Class representing an image (up to 4 dimensions wide), each pixel being of type T
.
More...
List of all members.
Public Types
typedef T * iterator
Iterator type for CImg<T>.
typedef const T * const_iterator
Const iterator type for CImg<T>.
typedef T value_type
Value type.
Constructors / Destructor / Instance Management
~CImg ()
Destructor.
CImg ()
Default constructor.
CImg (const unsigned int dx, const unsigned int dy=1, const unsigned int dz=1, const unsigned int dc=1)
Constructs a new image with given size (dx
,dy
,dz
,dc
).
CImg (const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc, const T val)
Construct an image with given size (dx
,dy
,dz
,dc
) and with pixel having a default value val
.
CImg (const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc, const int val0, const int val1,...)
Construct an image with given size (dx
,dy
,dz
,dc
) and with specified pixel values (int version).
CImg (const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc, const double val0, const double val1,...)
Construct an image with given size (dx
,dy
,dz
,dc
) and with specified pixel values (double version).
CImg (const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc, const char *const values, const bool repeat_values)
Construct an image with given size and with specified values given in a string.
template<typename t >
CImg (const t *const data_buffer, const unsigned int dx, const unsigned int dy=1, const unsigned int dz=1, const unsigned int dc=1, const bool shared=false)
Construct an image from a raw memory buffer.
CImg (const T *const data_buffer, const unsigned int dx, const unsigned int dy=1, const unsigned int dz=1, const unsigned int dc=1, const bool shared=false)
CImg (const char *const filename)
Construct an image from an image file.
template<typename t >
CImg (const CImg < t > &img)
Default copy constructor.
CImg (const CImg < T > &img)
template<typename t >
CImg (const CImg < t > &img, const bool shared)
Advanced copy constructor.
CImg (const CImg < T > &img, const bool shared)
template<typename t >
CImg (const CImg < t > &img, const char *const dimensions)
Construct an image using dimensions of another image.
template<typename t >
CImg (const CImg < t > &img, const char *const dimensions, const T val)
Construct an image using dimensions of another image, and fill it with given values.
template<typename t >
CImg (const CImg < t > &img, const char *const dimensions, const char *const values, const bool repeat_values)
Construct an image using dimensions of another image, and fill it with given values.
CImg (const CImgDisplay &disp)
Construct an image from the content of a CImgDisplay instance.
CImg < T > & clear ()
In-place version of the default constructor (STL-compliant name).
CImg < T > & assign ()
In-place version of the default constructor/destructor.
CImg < T > & assign (const unsigned int dx, const unsigned int dy=1, const unsigned int dz=1, const unsigned int dc=1)
In-place version of the previous constructor.
CImg < T > & assign (const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc, const T val)
In-place version of the previous constructor.
CImg < T > & assign (const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc, const int val0, const int val1,...)
In-place version of the previous constructor.
CImg < T > & assign (const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc, const double val0, const double val1,...)
In-place version of the previous constructor.
CImg < T > & assign (const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc, const char *const values, const bool repeat_values)
In-place version of the corresponding constructor.
template<typename t >
CImg < T > & assign (const t *const data_buffer, const unsigned int dx, const unsigned int dy=1, const unsigned int dz=1, const unsigned int dc=1)
In-place version of the previous constructor.
CImg < T > & assign (const T *const data_buffer, const unsigned int dx, const unsigned int dy=1, const unsigned int dz=1, const unsigned int dc=1)
template<typename t >
CImg < T > & assign (const t *const data_buffer, const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc, const bool shared)
In-place version of the previous constructor, allowing to force the shared state of the instance image.
CImg < T > & assign (const T *const data_buffer, const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc, const bool shared)
CImg < T > & assign (const char *const filename)
In-place version of the previous constructor.
template<typename t >
CImg < T > & assign (const CImg < t > &img)
In-place version of the default copy constructor.
template<typename t >
CImg < T > & assign (const CImg < t > &img, const bool shared)
In-place version of the advanced constructor.
template<typename t >
CImg < T > & assign (const CImg < t > &img, const char *const dimensions)
In-place version of the previous constructor.
template<typename t >
CImg < T > & assign (const CImg < t > &img, const char *const dimensions, const T val)
In-place version of the previous constructor.
template<typename t >
CImg < T > & assign (const CImg < t > &img, const char *const dimensions, const char *const values, const bool repeat_values)
In-place version of the previous constructor.
