the native namestring syntax.
Note also that posix filename syntax does not distinguish the names of files from the names of
directories: in order to parse the name of a directory in posix filename syntax into a pathname
my-defaults for which

(merge-pathnames (make-pathname :name "FOO" :case :common)
my-defaults)

returns a pathname that denotes a file in the directory, supply a true :as-directory argu-
ment to sb-ext:parse-native-namestring. Likewise, to supply the name of a directory to a
posix function in non-directory syntax, supply a true :as-file argument to sb-ext:native-
namestring.

[Type]\smallertt\phantomconcurrency:\llapsb-posix:filename-designator
Designator for a filename: a string designating itself, or a designator for a pathname desig-
nating the corresponding native namestring.

[Function]\smallertt\phantomconcurrency:\llapsb-posix:filename filename
Converts filename-designator into a filename.

16.6.3 Function Parameters

The calling convention is modelled after that of CMUCL’s UNIX package: in particular, it’s like the
C interface except that:
a. Length arguments are omitted or optional where the sensible value is obvious. For example,

read would be defined this way:
(read fd buffer &optional (length (length buffer))) => bytes-read

b. Where C simulates “out” parameters using pointers (for instance, in pipe() or socketpair())
these may be optional or omitted in the Lisp interface: if not provided, appropriate objects
will be allocated and returned (using multiple return values if necessary).

c. Some functions accept objects such as filenames or file descriptors. Wherever these are specified
as such in the C bindings, the Lisp interface accepts designators for them as specified in the
’Types’ section above.

d. A few functions have been included in sb-posix that do not correspond exactly with their C
counterparts. These are described in See Section 16.6.6 [Functions with idiosyncratic bindings],
page 152.

16.6.4 Function Return Values

The return value is usually the same as for the C binding, except in error cases: where the C
function is defined as returning some sentinel value and setting errno on error, we instead signal
an error of type SYSCALL-ERROR. The actual error value (errno) is stored in this condition and
can be accessed with SYSCALL-ERRNO.

We do not automatically translate the returned value into “Lispy” objects – for example, SB-
POSIX:OPEN returns a small integer, not a stream. Exception: boolean-returning functions (or,
more commonly, macros) do not return a C integer, but instead a Lisp boolean.

Chapter 16: Contributed Modules 150

16.6.5 Lisp objects and C structures

Sb-posix provides various Lisp object types to stand in for C structures in the POSIX library. Lisp
bindings to C functions that accept, manipulate, or return C structures accept, manipulate, or
return instances of these Lisp types instead of instances of alien types.

The names of the Lisp types are chosen according to the general rules described above. For
example Lisp objects of type STAT stand in for C structures of type struct stat.

Accessors are provided for each standard field in the structure. These are named structure-

name-field-name where the two components are chosen according to the general name conversion
rules, with the exception that in cases where all fields in a given structure have a common prefix,
that prefix is omitted. For example, stat.st_dev in C becomes STAT-DEV in Lisp.

Because sb-posix might not support all semi-standard or implementation-dependent members of
all structure types on your system (patches welcome), here is an enumeration of all supported Lisp
objects corresponding to supported POSIX structures, and the supported slots for those structures.
• flock

[Class]\smallertt\phantomconcurrency:\llapsb-posix:flock
Class precedence list: \llwflock%, \llwstandard-object%, \llwt%

Slots:
• type — initarg: :type; reader: sb-posix:flock-type; writer:

(setf sb-posix:flock-type)

Type of lock; F RDLCK, F WRLCK, F UNLCK.
• whence — initarg: :whence; reader: sb-posix:flock-whence; writer:

(setf sb-posix:flock-whence)

Flag for starting offset.
• start — initarg: :start; reader: sb-posix:flock-start; writer:

(setf sb-posix:flock-start)

Relative offset in bytes.
• len — initarg: :len; reader: sb-posix:flock-len; writer:

(setf sb-posix:flock-len)

Size; if 0 then until eof.
• pid — reader: sb-posix:flock-pid

Process id of the process holding the lock; returned with F GETLK.

Class representing locks used in fcntl(2).

• passwd

[Class]\smallertt\phantomconcurrency:\llapsb-posix:passwd
Class precedence list: \llwpasswd%, \llwstandard-object%, \llwt%

Slots:
• name — initarg: :name; reader: sb-posix:passwd-name; writer:

(setf sb-posix:passwd-name)

User’s login name.
• passwd — initarg: :passwd; reader: sb-posix:passwd-passwd; writer:

(setf sb-posix:passwd-passwd)

The account’s encrypted password.
• uid — initarg: :uid; reader: sb-posix:passwd-uid; writer:

(setf sb-posix:passwd-uid)

Numerical user id.

Chapter 16: Contributed Modules 151

• gid — initarg: :gid; reader: sb-posix:passwd-gid; writer:
(setf sb-posix:passwd-gid)

Numerical group id.

• gecos — initarg: :gecos; reader: sb-posix:passwd-gecos; writer:
(setf sb-posix:passwd-gecos)

User’s name or comment field.

• dir — initarg: :dir; reader: sb-posix:passwd-dir; writer:
(setf sb-posix:passwd-dir)

Initial working directory.

• shell — initarg: :shell; reader: sb-posix:passwd-shell; writer:
(setf sb-posix:passwd-shell)

Program to use as shell.

Instances of this class represent entries in the system’s user database.

• stat

[Class]\smallertt\phantomconcurrency:\llapsb-posix:stat
Class precedence list: \llwstat%, \llwstandard-object%, \llwt%

Slots:

• mode — initarg: :mode; reader: sb-posix:stat-mode

Mode of file.

• ino — initarg: :ino; reader: sb-posix:stat-ino

File serial number.

• dev — initarg: :dev; reader: sb-posix:stat-dev

Device id of device containing file.

• nlink — initarg: :nlink; reader: sb-posix:stat-nlink

Number of hard links to the file.

• uid — initarg: :uid; reader: sb-posix:stat-uid

User id of file.

• gid — initarg: :gid; reader: sb-posix:stat-gid

Group id of file.

• size — initarg: :size; reader: sb-posix:stat-size

For regular files, the file size in bytes. For symbolic links, the length in bytes of the
filename contained in the symbolic link.

• rdev — initarg: :rdev; reader: sb-posix:stat-rdev

For devices the device number.

• atime — initarg: :atime; reader: sb-posix:stat-atime

Time of last access.

• mtime — initarg: :mtime; reader: sb-posix:stat-mtime

Time of last data modification.

• ctime — initarg: :ctime; reader: sb-posix:stat-ctime

Time of last status change.

Instances of this class represent posix file metadata.

• termios

Chapter 16: Contributed Modules 152

[Class]\smallertt\phantomconcurrency:\llapsb-posix:termios
Class precedence list: \llwtermios%, \llwstandard-object%, \llwt%

Slots:
• iflag — initarg: :iflag; reader: sb-posix:termios-iflag; writer:

(setf sb-posix:termios-iflag)

Input modes.
• oflag — initarg: :oflag; reader: sb-posix:termios-oflag; writer:

(setf sb-posix:termios-oflag)

Output modes.
• cflag — initarg: :cflag; reader: sb-posix:termios-cflag; writer:

(setf sb-posix:termios-cflag)

Control modes.
• lflag — initarg: :lflag; reader: sb-posix:termios-lflag; writer:

(setf sb-posix:termios-lflag)

Local modes.
• cc — initarg: :cc; reader: sb-posix:termios-cc; writer:

(setf sb-posix:termios-cc)

Control characters.

Instances of this class represent I/O characteristics of the terminal.

• timeval

[Class]\smallertt\phantomconcurrency:\llapsb-posix:timeval
Class precedence list: \llwtimeval%, \llwstandard-object%, \llwt%

Slots:
• sec — initarg: :tv-sec; reader: sb-posix:timeval-sec; writer:

(setf sb-posix:timeval-sec)

Seconds.
• usec — initarg: :tv-usec; reader: sb-posix:timeval-usec; writer:

(setf sb-posix:timeval-usec)

Microseconds.

Instances of this class represent time values.

16.6.6 Functions with idiosyncratic bindings

A few functions in sb-posix don’t correspond directly to their C counterparts.
• getcwd

[Function]\smallertt\phantomconcurrency:\llapsb-posix:getcwd
Returns the process’s current working directory as a string.

• readlink

[Function]\smallertt\phantomconcurrency:\llapsb-posix:readlink pathspec
Returns the resolved target of a symbolic link as a string.

• syslog

[Function]\smallertt\phantomconcurrency:\llapsb-posix:syslog priority
format &rest args

Send a message to the syslog facility, with severity level priority. The message will
be formatted as by cl:format (rather than C’s printf) with format string format and
arguments args.

Chapter 16: Contributed Modules 153

16.7 sb-queue

Since SBCL 1.0.38, the sb-queue module has been merged into the sb-concurrency module (see
Section 16.2 [sb-concurrency], page 135.)

Chapter 16: Contributed Modules 154

16.8 sb-rotate-byte

The sb-rotate-byte module offers an interface to bitwise rotation, with an efficient implementa-
tion for operations which can be performed directly using the platform’s arithmetic routines. It
implements the specification at http://www.cliki.net/ROTATE-BYTE.

Bitwise rotation is a component of various cryptographic or hashing algorithms: MD5, SHA-1,
etc.; often these algorithms are specified on 32-bit rings. [FIXME cite cite cite].

[Function]\smallertt\phantomconcurrency:\llapsb-rotate-byte:rotate-byte
count bytespec integer

Rotates a field of bits within integer; specifically, returns an integer that contains the bits of
integer rotated count times leftwards within the byte specified by bytespec, and elsewhere
contains the bits of integer.

http://www.cliki.net/ROTATE-BYTE

Chapter 17: Deprecation 155

17 Deprecation

In order to support evolution of interfaces in SBCL as well as in user code, SBCL allows declaring
functions, variables and types as deprecated. Users of deprecated things are notified by means of
warnings while the deprecated thing in question is still available.