CImg < T > & assign (const CImgDisplay &disp)
In-place version of the previous constructor.
template<typename t >
CImg < t > & move_to (CImg < t > &img)
Move the content of the instance image into another one in a way that memory copies are avoided if possible.
CImg < T > & move_to (CImg < T > &img)
template<typename t >
CImgList < t > & move_to (CImgList < t > &list, const unsigned int pos=~0U)
CImg < T > & swap (CImg < T > &img)
Swap all fields of two images. Use with care !
static CImg < T > & empty ()
Return a reference to an empty image.
Overloaded Operators
T & operator() (const unsigned int x)
Fast access to pixel value for reading or writing.
const T & operator() (const unsigned int x) const
T & operator() (const unsigned int x, const unsigned int y)
const T & operator() (const unsigned int x, const unsigned int y) const
T & operator() (const unsigned int x, const unsigned int y, const unsigned int z)
const T & operator() (const unsigned int x, const unsigned int y, const unsigned int z) const
T & operator() (const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c)
const T & operator() (const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c) const
T & operator() (const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int, const unsigned long wh)
const T & operator() (const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int, const unsigned long wh) const
T & operator() (const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, const unsigned long wh, const unsigned long whd)
const T & operator() (const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, const unsigned long wh, const unsigned long whd) const
operator const T * () const
Return address of the pixel buffer.
operator T * ()
CImg < T > & operator= (const T val)
Operator=().
CImg < T > & operator= (const char *const expression)
Operator=().
template<typename t >
CImg < T > & operator= (const CImg < t > &img)
Operator=().
CImg < T > & operator= (const CImg < T > &img)
CImg < T > & operator= (const CImgDisplay &disp)
Operator=().
template<typename t >
CImg < T > & operator+= (const t val)
Operator+=().
CImg < T > & operator+= (const char *const expression)
Operator+=().
template<typename t >
CImg < T > & operator+= (const CImg < t > &img)
Operator+=().
CImg < T > & operator++ ()
Operator++() (prefix).
CImg < T > operator++ (int)
Operator++() (postfix).
CImg < T > operator+ () const
Operator+() (unary).
template<typename t >
CImg < typename cimg::superset
< T, t >::type > operator+ (const t val) const
Operator+().
CImg < Tfloat > operator+ (const char *const expression) const
Operator+().
template<typename t >
CImg < typename cimg::superset
< T, t >::type > operator+ (const CImg < t > &img) const
Operator+().
template<typename t >
CImg < T > & operator-= (const t val)
Operator-=().
CImg < T > & operator-= (const char *const expression)
Operator-=().
template<typename t >
CImg < T > & operator-= (const CImg < t > &img)
Operator-=().
CImg < T > & operator-- ()
Operator--() (prefix).
CImg < T > operator-- (int)
Operator--() (postfix).
CImg < T > operator- () const
Operator-() (unary).
template<typename t >
CImg < typename cimg::superset
< T, t >::type > operator- (const t val) const
Operator-().
CImg < Tfloat > operator- (const char *const expression) const
Operator-().
template<typename t >
CImg < typename cimg::superset
< T, t >::type > operator- (const CImg < t > &img) const
Operator-().
template<typename t >
CImg < T > & operator*= (const t val)
Operator*=().
CImg < T > & operator*= (const char *const expression)
Operator*=().
template<typename t >
CImg < T > & operator*= (const CImg < t > &img)
Operator*=().
template<typename t >
CImg < typename cimg::superset
< T, t >::type > operator* (const t val) const
Operator*().
CImg < Tfloat > operator* (const char *const expression) const
Operator*().
template<typename t >
CImg < typename cimg::superset
< T, t >::type > operator* (const CImg < t > &img) const
Operator*().
template<typename t >
CImg < T > & operator/= (const t val)
Operator/=().