This chapter documents the interfaces for being notified when using deprecated thing and declar-
ing things as deprecated, the deprecation process used for SBCL interfaces, and lists legacy inter-
faces in various stages of deprecation.

Deprecation in this context should not be confused with those things the ANSI Common Lisp
standard calls deprecated: the entirety of ANSI CL is supported by SBCL, and none of those
interfaces are subject to censure.

17.1 Why Deprecate?

While generally speaking we try to keep SBCL changes as backwards compatible as feasible, there
are situations when existing interfaces are deprecated:

• Broken Interfaces

Sometimes it turns out that an interface is sufficiently misdesigned that fixing it would be
worse than deprecating it and replacing it with another.

This is typically the case when fixing the interface would change its semantics in ways that
could break user code subtly: in such cases we may end up considering the obvious breakage
caused by deprecation to be preferable.

Another example are functions or macros whose current signature makes them hard or impos-
sible to extend in the future: backwards compatible extensions would either make the interface
intolerably hairy, or are sometimes outright impossible.

• Internal Interfaces

SBCL has several internal interfaces that were never meant to be used in user code – or at
least never meant to be used in user code unwilling to track changes to SBCL internals.

Ideally we’d like to be free to refactor our own internals as we please, without even going
through the hassle of deprecating things. Sometimes, however, it turns out that our internal
interfaces have several external users who aren’t using them advisedly, but due to misunder-
standings regarding their status or stability.

Consider a deprecated internal interface a reminder for SBCL maintainers not to delete the
thing just yet, even though it is seems unused – because it has external users.

When internal interfaces are deprecated we try our best to provide supported alternatives.

• Aesthetics & Ease of Maintenance

Sometimes an interface isn’t broken or internal, but just inconsistent somehow.

This mostly happens only with historical interfaces inherited from CMUCL which often haven’t
been officially supported in SBCL before, or with new extensions to SBCL that haven’t been
around for very long in the first place.

The alternative would be to keep the suboptimal version around forever, possibly alongside an
improved version. Sometimes we may do just that, but because every line of code comes with
a maintenance cost, sometimes we opt to deprecate the suboptimal version instead: SBCL
doesn’t have infinite developer resources.

We also believe that sometimes cleaning out legacy interfaces helps keep the whole system
more comprehensible to users, and makes introspective tools such as apropos more useful.

Chapter 17: Deprecation 156

17.2 The Deprecation Pipeline

SBCL uses a deprecation pipeline with multiple stages: as time goes by, deprecated things move
from earlier stages of deprecation to later stages before finally being removed. The intention is
making users aware of necessary changes early but allowing a migration to new interfaces at a
reasonable pace.

Deprecation proceeds in three stages, each lasting approximately a year. In some cases it
might move slower or faster, but one year per stage is what we aim at in general. During each
stage warnings (and errors) of increasing severity are signaled, which note that the interface is
deprecated, and point users towards any replacements when applicable.
1. Early Deprecation

During early deprecation the interface is kept in working condition. However, when a
thing in this deprecation stage is used, an \smallertt\phantomconcurrency:\llapsb-ext:early-
deprecation-warning, which is a \smallertt\phantomconcurrency:\llapcl:style-warning, is sig-
naled at compile-time.
The internals may change at this stage: typically because the interface is re-implemented on
top of its successor. While we try to keep things as backwards-compatible as feasible (taking
maintenance costs into account), sometimes semantics change slightly.
For example, when the spinlock API was deprecated, spinlock objects ceased to exist, and the
whole spinlock API became a synonym for the mutex API – so code using the spinlock API
continued working, but silently switched to mutexes instead. However, if someone relied on
(typep lock ’spinlock)

returning NIL for a mutexes, trouble could ensue.
2. Late Deprecation

During late deprecation the interface remains as it was during early deprecation, but the
compile-time warning is upgraded: when a thing in this deprecation stage is used, a
\smallertt\phantomconcurrency:\llapsb-ext:late-deprecation-warning, which is a full \small-
ertt\phantomconcurrency:\llapcl:warning, is signaled at compile-time.

3. Final Deprecation

During final deprecation the symbols still exist. However, when a thing in this deprecation
stage is used, a \smallertt\phantomconcurrency:\llapsb-ext:final-deprecation-warning, which
is a full \smallertt\phantomconcurrency:\llapcl:warning, is signaled at compile-time and an
\smallertt\phantomconcurrency:\llapcl:error is signaled at run-time.

4. After Final Deprecation

The interface is deleted entirely.

17.3 Deprecation Conditions

\smallertt\phantomconcurrency:\llapsb-ext:deprecation-condition is the superclass of all
deprecation-related warning and error conditions. All common slots and readers are defined in
this condition class.

[Condition]\smallertt\phantomconcurrency:\llapsb-ext:deprecation-condition
Class precedence list: \llwdeprecation-condition%, \llwcondition%, \llwt%

Superclass for deprecation-related error and warning conditions.

[Condition]\smallertt\phantomconcurrency:\llapsb-ext:early-deprecation-
warning

Class precedence list: \llwearly-deprecation-warning%, \llwstyle-warning%,
\llwwarning%, \llwdeprecation-condition%, \llwcondition%, \llwt%

This warning is signaled when the use of a variable, function, type, etc. in :early deprecation
is detected at compile-time. The use will work at run-time with no warning or error.

Chapter 17: Deprecation 157

[Condition]\smallertt\phantomconcurrency:\llapsb-ext:late-deprecation-
warning

Class precedence list: \llwlate-deprecation-warning%, \llwwarning%, \llwdeprecation-
condition%, \llwcondition%, \llwt%

This warning is signaled when the use of a variable, function, type, etc. in :late deprecation is
detected at compile-time. The use will work at run-time with no warning or error.

[Condition]\smallertt\phantomconcurrency:\llapsb-ext:final-deprecation-
warning

Class precedence list: \llwfinal-deprecation-warning%, \llwwarning%,
\llwdeprecation-condition%, \llwcondition%, \llwt%

This warning is signaled when the use of a variable, function, type, etc. in :final deprecation
is detected at compile-time. An error will be signaled at run-time.

[Condition]\smallertt\phantomconcurrency:\llapsb-ext:deprecation-error
Class precedence list: \llwdeprecation-error%, \llwerror%, \llwserious-condition%,
\llwdeprecation-condition%, \llwcondition%, \llwt%

This error is signaled at run-time when an attempt is made to use a thing that is in :final
deprecation, i.e. call a function or access a variable.

17.4 Introspecting Deprecation Information

The deprecation status of functions and variables can be inspected using the sb-cltl2:function-
information and sb-cltl2:variable-information functions provided by the sb-cltl2 con-
tributed module.

17.5 Deprecation Declaration

The sb-ext:deprecated declaration can be used to declare objects in various namespaces1 as
deprecated.

[Declaration]\smallertt\phantomconcurrency:\llapsb-ext:deprecated
Syntax:

sb-ext:deprecated stage since {object-clause}*

stage ::= {:early | :late | :final}

since ::= {version | (software version)}

object-clause ::= (namespace name [:replacement replacement])

namespace ::= {cl:variable | cl:function | cl:type}

were name is the name of the deprecated thing, version and software are strings describing the
version in which the thing has been deprecated and replacement is a name or a list of names
designating things that should be used instead of the deprecated thing.
Currently the following namespaces are supported:

cl:function
Declare functions, compiler-macros or macros as deprecated.

note: When declaring a function to be in :final deprecation, there
should be no actual definition of the function as the declaration emits

1 See “namespace” entry in the glossary of the Common Lisp Hyperspec.

Chapter 17: Deprecation 158

a stub function that signals a \smallertt\phantomconcurrency:\llapsb-
ext:deprecation-error at run-time when called.

cl:variable
Declare special and global variables, constants and symbol-macros as deprecated.

note: When declaring a variable to be in :final deprecation, there
should be no actual definition of the variable as the declaration emits a
symbol-macro that signals a sb-ext:deprecation-error at run-time
when accessed.

cl:type Declare named types (i.e. defined via deftype), standard classes, structure classes
and condition classes as deprecated.

17.6 Deprecation Examples

Marking functions as deprecated:
(defun foo ())
(defun bar ())
(declaim (deprecated :early ("my-system" "1.2.3")

(function foo :replacement bar)))

;; Remember: do not define the actual function or variable in case of
;; :final deprecation:
(declaim (deprecated :final ("my-system" "1.2.3")

(function fez :replacement whoop)))

Attempting to use the deprecated functions:
(defun baz ()
(foo))

| STYLE-WARNING: The function CL-USER::FOO has been deprecated...
=> BAZ
(baz)
=> NIL ; no error

(defun danger ()
(fez))

| WARNING: The function CL-USER::FEZ has been deprecated...
=> DANGER
(danger)
|- ERROR: The function CL-USER::FEZ has been deprecated...

17.7 Deprecated Interfaces in SBCL

This sections lists legacy interfaces in various stages of deprecation.

17.7.1 List of Deprecated Interfaces

17.7.1.1 Early Deprecation

• SOCKINT::WIN32-*

Deprecated in favor of the corresponding prefix-less functions (e.g. sockint::bind replaces
sockint::win32-bind) as of 1.2.10 in March 2015. Expected to move into late deprecation
in August 2015.

• SB-EXT:QUIT

Deprecated in favor of sb-ext:exit as of 1.0.56.55 in May 2012. Expected to move into late
deprecation in May 2013.

Chapter 17: Deprecation 159

The design of sb-ext:quit proved too broken to fix in a backwards-compatible manner, so it
had to be deprecated and replaced.
Problems with it were manifold: when called in the main thread it cause the entire process to
exit. When called in another thread with :recklessly-p it also caused the entire process to
exit. However, when called in another thread without :recklessly-p it instead caused that
thread to terminate abnormally without terminating the process. Its behaviour versus other
threads than the one it was called in was also underspecified, and dependent on things such
as the current session. Any conceivable change that would have made it sane would also have
silently broken code that depended on the old behaviour.
Remedy

For code needing to work with legacy SBCLs, if you were calling quit with :recklessly-p t,
use

(defun system-exit (&optional (code 0))
(alien-funcall (extern-alien "exit" (function void int)) code))

instead. In modern SBCLs simply call either sb-posix:exit or sb-ext:exit.
If you were calling it without :recklessly-p, be advised that your code may not function as
expected when called from threads other than the main one (see above) – in any case, you can
support legacy SBCLs using the following conditionalization:

(defun lisp-exit (&key (code 0) abort)
#+#.(cl:if (cl:find-symbol "EXIT" :sb-ext) ’(and) ’(or))
;; Assuming process exit is what is desired -- if thread termination
;; is intended, use SB-THREAD:ABORT-THREAD instead.
(sb-ext:exit :code code :abort abort)
#-#.(cl:if (cl:find-symbol "EXIT" :sb-ext) ’(and) ’(or))
(sb-ext:quit :unix-status code :recklessly-p abort))

• SB-UNIX:UNIX-EXIT

Deprecated as of 1.0.56.55 in May 2012. Expected to move into late deprecation in May 2013.
When the SBCL process termination was refactored as part of changes that led to sb-ext:quit
being deprecated, sb-unix:unix-exit ceased to be used internally. Since SB-UNIX is an
internal package not intended for user code to use, and since we’re slowly in the process of
refactoring things to be less Unix-oriented, sb-unix:unix-exit was initially deleted as it was
no longer used. Unfortunately it became apparent that it was used by several external users,
so it was re-instated in deprecated form.
While the cost of keeping sb-unix:unix-exit indefinitely is trivial, the ability to refactor
our internals is important, so its deprecation was taken as an opportunity to highlight that
SB-UNIX is an internal package and SB-POSIX should be used by user-programs instead – or
alternatively calling the foreign function directly if the desired interface doesn’t for some reason
exist in SB-POSIX.
Remedy

For code needing to work with legacy SBCLs, use e.g. system-exit as show above in remedies
for sb-ext:quit. In modern SBCLs simply call either sb-posix:exit or sb-ext:exit with
appropriate arguments.

• SB-C::MERGE-TAIL-CALLS Compiler Policy

Deprecated as of 1.0.53.74 in November 2011. Expected to move into late deprecation in
November 2012.

Chapter 17: Deprecation 160

This compiler policy was never functional: SBCL has always merged tail calls when it could,
regardless of this policy setting. (It was also never officially supported, but several code-bases
have historically used it.)
Remedy

Simply remove the policy declarations. They were never necessary: SBCL always merged
tail-calls when possible. To disable tail merging, structure the code to avoid the tail position
instead.

• Spinlock API

Deprecated as of 1.0.53.11 in August 2011. Expected to move into late deprecation in August
2012.
Spinlocks were an internal interface, but had a number of external users and were hence
deprecated instead of being simply deleted.
Affected symbols: sb-thread::spinlock, sb-thread::make-spinlock, sb-thread::with-
spinlock, sb-thread::with-recursive-spinlock, sb-thread::get-spinlock,
sb-thread::release-spinlock, sb-thread::spinlock-value, and sb-thread::spinlock-
name.
Remedy

Use the mutex API instead, or implement spinlocks suiting your needs on top of sb-
ext:compare-and-swap, sb-ext:spin-loop-hint, etc.

• SOCKINT::HANDLE->FD, SOCKINT::FD->HANDLE

Internally deprecated in 2012. Declared deprecated as of 1.2.10 in March 2015. Expected to
move into final deprecation in August 2015.

17.7.1.2 Late Deprecation

• SB-THREAD:JOIN-THREAD-ERROR-THREAD and SB-THREAD:INTERRUPT-
THREAD-ERROR-THREAD

Deprecated in favor of sb-thread:thread-error-thread as of 1.0.29.17 in June 2009. Ex-
pected to move into final deprecation in June 2012.
Remedy

For code that needs to support legacy SBCLs, use e.g.:

(defun get-thread-error-thread (condition)
#+#.(cl:if (cl:find-symbol "THREAD-ERROR-THREAD" :sb-thread)

’(and) ’(or))
(sb-thread:thread-error-thread condition)
#-#.(cl:if (cl:find-symbol "THREAD-ERROR-THREAD" :sb-thread)

’(and) ’(or))
(etypecase condition
(sb-thread:join-thread-error
(sb-thread:join-thread-error-thread condition))
(sb-thread:interrupt-thread-error
(sb-thread:interrupt-thread-error-thread condition))))

• SB-INTROSPECT:FUNCTION-ARGLIST

Deprecated in favor of sb-introspect:function-lambda-list as of 1.0.24.5 in January 2009.
Expected to move into final deprecation in January 2012.
Renamed for consistency and aesthetics. Functions have lambda-lists, not arglists.
Remedy

Chapter 17: Deprecation 161

For code that needs to support legacy SBCLs, use e.g.:

(defun get-function-lambda-list (function)
#+#.(cl:if (cl:find-symbol "FUNCTION-LAMBDA-LIST" :sb-introspect)

’(and) ’(or))
(sb-introspect:function-lambda-list function)
#-#.(cl:if (cl:find-symbol "FUNCTION-LAMBDA-LIST" :sb-introspect)

’(and) ’(or))
(sb-introspect:function-arglist function))

• Stack Allocation Policies

Deprecated in favor of sb-ext:*stack-allocate-dynamic-extent* as of 1.0.19.7 in August
2008, and are expected to be removed in August 2012.

Affected symbols: sb-c::stack-allocate-dynamic-extent, sb-c::stack-allocate-
vector, and sb-c::stack-allocate-value-cells.

These compiler policies were never officially supported, and turned out the be a flawed design.

Remedy

For code that needs stack-allocation in legacy SBCLs, conditionalize using:

#-#.(cl:if (cl:find-symbol "*STACK-ALLOCATE-DYNAMIC-EXTENT*" :sb-ext)
’(and) ’(or))

(declare (optimize sb-c::stack-allocate-dynamic-extent))

However, unless stack allocation is essential, we recommend simply removing these declara-
tions. Refer to documentation on sb-ext:*stack-allocate-dynamic* for details on stack
allocation control in modern SBCLs.

• SB-SYS:OUTPUT-RAW-BYTES

Deprecated as of 1.0.8.16 in June 2007. Expected to move into final deprecation in June 2012.

Internal interface with some external users. Never officially supported, deemed unnecessary in
presence of write-sequence and bivalent streams.

Remedy

Use streams with element-type (unsigned-byte 8) or :default – the latter allowing both
binary and character IO – in conjunction with write-sequence.

17.7.1.3 Final Deprecation

No interfaces are currently in final deprecation.

17.7.2 Historical Interfaces

The following is a partial list of interfaces present in historical versions of SBCL, which have since
then been deleted.

• SB-KERNEL:INSTANCE-LAMBDA

Historically needed for CLOS code. Deprecated as of 0.9.3.32 in August 2005. Deleted as of
1.0.47.8 in April 2011. Plain lambda can be used where sb-kernel:instance-lambda used to
be needed.

• SB-ALIEN:DEF-ALIEN-ROUTINE, SB-ALIEN:DEF-ALIEN-VARIABLE, SB-ALIEN:DEF-
ALIEN-TYPE

Chapter 17: Deprecation 162

Inherited from CMUCL, naming convention not consistent with preferred SBCL style. Dep-
recated as of 0.pre7.90 in December 2001. Deleted as of 1.0.9.17 in September 2007. Re-
placed by sb-alien:define-alien-routine, sb-alien:define-alien-variable, and sb-
alien:define-alien-type.

Appendix A: Concept Index 163

Appendix A Concept Index

A
Actual Source . 19, 20
Arithmetic, hardware . 43, 154
Arithmetic, modular . 43, 154
Availability of debug variables . 33

B
Block compilation, debugger implications 32
Block, basic . 36
Block, start location . 36

C
Cleanup, stack frame kind . 32
Code Coverage . 142
Compatibility with other Lisps. 22
Compile time type errors . 26
Compiler Diagnostic Severity . 18
Compiler messages . 17
Concurrency . 135

D
Debug optimization quality 33, 36
Debug variables . 33
Debugger . 29
debugger, disabling . 40
debugger, enabling . 40
declaration, dynamic-extent . 41
Declarations . 99
Deprecation Conditions . 156
Deprecation Declaration . 157
Deprecation Examples . 158
disabling debugger . 40
disabling ldb . 14, 40
dynamic-extent declaration . 41

E
Efficiency . 41
Entry points, external . 32
Errors, run-time . 32
Existing programs, to run . 22
External entry points . 32
External formats . 75, 88
External, stack frame kind . 32

F
Fast Read Lock . 140
Finalization . 48
Foreign Function Interface, generation 144
Frlock . 140
Function, tracing . 38

G
Garbage collection . 48
Garbage Collection, conservative 8

Garbage Collection, generational 8
Gate . 139

H
Hash tables . 67
Hashing, cryptographic. 147

I
Inline expansion . 27, 36
Interpreter . 28
Interrupts . 32
Introspecting Deprecation Information 157

L
ldb . 2, 14
ldb, disabling . 14, 40
ldb, enabling . 40
Locations, unknown . 32
Logical pathnames . 86

M
Macroexpansion . 21
Macroexpansion, errors during . 27
Mailbox, lock-free . 137
Messages, Compiler . 17
Modular arithmetic . 43, 154

O
Open-coding . 27
Operating System Interface . 148
optimization quality, safety . 42
Optimize declaration . 36
Optional, stack frame kind . 32
Original Source . 19, 20

P
Package-Local Nicknames . 46
Packages, locked . 99
Pathnames . 86
Pathnames, logical . 86
Policy, debugger . 36
Posix . 148
Precise type checking . 22
Processing Path . 19, 21
Profiling . 127
Profiling, deterministic . 127
Profiling, statistical . 127

Q
Queue, FIFO . 153
Queue, lock-free . 136

Appendix A: Concept Index 164

R
Random Number Generation . 69
Read errors, compiler . 27
Read-Eval-Print Loop . 134
Reader Extensions . 46
Recursion, tail . 32
REPL . 134

S
Safety optimization quality . 21, 42
safety optimization quality . 42
Sb-concurrency . 135
Semi-inline expansion . 36
Severity of compiler messages . 18
Single Stepping . 40
Slot access . 41
Sockets, Networking . 121
Source location printing, debugger 34
Source-to-source transformation. 21
Stack frames . 30
Static functions . 27
Stepper . 40
System Calls . 148

T
Tail recursion . 32

The Deprecation Pipeline . 156

Tracing . 38

Type checking, at compile time 26

Type checking, precise . 22

Types, portability . 22

U
Unknown code locations . 32

V
Validity of debug variables . 33

Variables, debugger access . 33

W
Weak pointers . 49

Why Deprecate? . 155

Appendix B: Function Index 165

Appendix B Function Index

?
\smallertt\phantomconcurrency:? 38

A
\smallertt\phantomconcurrency:abort 37
\smallertt\phantomconcurrency:\llapsb-

thread:abort-thread . 105
\smallertt\phantomconcurrency:\llapsb-ext:add-

implementation-package 103
\smallertt\phantomconcurrency:\llapsb-ext:add-

package-local-nickname . 47
\smallertt\phantomconcurrency:\llapsb-

alien:addr . 77
\smallertt\phantomconcurrency:\llapsb-

sequence:adjust-sequence 54
\smallertt\phantomconcurrency:\llapsb-

unicode:age . 62
\smallertt\phantomconcurrency:\llapsb-

alien:alien-funcall . 81
\smallertt\phantomconcurrency:\llapsb-

alien:alien-sap . 77
\smallertt\phantomconcurrency:\llapsb-

unicode:alphabetic-p . 63
\smallertt\phantomconcurrency:\llapsb-

ext:always-bound . 44
\smallertt\phantomconcurrency:\llapsb-

ext:array-storage-vector 70
\smallertt\phantomconcurrency:\llapsb-

ext:assert-version->= . 71
\smallertt\phantomconcurrency:\llapsb-

ext:atomic-decf . 108
\smallertt\phantomconcurrency:\llapsb-

ext:atomic-incf . 108
\smallertt\phantomconcurrency:\llapsb-

ext:atomic-pop . 109
\smallertt\phantomconcurrency:\llapsb-

ext:atomic-push . 109
\smallertt\phantomconcurrency:\llapsb-

ext:atomic-update . 109

B
\smallertt\phantomconcurrency:backtrace 38
\smallertt\phantomconcurrency:\llapsb-

thread:barrier . 117
\smallertt\phantomconcurrency:\llapsb-

unicode:bidi-class . 61
\smallertt\phantomconcurrency:\llapsb-

unicode:bidi-mirroring-glyph 62
\smallertt\phantomconcurrency:\llapcl:both-

case-p . 65
\smallertt\phantomconcurrency:bottom 30
\smallertt\phantomconcurrency:\llapsb-

ext:bytes-consed-between-gcs 50

C
\smallertt\phantomconcurrency:\llapsb-

ext:cancel-finalization 49

\smallertt\phantomconcurrency:\llapsb-ext:cas

. 110
\smallertt\phantomconcurrency:\llapsb-

unicode:case-ignorable-p 63
\smallertt\phantomconcurrency:\llapsb-

unicode:cased-p . 63
\smallertt\phantomconcurrency:\llapsb-

unicode:casefold . 64
\smallertt\phantomconcurrency:\llapsb-

alien:cast . 77
\smallertt\phantomconcurrency:\llapsb-

unicode:char-block . 62
\smallertt\phantomconcurrency:\llapcl:char-

downcase . 65
\smallertt\phantomconcurrency:\llapcl:class-

name . 52
\smallertt\phantomconcurrency:\llapcl:class-of

. 51
\smallertt\phantomconcurrency:\llapsb-

mop:class-prototype . 51
\smallertt\phantomconcurrency:\llapsb-

cover:clear-coverage . 142
\smallertt\phantomconcurrency:\llapsb-

thread:clear-semaphore-notification 114
\smallertt\phantomconcurrency:\llapcl:close . . 92
\smallertt\phantomconcurrency:\llapsb-

concurrency:close-gate 139
\smallertt\phantomconcurrency:\llapcl:coerce

. 53
\smallertt\phantomconcurrency:\llapsb-

unicode:combining-class 61
\smallertt\phantomconcurrency:\llapsb-

ext:compare-and-swap . 109
\smallertt\phantomconcurrency:\llapsb-

mop:compute-effective-method 51
\smallertt\phantomconcurrency:\llapsb-

sequence:concatenate . 55
\smallertt\phantomconcurrency:\llapsb-

thread:condition-broadcast 116
\smallertt\phantomconcurrency:\llapsb-

thread:condition-notify 116
\smallertt\phantomconcurrency:\llapsb-

thread:condition-wait . 116
\smallertt\phantomconcurrency:\llapsb-

unicode:confusable-p . 65
\smallertt\phantomconcurrency:\llapcl:cons . . . 42
\smallertt\phantomconcurrency:continue 37
copy function . 56
\smallertt\phantomconcurrency:\llapcl:copy-seq

. 54

D
\smallertt\phantomconcurrency:\llapsb-

unicode:decimal-value . 61
\smallertt\phantomconcurrency:\llapcl:declare

. 99
\smallertt\phantomconcurrency:\llapsb-

unicode:default-ignorable-p 63
\smallertt\phantomconcurrency:\llapsb-

ext:defcas . 110

Appendix B: Function Index 166

\smallertt\phantomconcurrency:\llapcl:defclass

. 52, 53
\smallertt\phantomconcurrency:\llapcl:defconstant

. 5
\smallertt\phantomconcurrency:\llapsb-

ext:defglobal . 44
\smallertt\phantomconcurrency:\llapsb-

alien:define-alien-routine 82
\smallertt\phantomconcurrency:\llapsb-

alien:define-alien-variable 79
\smallertt\phantomconcurrency:\llapsb-

ext:define-cas-expander 110
\smallertt\phantomconcurrency:\llapsb-

ext:define-hash-table-test 68
\smallertt\phantomconcurrency:\llapcl:defmethod

. 53
\smallertt\phantomconcurrency:\llapcl:defpackage

. 46, 99, 103
\smallertt\phantomconcurrency:\llapcl:defstruct

. 52
\smallertt\phantomconcurrency:\llapsb-

ext:delete-directory . 71
\smallertt\phantomconcurrency:\llapsb-

ext:deprecated . 157
\smallertt\phantomconcurrency:\llapsb-

concurrency:dequeue . 136
\smallertt\phantomconcurrency:\llapsb-

alien:deref . 76
\smallertt\phantomconcurrency:describe 38
\smallertt\phantomconcurrency:\llapsb-

ext:describe-compiler-policy 25
\smallertt\phantomconcurrency:\llapsb-

unicode:digit-value . 61
\smallertt\phantomconcurrency:\llapsb-

ext:disable-debugger . 40
\smallertt\phantomconcurrency:\llapsb-

ext:disable-package-locks 99, 101
\smallertt\phantomconcurrency:\llapcl:dolist

. 56
\smallertt\phantomconcurrency:\llapsb-

sequence:dosequence . 56
\smallertt\phantomconcurrency:down 30
\smallertt\phantomconcurrency:\llapsb-

ext:dynamic-space-size . 50

E
\smallertt\phantomconcurrency:\llapsb-

unicode:east-asian-width 62
\smallertt\phantomconcurrency:\llapcl:ed 66
element function . 56
\smallertt\phantomconcurrency:\llapsb-

sequence:elt . 54
\smallertt\phantomconcurrency:\llapsb-

sequence:emptyp . 55
\smallertt\phantomconcurrency:\llapsb-

ext:enable-debugger . 40
\smallertt\phantomconcurrency:\llapsb-

ext:enable-package-locks 99, 101
endp function . 56
\smallertt\phantomconcurrency:\llapsb-

concurrency:enqueue . 136
\smallertt\phantomconcurrency:\llapsb-

mop:ensure-class . 52
\smallertt\phantomconcurrency:\llapsb-

mop:ensure-class-using-class 52

\smallertt\phantomconcurrency:\llapcl:ensure-

generic-function . 51
\smallertt\phantomconcurrency:error 38
\smallertt\phantomconcurrency:\llapcl:eval . . . 28
\smallertt\phantomconcurrency:\llapsb-ext:exit

. 10
\smallertt\phantomconcurrency:\llapsb-

alien:extern-alien . 79

F
\smallertt\phantomconcurrency:\llapsb-

posix:file-descriptor . 148
\smallertt\phantomconcurrency:\llapsb-

posix:filename . 149
\smallertt\phantomconcurrency:\llapsb-

ext:finalize . 48
\smallertt\phantomconcurrency:\llapsb-

mop:finalize-inheritance 51
\smallertt\phantomconcurrency:\llapcl:find . . . 53
\smallertt\phantomconcurrency:\llapcl:find-

class . 52, 53
\smallertt\phantomconcurrency:\llapcl:find-

method . 53
\smallertt\phantomconcurrency:\llapcl:flet . . 42,

99
\smallertt\phantomconcurrency:frame 31
\smallertt\phantomconcurrency:\llapsb-

alien:free-alien . 78
\smallertt\phantomconcurrency:\llapsb-

concurrency:frlock-name 140
\smallertt\phantomconcurrency:\llapsb-

concurrency:frlock-read 140
\smallertt\phantomconcurrency:\llapsb-

concurrency:frlock-read-begin. 140
\smallertt\phantomconcurrency:\llapsb-

concurrency:frlock-read-end 141
\smallertt\phantomconcurrency:\llapsb-

concurrency:frlock-write 140
\smallertt\phantomconcurrency:\llapsb-

mop:funcallable-standard-instance-access

. 53

G
\smallertt\phantomconcurrency:\llapsb-

concurrency:gate-name . 139
\smallertt\phantomconcurrency:\llapsb-

concurrency:gate-open-p 139
\smallertt\phantomconcurrency:\llapsb-

concurrency:gatep . 139
\smallertt\phantomconcurrency:\llapsb-ext:gc

. 48
\smallertt\phantomconcurrency:\llapsb-ext:gc-

logfile . 50
\smallertt\phantomconcurrency:\llapsb-

unicode:general-category 61
\smallertt\phantomconcurrency:\llapsb-

ext:generation-average-age 50
\smallertt\phantomconcurrency:\llapsb-

ext:generation-bytes-allocated 50
\smallertt\phantomconcurrency:\llapsb-

ext:generation-bytes-consed-between-gcs . . 50
\smallertt\phantomconcurrency:\llapsb-

ext:generation-minimum-age-before-gc 51

Appendix B: Function Index 167

\smallertt\phantomconcurrency:\llapsb-

ext:generation-number-of-gcs 51
\smallertt\phantomconcurrency:\llapsb-

ext:generation-number-of-gcs-before-

promotion . 51
\smallertt\phantomconcurrency:\llapsb-

mop:generic-function-declarations 51
\smallertt\phantomconcurrency:\llapsb-ext:get-

bytes-consed . 50
\smallertt\phantomconcurrency:\llapsb-ext:get-

cas-expansion . 111
\smallertt\phantomconcurrency:\llapsb-

alien:get-errno . 79
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:get-host-by-address 126
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:get-host-by-name 126
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:get-protocol-by-name 125
\smallertt\phantomconcurrency:\llapsb-ext:get-

time-of-day . 71
\smallertt\phantomconcurrency:\llapsb-

posix:getcwd . 152
\smallertt\phantomconcurrency:\llapsb-

ext:global . 44
\smallertt\phantomconcurrency:\llapsb-

concurrency:grab-frlock-write-lock 141
\smallertt\phantomconcurrency:\llapsb-

thread:grab-mutex . 112
\smallertt\phantomconcurrency:\llapsb-

unicode:grapheme-break-class 63
\smallertt\phantomconcurrency:\llapsb-

unicode:graphemes. 65

H
\smallertt\phantomconcurrency:\llapsb-

unicode:hangul-syllable-type 62
\smallertt\phantomconcurrency:\llapsb-ext:hash-

table-synchronized-p . 69
\smallertt\phantomconcurrency:\llapsb-ext:hash-

table-weakness . 69
\smallertt\phantomconcurrency:help 38
\smallertt\phantomconcurrency:\llapsb-

unicode:hex-digit-p . 63
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:host-ent-address 126

I
\smallertt\phantomconcurrency:\llapsb-

unicode:ideographic-p . 63
index function . 56
\smallertt\phantomconcurrency:\llapcl:inspect

. 67
\smallertt\phantomconcurrency:\llapsb-sys:int-

sap . 76
\smallertt\phantomconcurrency:\llapcl:intern

. 46
\smallertt\phantomconcurrency:\llapsb-

mop:intern-eql-specializer 53
\smallertt\phantomconcurrency:\llapsb-

thread:interrupt-thread 105
\smallertt\phantomconcurrency:\llapsb-

sequence:iterator-copy . 58

\smallertt\phantomconcurrency:\llapsb-

sequence:iterator-element 57, 58
\smallertt\phantomconcurrency:\llapsb-

sequence:iterator-endp . 57
\smallertt\phantomconcurrency:\llapsb-

sequence:iterator-index 58
\smallertt\phantomconcurrency:\llapsb-

sequence:iterator-step . 57

J
\smallertt\phantomconcurrency:\llapsb-

thread:join-thread . 105

L
\smallertt\phantomconcurrency:\llapcl:labels

. 42, 99
\smallertt\phantomconcurrency:\llapsb-

sequence:length . 54
\smallertt\phantomconcurrency:\llapcl:let . . . 45,

99
\smallertt\phantomconcurrency:\llapcl:let* . . 45,

99
\smallertt\phantomconcurrency:\llapsb-

unicode:line-break-class 64
\smallertt\phantomconcurrency:\llapsb-

unicode:lines . 66
\smallertt\phantomconcurrency:\llapcl:list . . . 42
\smallertt\phantomconcurrency:\llapcl:list* . . 42
\smallertt\phantomconcurrency:\llapsb-

thread:list-all-threads 104
\smallertt\phantomconcurrency:\llapsb-ext:list-

all-timers . 120
\smallertt\phantomconcurrency:list-locals 33
\smallertt\phantomconcurrency:\llapsb-

concurrency:list-mailbox-messages 137
\smallertt\phantomconcurrency:\llapsb-

concurrency:list-queue-contents 136
\smallertt\phantomconcurrency:\llapsb-

alien:load-shared-object 80
\smallertt\phantomconcurrency:\llapsb-ext:lock-

package . 102
\smallertt\phantomconcurrency:\llapcl:logand

. 43
\smallertt\phantomconcurrency:\llapcl:logical-

pathname-translations . 86
\smallertt\phantomconcurrency:\llapsb-

unicode:lowercase. 64
\smallertt\phantomconcurrency:\llapsb-

unicode:lowercase-p . 63

M
\smallertt\phantomconcurrency:\llapcl:macrolet

. 99
\smallertt\phantomconcurrency:\llapsb-

concurrency:mailbox-count 137
\smallertt\phantomconcurrency:\llapsb-

concurrency:mailbox-empty-p 137
\smallertt\phantomconcurrency:\llapsb-

concurrency:mailbox-name 137
\smallertt\phantomconcurrency:\llapsb-

concurrency:mailboxp . 137

Appendix B: Function Index 168

\smallertt\phantomconcurrency:\llapsb-

thread:main-thread . 104
\smallertt\phantomconcurrency:\llapsb-

thread:main-thread-p . 104
\smallertt\phantomconcurrency:\llapsb-

alien:make-alien . 77
\smallertt\phantomconcurrency:\llapsb-

alien:make-alien-string 78
\smallertt\phantomconcurrency:\llapcl:make-

array . 42
\smallertt\phantomconcurrency:\llapsb-

concurrency:make-frlock 140
\smallertt\phantomconcurrency:\llapsb-

concurrency:make-gate . 139
\smallertt\phantomconcurrency:\llapcl:make-

hash-table . 67
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:make-inet-address 125
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:make-inet6-address 125
\smallertt\phantomconcurrency:\llapcl:make-

instance . 53
\smallertt\phantomconcurrency:\llapsb-

concurrency:make-mailbox 137
\smallertt\phantomconcurrency:\llapsb-mop:make-

method-lambda . 53
\smallertt\phantomconcurrency:\llapsb-pcl:make-

method-specializers-form 53
\smallertt\phantomconcurrency:\llapsb-

thread:make-mutex . 112
\smallertt\phantomconcurrency:\llapsb-

concurrency:make-queue 136
\smallertt\phantomconcurrency:\llapsb-

thread:make-semaphore . 113
\smallertt\phantomconcurrency:\llapsb-

thread:make-semaphore-notification 114
\smallertt\phantomconcurrency:\llapsb-

sequence:make-sequence-iterator 56, 57
\smallertt\phantomconcurrency:\llapsb-

sequence:make-sequence-like 54
\smallertt\phantomconcurrency:\llapsb-

sequence:make-simple-sequence-iterator . . 57,
58

\smallertt\phantomconcurrency:\llapsb-

thread:make-thread . 104
\smallertt\phantomconcurrency:\llapsb-ext:make-

timer . 119
\smallertt\phantomconcurrency:\llapsb-

thread:make-waitqueue . 115
\smallertt\phantomconcurrency:\llapsb-ext:make-

weak-pointer . 49
\smallertt\phantomconcurrency:\llapsb-

sequence:map . 55
\smallertt\phantomconcurrency:\llapsb-

unicode:math-p . 63
\smallertt\phantomconcurrency:\llapsb-

md5:md5sum-file . 147
\smallertt\phantomconcurrency:\llapsb-

md5:md5sum-sequence . 147
\smallertt\phantomconcurrency:\llapsb-

md5:md5sum-stream . 147
\smallertt\phantomconcurrency:\llapsb-

md5:md5sum-string . 147
\smallertt\phantomconcurrency:\llapsb-

sequence:merge . 56

\smallertt\phantomconcurrency:\llapsb-

unicode:mirrored-p . 62
\smallertt\phantomconcurrency:\llapsb-

ext:muffle-conditions . 17
\smallertt\phantomconcurrency:\llapsb-

thread:mutex-name . 112
\smallertt\phantomconcurrency:\llapsb-

thread:mutex-owner . 112
\smallertt\phantomconcurrency:\llapsb-

thread:mutex-value . 112

N
\smallertt\phantomconcurrency:\llapsb-ext:name-

conflict-symbols . 67
\smallertt\phantomconcurrency:\llapsb-

ext:native-namestring . 87
\smallertt\phantomconcurrency:\llapsb-

ext:native-pathname . 87
\smallertt\phantomconcurrency:next 40
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:non-blocking-mode 123
\smallertt\phantomconcurrency:\llapsb-

unicode:normalize-string 64
\smallertt\phantomconcurrency:\llapsb-

unicode:normalized-p . 64
\smallertt\phantomconcurrency:\llapsb-

unicode:numeric-value . 62

O
\smallertt\phantomconcurrency:\llapcl:open . . . 90
\smallertt\phantomconcurrency:\llapsb-

concurrency:open-gate . 139
\smallertt\phantomconcurrency:out 40

P
\smallertt\phantomconcurrency:\llapsb-

ext:package-implemented-by-list 102
\smallertt\phantomconcurrency:\llapsb-

ext:package-implements-list 102
\smallertt\phantomconcurrency:\llapsb-

ext:package-local-nicknames 47
\smallertt\phantomconcurrency:\llapsb-

ext:package-locally-nicknamed-by-list 47
\smallertt\phantomconcurrency:\llapsb-

ext:package-locked-error-symbol 102
\smallertt\phantomconcurrency:\llapsb-

ext:package-locked-p . 102
\smallertt\phantomconcurrency:\llapsb-

ext:parse-native-namestring 86
\smallertt\phantomconcurrency:\llapsb-

pcl:parse-specializer-using-class 53
\smallertt\phantomconcurrency:\llapsb-

ext:posix-getenv . 58
\smallertt\phantomconcurrency:print 38
\smallertt\phantomconcurrency:\llapsb-

ext:process-alive-p . 60
\smallertt\phantomconcurrency:\llapsb-

ext:process-close. 60
\smallertt\phantomconcurrency:\llapsb-

ext:process-core-dumped 60
\smallertt\phantomconcurrency:\llapsb-

ext:process-error. 60

Appendix B: Function Index 169

\smallertt\phantomconcurrency:\llapsb-

ext:process-exit-code . 60
\smallertt\phantomconcurrency:\llapsb-

ext:process-input. 60
\smallertt\phantomconcurrency:\llapsb-

ext:process-kill . 60
\smallertt\phantomconcurrency:\llapsb-

ext:process-output . 60
\smallertt\phantomconcurrency:\llapsb-

ext:process-p . 60
\smallertt\phantomconcurrency:\llapsb-

ext:process-status . 60
\smallertt\phantomconcurrency:\llapsb-

ext:process-wait . 60
\smallertt\phantomconcurrency:\llapsb-

profile:profile . 127
\smallertt\phantomconcurrency:\llapsb-

sprof:profile-call-counts 132
\smallertt\phantomconcurrency:\llapsb-

unicode:proplist-p . 62
\smallertt\phantomconcurrency:\llapsb-

ext:purify . 72

Q
\smallertt\phantomconcurrency:\llapsb-

concurrency:queue-count 136
\smallertt\phantomconcurrency:\llapsb-

concurrency:queue-empty-p 136
\smallertt\phantomconcurrency:\llapsb-

concurrency:queue-name 136
\smallertt\phantomconcurrency:\llapsb-

concurrency:queuep . 136

R
\smallertt\phantomconcurrency:\llapsb-

posix:readlink . 152
\smallertt\phantomconcurrency:\llapsb-

ext:readtable-normalization 46
\smallertt\phantomconcurrency:\llapsb-

concurrency:receive-message 137
\smallertt\phantomconcurrency:\llapsb-

concurrency:receive-message-no-hang 138
\smallertt\phantomconcurrency:\llapsb-

concurrency:receive-pending-messages 138
\smallertt\phantomconcurrency:\llapsb-

concurrency:release-frlock-write-lock . . . 141
\smallertt\phantomconcurrency:\llapsb-

thread:release-mutex . 113
\smallertt\phantomconcurrency:\llapsb-

ext:remove-implementation-package 103
\smallertt\phantomconcurrency:\llapsb-

ext:remove-package-local-nickname 47
\smallertt\phantomconcurrency:\llapsb-

profile:report 127, 130, 142
\smallertt\phantomconcurrency:\llapcl:require

. 66
\smallertt\phantomconcurrency:\llapsb-

profile:reset . 127, 131
\smallertt\phantomconcurrency:\llapsb-

cover:reset-coverage . 142
\smallertt\phantomconcurrency:restart 37
\smallertt\phantomconcurrency:restart-frame . . 38

\smallertt\phantomconcurrency:\llapsb-

cover:restore-coverage 143
\smallertt\phantomconcurrency:\llapsb-

cover:restore-coverage-from-file 143
\smallertt\phantomconcurrency:\llapsb-

ext:restrict-compiler-policy 25
\smallertt\phantomconcurrency:return 37
\smallertt\phantomconcurrency:\llapsb-

thread:return-from-thread 105
\smallertt\phantomconcurrency:\llapsb-rotate-

byte:rotate-byte . 147, 154
\smallertt\phantomconcurrency:\llapsb-ext:run-

program . 58

S
\smallertt\phantomconcurrency:\llapsb-

alien:sap-alien . 77
\smallertt\phantomconcurrency:\llapsb-sys:sap-

ref-32 . 77
\smallertt\phantomconcurrency:\llapsb-sys:sap=

. 77
\smallertt\phantomconcurrency:\llapcl:satisfies

. 21
\smallertt\phantomconcurrency:\llapsb-

cover:save-coverage . 142
\smallertt\phantomconcurrency:\llapsb-

cover:save-coverage-in-file 143
\smallertt\phantomconcurrency:\llapsb-ext:save-

lisp-and-die . 11
\smallertt\phantomconcurrency:\llapsb-

ext:schedule-timer . 120
\smallertt\phantomconcurrency:\llapsb-

unicode:script . 62
\smallertt\phantomconcurrency:\llapsb-ext:seed-

random-state . 69
\smallertt\phantomconcurrency:\llapsb-

thread:semaphore-count 114
\smallertt\phantomconcurrency:\llapsb-

thread:semaphore-name . 114
\smallertt\phantomconcurrency:\llapsb-

thread:semaphore-notification-status 114
\smallertt\phantomconcurrency:\llapsb-

concurrency:send-message 138
\smallertt\phantomconcurrency:\llapsb-

unicode:sentence-break-class 64
\smallertt\phantomconcurrency:\llapsb-

unicode:sentences. 66
\smallertt\phantomconcurrency:\llapsb-ext:set-

sbcl-source-location . 86
\smallertt\phantomconcurrency:\llapcl:setf . . . 45
setf element function . 56
\smallertt\phantomconcurrency:\llapcl:setq . . . 45
\smallertt\phantomconcurrency:\llapsb-

thread:signal-semaphore 113
\smallertt\phantomconcurrency:\llapsb-

alien:slot . 76
\smallertt\phantomconcurrency:\llapsb-mop:slot-

boundp-using-class . 52
\smallertt\phantomconcurrency:\llapsb-mop:slot-

definition-name . 52
\smallertt\phantomconcurrency:\llapsb-mop:slot-

value-using-class. 52
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:socket-accept . 121

Appendix B: Function Index 170

\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:socket-bind . 121
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:socket-close . 122
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:socket-connect 122
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:socket-error . 123
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:socket-listen . 122
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:socket-make-stream 123
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:socket-name . 122
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:socket-open-p . 122
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:socket-peername 122
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:socket-receive 122
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:socket-send . 122
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:socket-shutdown 123
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:sockopt-broadcast 124
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:sockopt-bsd-compatible 124
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:sockopt-debug . 124
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:sockopt-dont-route 124
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:sockopt-keep-alive 124
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:sockopt-oob-inline 124
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:sockopt-pass-credentials 124
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:sockopt-reuse-address. 124
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:sockopt-tcp-nodelay 124
\smallertt\phantomconcurrency:\llapsb-

unicode:soft-dotted-p . 63
\smallertt\phantomconcurrency:source 34
\smallertt\phantomconcurrency:\llapsb-

mop:standard-instance-access 53
\smallertt\phantomconcurrency:start 40
\smallertt\phantomconcurrency:\llapsb-

sprof:start-profiling . 131
\smallertt\phantomconcurrency:step 40
step function . 56
\smallertt\phantomconcurrency:stop 40
\smallertt\phantomconcurrency:\llapsb-

sprof:stop-profiling . 132
\smallertt\phantomconcurrency:\llapsb-

gray:stream-advance-to-column 94
\smallertt\phantomconcurrency:\llapsb-

gray:stream-clear-input 92
\smallertt\phantomconcurrency:\llapsb-

gray:stream-clear-output 93
\smallertt\phantomconcurrency:\llapcl:stream-

element-type . 92
\smallertt\phantomconcurrency:\llapcl:stream-

external-format . 88

\smallertt\phantomconcurrency:\llapsb-

gray:stream-file-position 92
\smallertt\phantomconcurrency:\llapsb-

gray:stream-finish-output 93
\smallertt\phantomconcurrency:\llapsb-

gray:stream-force-output 93
\smallertt\phantomconcurrency:\llapsb-

gray:stream-fresh-line . 94
\smallertt\phantomconcurrency:\llapsb-

gray:stream-line-column 94
\smallertt\phantomconcurrency:\llapsb-

gray:stream-line-length 94
\smallertt\phantomconcurrency:\llapsb-

gray:stream-listen . 93
\smallertt\phantomconcurrency:\llapsb-

gray:stream-peek-char . 92
\smallertt\phantomconcurrency:\llapsb-

gray:stream-read-byte . 95
\smallertt\phantomconcurrency:\llapsb-

gray:stream-read-char . 93
\smallertt\phantomconcurrency:\llapsb-

gray:stream-read-char-no-hang 93
\smallertt\phantomconcurrency:\llapsb-

gray:stream-read-line . 93
\smallertt\phantomconcurrency:\llapsb-

gray:stream-read-sequence 92
\smallertt\phantomconcurrency:\llapsb-

gray:stream-start-line-p 94
\smallertt\phantomconcurrency:\llapsb-

gray:stream-terpri . 95
\smallertt\phantomconcurrency:\llapsb-

gray:stream-unread-char 93
\smallertt\phantomconcurrency:\llapsb-

gray:stream-write-byte . 95
\smallertt\phantomconcurrency:\llapsb-

gray:stream-write-char . 95
\smallertt\phantomconcurrency:\llapsb-

gray:stream-write-sequence 94
\smallertt\phantomconcurrency:\llapsb-

gray:stream-write-string 95
\smallertt\phantomconcurrency:\llapcl:string-

upcase . 65
\smallertt\phantomconcurrency:\llapcl:subseq

. 53, 54
\smallertt\phantomconcurrency:\llapcl:subtypep

. 51
\smallertt\phantomconcurrency:\llapcl:symbol-

macrolet . 99
\smallertt\phantomconcurrency:\llapsb-

thread:symbol-value-in-thread. 107
\smallertt\phantomconcurrency:\llapsb-

posix:syslog . 152

T
\smallertt\phantomconcurrency:\llapsb-

thread:terminate-thread 106
\smallertt\phantomconcurrency:\llapsb-

thread:thread-alive-p . 104
\smallertt\phantomconcurrency:\llapsb-

thread:thread-error-thread 107
\smallertt\phantomconcurrency:\llapsb-

thread:thread-name . 104
\smallertt\phantomconcurrency:\llapsb-

thread:thread-yield . 105

Appendix B: Function Index 171

\smallertt\phantomconcurrency:\llapsb-

ext:timer-name . 119
\smallertt\phantomconcurrency:\llapsb-

ext:timer-scheduled-p . 119
\smallertt\phantomconcurrency:\llapsb-

unicode:titlecase. 64
\smallertt\phantomconcurrency:top 30
\smallertt\phantomconcurrency:toplevel 37
\smallertt\phantomconcurrency:\llapcl:trace

. 38, 67
\smallertt\phantomconcurrency:\llapsb-

ext:truly-the . 72
\smallertt\phantomconcurrency:\llapsb-

thread:try-semaphore . 114
\smallertt\phantomconcurrency:\llapcl:typep . . 51

U
\smallertt\phantomconcurrency:\llapsb-

unicode:unicode-1-name . 62
\smallertt\phantomconcurrency:\llapsb-

unicode:unicode-equal . 65
\smallertt\phantomconcurrency:\llapsb-

unicode:unicode< . 65
\smallertt\phantomconcurrency:\llapsb-

unicode:unicode<=. 65
\smallertt\phantomconcurrency:\llapsb-

unicode:unicode= . 65
\smallertt\phantomconcurrency:\llapsb-

unicode:unicode> . 65
\smallertt\phantomconcurrency:\llapsb-

unicode:unicode>=. 65
\smallertt\phantomconcurrency:\llapsb-

alien:unload-shared-object 81
\smallertt\phantomconcurrency:\llapsb-

ext:unlock-package . 102
\smallertt\phantomconcurrency:\llapsb-

ext:unmuffle-conditions 17
\smallertt\phantomconcurrency:\llapsb-

pcl:unparse-specializer-using-class 53
\smallertt\phantomconcurrency:\llapsb-

profile:unprofile . 127
\smallertt\phantomconcurrency:\llapsb-

sprof:unprofile-call-counts 132
\smallertt\phantomconcurrency:\llapsb-

ext:unschedule-timer . 120
\smallertt\phantomconcurrency:\llapcl:untrace

. 39
\smallertt\phantomconcurrency:up 30
\smallertt\phantomconcurrency:\llapsb-

unicode:uppercase. 64
\smallertt\phantomconcurrency:\llapsb-

unicode:uppercase-p . 62

V
\smallertt\phantomconcurrency:\llapsb-

mop:validate-superclass 51, 53

\smallertt\phantomconcurrency:\llapsb-debug:var

. 33

\smallertt\phantomconcurrency:\llapcl:vector

. 42

W
\smallertt\phantomconcurrency:\llapsb-ext:wait-

for . 71

\smallertt\phantomconcurrency:\llapsb-

concurrency:wait-on-gate 139

\smallertt\phantomconcurrency:\llapsb-

thread:wait-on-semaphore 113

\smallertt\phantomconcurrency:\llapsb-

thread:waitqueue-name . 115

\smallertt\phantomconcurrency:\llapsb-ext:weak-

pointer-value . 49

\smallertt\phantomconcurrency:\llapsb-

unicode:whitespace-p . 63

\smallertt\phantomconcurrency:\llapsb-

alien:with-alien . 78

\smallertt\phantomconcurrency:\llapcl:with-

compilation-unit . 19, 25

\smallertt\phantomconcurrency:\llapsb-ext:with-

locked-hash-table. 69

\smallertt\phantomconcurrency:\llapsb-

thread:with-mutex . 112

\smallertt\phantomconcurrency:\llapcl:with-

open-file . 90

\smallertt\phantomconcurrency:\llapsb-

sprof:with-profiling . 129

\smallertt\phantomconcurrency:\llapsb-

thread:with-recursive-lock 112

\smallertt\phantomconcurrency:\llapsb-

sprof:with-sampling . 130

\smallertt\phantomconcurrency:\llapsb-

sequence:with-sequence-iterator 57

\smallertt\phantomconcurrency:\llapsb-

sequence:with-sequence-iterator-functions

. 57

\smallertt\phantomconcurrency:\llapsb-ext:with-

unlocked-packages . 103

\smallertt\phantomconcurrency:\llapsb-

ext:without-package-locks 103

\smallertt\phantomconcurrency:\llapsb-

unicode:word-break-class 63

\smallertt\phantomconcurrency:\llapsb-

unicode:words . 66

Appendix C: Variable Index 172

Appendix C Variable Index

+
\smallertt\phantomconcurrency:\llapsb-

pcl:+slot-unbound+ . 53

A
\smallertt\phantomconcurrency:\llapsb-

ext:*after-gc-hooks* . 48

C
\smallertt\phantomconcurrency:\llapsb-

ext:*compiler-print-variable-alist* 17
\smallertt\phantomconcurrency:\llapsb-

ext:*core-pathname* . 13
\smallertt\phantomconcurrency:\llapsb-

thread:*current-thread* 104

D
\smallertt\phantomconcurrency:\llapsb-

ext:*debug-print-variable-alist* 30

E
\smallertt\phantomconcurrency:\llapsb-ext:*ed-

functions* . 66
\smallertt\phantomconcurrency:\llapsb-

ext:*evaluator-mode* . 28
\smallertt\phantomconcurrency:\llapsb-

ext:*exit-hooks* . 16

G
\smallertt\phantomconcurrency:\llapsb-ext:*gc-

run-time* . 50

I
\smallertt\phantomconcurrency:\llapsb-

ext:*init-hooks* . 16
\smallertt\phantomconcurrency:\llapsb-

ext:*invoke-debugger-hook* 29

M
\smallertt\phantomconcurrency:\llapsb-

sprof:*max-samples* . 132
\smallertt\phantomconcurrency:\llapsb-

debug:*max-trace-indentation* 39
\smallertt\phantomconcurrency:\llapsb-

ext:*module-provider-functions* 66
\smallertt\phantomconcurrency:\llapsb-

ext:*muffled-warnings* . 66

O
\smallertt\phantomconcurrency:\llapsb-ext:*on-

package-variance*. 48

P
\smallertt\phantomconcurrency:\llapcl:*package*

. 99
\smallertt\phantomconcurrency:\llapsb-

ext:*posix-argv* . 10, 58

S
\smallertt\phantomconcurrency:\llapsb-

sprof:*sample-interval* 132
\smallertt\phantomconcurrency:\llapsb-

ext:*save-hooks* . 13
\smallertt\phantomconcurrency:\llapsb-

ext:*stack-allocate-dynamic-extent* 41
\smallertt\phantomconcurrency:\llapsb-

ext:*sysinit-pathname-function* 13

T
\smallertt\phantomconcurrency:\llapsb-

debug:*trace-encapsulate-default* 40
\smallertt\phantomconcurrency:\llapsb-

debug:*trace-indentation-step* 39

U
\smallertt\phantomconcurrency:\llapsb-

ext:*userinit-pathname-function* 13

Appendix D: Type Index 173

Appendix D Type Index

B
\smallertt\phantomconcurrency:\llapcl:built-in-

class . 53

C
\smallertt\phantomconcurrency:\llapsb-ext:code-

deletion-note . 18
\smallertt\phantomconcurrency:\llapsb-

ext:compiler-note. 18

D
\smallertt\phantomconcurrency:\llapsb-

ext:deprecation-condition 156
\smallertt\phantomconcurrency:\llapsb-

ext:deprecation-error . 157

E
\smallertt\phantomconcurrency:\llapsb-

ext:early-deprecation-warning. 156
\smallertt\phantomconcurrency:\llapcl:error . . 18

F
\smallertt\phantomconcurrency:\llapsb-

posix:file-descriptor . 148
\smallertt\phantomconcurrency:\llapsb-

posix:file-descriptor-designator 148
\smallertt\phantomconcurrency:\llapsb-

posix:filename . 149
\smallertt\phantomconcurrency:\llapsb-

posix:filename-designator 149
\smallertt\phantomconcurrency:\llapsb-

ext:final-deprecation-warning. 157
\smallertt\phantomconcurrency:\llapsb-

posix:flock . 150
\smallertt\phantomconcurrency:\llapsb-

concurrency:frlock . 140
\smallertt\phantomconcurrency:\llapsb-

mop:funcallable-standard-class 51
\smallertt\phantomconcurrency:\llapsb-

mop:funcallable-standard-object 51, 52
\smallertt\phantomconcurrency:\llapcl:function

. 51
\smallertt\phantomconcurrency:\llapsb-

gray:fundamental-binary-input-stream 91
\smallertt\phantomconcurrency:\llapsb-

gray:fundamental-binary-output-stream 91
\smallertt\phantomconcurrency:\llapsb-

gray:fundamental-binary-stream 91
\smallertt\phantomconcurrency:\llapsb-

gray:fundamental-character-input-stream . . 92
\smallertt\phantomconcurrency:\llapsb-

gray:fundamental-character-output-stream

. 92
\smallertt\phantomconcurrency:\llapsb-

gray:fundamental-character-stream 91
\smallertt\phantomconcurrency:\llapsb-

gray:fundamental-input-stream 91

\smallertt\phantomconcurrency:\llapsb-

gray:fundamental-output-stream 91
\smallertt\phantomconcurrency:\llapsb-

gray:fundamental-stream 91

G
\smallertt\phantomconcurrency:\llapsb-

concurrency:gate . 139
\smallertt\phantomconcurrency:\llapcl:generic-

function . 51

H
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:host-ent . 126

I
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:inet-socket . 125
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:inet6-socket . 125
\smallertt\phantomconcurrency:\llapsb-

thread:interrupt-thread-error. 107

J
\smallertt\phantomconcurrency:\llapsb-

thread:join-thread-error 107

L
\smallertt\phantomconcurrency:\llapsb-ext:late-

deprecation-warning . 157
\smallertt\phantomconcurrency:\llapcl:list . . . 53
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:local-socket . 126

M
\smallertt\phantomconcurrency:\llapsb-

concurrency:mailbox . 137
\smallertt\phantomconcurrency:\llapsb-

thread:mutex . 111

N
\smallertt\phantomconcurrency:\llapsb-ext:name-

conflict . 67

P
\smallertt\phantomconcurrency:\llapcl:package-

error . 99
\smallertt\phantomconcurrency:\llapsb-

ext:package-lock-violation 99, 102
\smallertt\phantomconcurrency:\llapsb-

ext:package-locked-error 99, 102
\smallertt\phantomconcurrency:\llapsb-

posix:passwd . 150

Appendix D: Type Index 174

\smallertt\phantomconcurrency:\llapsb-

sequence:protocol-unimplemented 54

Q
\smallertt\phantomconcurrency:\llapsb-

concurrency:queue . 136

S
\smallertt\phantomconcurrency:\llapsb-

thread:semaphore . 113
\smallertt\phantomconcurrency:\llapsb-

thread:semaphore-notification. 114
\smallertt\phantomconcurrency:\llapcl:sequence

. 53, 54, 57
\smallertt\phantomconcurrency:\llapsb-bsd-

sockets:socket . 121
\smallertt\phantomconcurrency:\llapcl:standard-

class . 51
\smallertt\phantomconcurrency:\llapcl:standard-

generic-function . 51
\smallertt\phantomconcurrency:\llapcl:standard-

object . 51, 53
\smallertt\phantomconcurrency:\llapsb-

posix:stat . 151
\smallertt\phantomconcurrency:\llapcl:structure-

class . 52
\smallertt\phantomconcurrency:\llapcl:style-

warning . 18

\smallertt\phantomconcurrency:\llapsb-

ext:symbol-package-locked-error 99, 102

T
\smallertt\phantomconcurrency:\llapcl:t 53

\smallertt\phantomconcurrency:\llapsb-

posix:termios . 152

\smallertt\phantomconcurrency:\llapsb-

thread:thread . 104

\smallertt\phantomconcurrency:\llapsb-

thread:thread-error . 107

\smallertt\phantomconcurrency:\llapsb-ext:timer

. 119

\smallertt\phantomconcurrency:\llapsb-

posix:timeval . 152

V
\smallertt\phantomconcurrency:\llapcl:vector

. 53

W
\smallertt\phantomconcurrency:\llapsb-

thread:waitqueue . 115

\smallertt\phantomconcurrency:\llapcl:warning

. 18

Colophon 175

Colophon

This manual is maintained in Texinfo, and automatically translated into other forms (e.g. HTML
or pdf). If you’re reading this manual in one of these non-Texinfo translated forms, that’s fine,
but if you want to modify this manual, you are strongly advised to seek out a Texinfo ver-
sion and modify that instead of modifying a translated version. Even better might be to seek
out the Texinfo version (maintained at the time of this writing as part of the SBCL project at
http://sbcl.sourceforge.net/) and submit a patch.

http://sbcl.sourceforge.net/

	Getting Support and Reporting Bugs
	Volunteer Support
	Commercial Support
	Reporting Bugs
	How to Report Bugs Effectively
	Signal Related Bugs

	Introduction
	ANSI Conformance
	Extensions
	Idiosyncrasies
	Declarations
	FASL Format
	Compiler-only Implementation
	Defining Constants
	Style Warnings

	Development Tools
	Editor Integration
	Language Reference
	Generating Executables

	More SBCL Information
	SBCL Homepage
	Online Documentation
	Additional Documentation Files
	Internals Documentation

	More Common Lisp Information
	Internet Community
	Third-party Libraries
	Common Lisp Books

	History and Implementation of SBCL

	Starting and Stopping
	Starting SBCL
	From Shell to Lisp
	Running from Emacs
	Shebang Scripts

	Stopping SBCL
	Exit
	End of File
	Saving a Core Image
	Exit on Errors

	Command Line Options
	Runtime Options
	Toplevel Options

	Initialization Files
	Initialization and Exit Hooks

	Compiler
	Diagnostic Messages
	Controlling Verbosity
	Diagnostic Severity
	Understanding Compile Diagnostics
	The Parts of a Compiler Diagnostic
	The Original and Actual Source
	The Processing Path

	Handling of Types
	Declarations as Assertions
	Precise Type Checking
	Getting Existing Programs to Run
	Implementation Limitations

	Compiler Policy
	Compiler Errors
	Type Errors at Compile Time
	Errors During Macroexpansion
	Read Errors

	Open Coding and Inline Expansion
	Interpreter

	Debugger
	Debugger Entry
	Debugger Banner
	Debugger Invocation

	Debugger Command Loop
	Stack Frames
	Stack Motion
	How Arguments are Printed
	Function Names
	Entry Point Details

	Debug Tail Recursion
	Unknown Locations and Interrupts

	Variable Access
	Variable Value Availability
	Note On Lexical Variable Access

	Source Location Printing
	How the Source is Found
	Source Location Availability

	Debugger Policy Control
	Exiting Commands
	Information Commands
	Function Tracing
	Single Stepping
	Enabling and Disabling the Debugger

	Efficiency
	Slot access
	Structure object slot access
	Standard object slot access

	Dynamic-extent allocation
	Modular arithmetic
	Global and Always-Bound variables
	Miscellaneous Efficiency Issues

	Beyond the ANSI Standard
	Reader Extensions
	Package-Local Nicknames
	Package Variance
	Garbage Collection
	Finalization
	Weak Pointers
	Introspection and Tuning

	Metaobject Protocol
	AMOP Compatibility of Metaobject Protocol
	Metaobject Protocol Extensions

	Extensible Sequences
	Iterator Protocol
	Simple Iterator Protocol

	Support For Unix
	Command-line arguments
	Querying the process environment
	Running external programs

	Unicode Support
	Unicode property access
	String operations
	Breaking strings

	Customization Hooks for Users
	Tools To Help Developers
	Resolution of Name Conflicts
	Hash Table Extensions
	Random Number Generation
	Miscellaneous Extensions
	Stale Extensions
	Efficiency Hacks

	Foreign Function Interface
	Introduction to the Foreign Function Interface
	Foreign Types
	Defining Foreign Types
	Foreign Types and Lisp Types
	Foreign Type Specifiers

	Operations On Foreign Values
	Accessing Foreign Values
	Untyped memory

	Coercing Foreign Values
	Foreign Dynamic Allocation

	Foreign Variables
	Local Foreign Variables
	External Foreign Variables

	Foreign Data Structure Examples
	Loading Shared Object Files
	Foreign Function Calls
	The alien-funcall Primitive
	The define-alien-routine Macro
	define-alien-routine Example
	Calling Lisp From C

	Step-By-Step Example of the Foreign Function Interface

	Pathnames
	Lisp Pathnames
	Home Directory Specifiers
	The SYS Logical Pathname Host

	Native Filenames

	Streams
	External Formats
	Bivalent Streams
	Gray Streams
	Gray Streams classes
	Methods common to all streams
	Input stream methods
	Character input stream methods
	Output stream methods
	Character output stream methods
	Binary stream methods
	Gray Streams examples
	Character counting input stream
	Output prefixing character stream

	Simple Streams

	Package Locks
	Package Lock Concepts
	Package Locking Overview
	Implementation Packages
	Package Lock Violations
	Lexical Bindings and Declarations
	Other Operations

	Package Locks in Compiled Code
	Interned Symbols
	Other Limitations on Compiled Code

	Operations Violating Package Locks
	Operations on Packages
	Operations on Symbols

	Package Lock Dictionary

	Threading
	Threading basics
	Thread Objects
	Making, Returning From, Joining, and Yielding Threads
	Asynchronous Operations
	Miscellaneous Operations
	Error Conditions

	Special Variables
	Atomic Operations
	CAS Protocol

	Mutex Support
	Semaphores
	Waitqueue/condition variables
	Barriers
	Sessions/Debugging
	Foreign threads
	Implementation (Linux x86/x86-64)

	Timers
	Timer Dictionary

	Networking
	Sockets Overview
	General Sockets
	Socket Options
	INET Domain Sockets
	Local (Unix) Domain Sockets
	Name Service

	Profiling
	Deterministic Profiler
	Statistical Profiler
	Example Usage
	Output
	Platform support
	Macros
	Functions
	Variables
	Credits

	Contributed Modules
	sb-aclrepl
	Usage
	Example Initialization
	Credits

	sb-concurrency
	Queue
	Mailbox (lock-free)
	Gates
	Frlocks, aka Fast Read Locks

	sb-cover
	Example Usage
	Functions

	sb-grovel
	Using sb-grovel in your own ASDF system
	Contents of a grovel-constants-file
	Programming with sb-grovel's structure types
	Traps and Pitfalls

	sb-md5
	Credits

	sb-posix
	Lisp names for C names
	Types
	File-descriptors
	Filenames

	Function Parameters
	Function Return Values
	Lisp objects and C structures
	Functions with idiosyncratic bindings

	sb-queue
	sb-rotate-byte

	Deprecation
	Why Deprecate?
	The Deprecation Pipeline
	Deprecation Conditions
	Introspecting Deprecation Information
	Deprecation Declaration
	Deprecation Examples
	Deprecated Interfaces in SBCL
	List of Deprecated Interfaces
	Early Deprecation
	Late Deprecation
	Final Deprecation

	Historical Interfaces

	Concept Index
	Function Index
	Variable Index
	Type Index
	Colophon