CImg < T > & operator/= (const char *const expression)
Operator/=().
template<typename t >
CImg < T > & operator/= (const CImg < t > &img)
Operator/=().
template<typename t >
CImg < typename cimg::superset
< T, t >::type > operator/ (const t val) const
Operator/().
CImg < Tfloat > operator/ (const char *const expression) const
Operator/().
template<typename t >
CImg < typename cimg::superset
< T, t >::type > operator/ (const CImg < t > &img) const
Operator/().
template<typename t >
CImg < T > & operator%= (const t val)
Operator=().
CImg < T > & operator%= (const char *const expression)
Operator=().
template<typename t >
CImg < T > & operator%= (const CImg < t > &img)
Operator=().
template<typename t >
CImg < typename cimg::superset
< T, t >::type > operator% (const t val) const
Operator%().
CImg < Tfloat > operator% (const char *const expression) const
Operator%().
template<typename t >
CImg < typename cimg::superset
< T, t >::type > operator% (const CImg < t > &img) const
Operator%().
template<typename t >
CImg < T > & operator&= (const t val)
Operator&=().
CImg < T > & operator&= (const char *const expression)
Operator&=().
template<typename t >
CImg < T > & operator&= (const CImg < t > &img)
Operator&=().
template<typename t >
CImg < T > operator& (const t val) const
Operator&().
template<typename t >
CImg < T > & operator|= (const t val)
Operator|=().
CImg < T > & operator|= (const char *const expression)
Operator|=().
template<typename t >
CImg < T > & operator|= (const CImg < t > &img)
Operator|=().
template<typename t >
CImg < T > operator| (const t val) const
Operator|().
template<typename t >
CImg < T > & operator^= (const t val)
Operator^=().
CImg < T > & operator^= (const char *const expression)
Operator^=().
template<typename t >
CImg < T > & operator^= (const CImg < t > &img)
Operator^=().
template<typename t >
CImg < T > operator^ (const t val) const
Operator^().
template<typename t >
CImg < T > & operator<<= (const t val)
Operator<<=().
CImg < T > & operator<<= (const char *const expression)
Operator<<=().
template<typename t >
CImg < T > & operator<<= (const CImg < t > &img)
Operator<<=().
template<typename t >
CImg < T > operator<< (const t val) const
Operator<<().
template<typename t >
CImg < T > & operator>>= (const t val)
Operator>>=().
CImg < T > & operator>>= (const char *const expression)
Operator>>=().
template<typename t >
CImg < T > & operator>>= (const CImg < t > &img)
Operator>>=().
template<typename t >
CImg < T > operator>> (const t val) const
Operator>>().
template<typename t >
bool operator== (const CImg < t > &img) const
Operator==().
template<typename t >
bool operator!= (const CImg < t > &img) const
Operator!=().
template<typename t >
CImgList < typename
cimg::superset< T, t >::type > operator, (const CImg < t > &img) const
Operator,().
template<typename t >
CImgList < typename
cimg::superset< T, t >::type > operator, (CImgList < t > &list) const
Operator,().
CImgList < T > operator< (const char axis) const
Operator<().
CImg < T > operator~ () const
Operator~().
Instance Characteristics
int width () const
Return the number of columns of the instance image (size along the X-axis, i.e image width).
int height () const
Return the number of rows of the instance image (size along the Y-axis, i.e image height).
int depth () const
Return the number of slices of the instance image (size along the Z-axis).
int spectrum () const
Return the number of vector channels of the instance image (size along the C-axis).
unsigned int size () const
Return the number of image buffer elements.
T * data ()
Return a pointer to the pixel buffer.
const T * data () const
T * data (const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0)
Return a pointer to the pixel value located at (x
,y
,z
,v
).
const T * data (const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) const
int offset (const int x, const int y=0, const int z=0, const int c=0) const
Return the offset of the pixel coordinates (x
,y
,z
,v
) with respect to the data pointer data
.
iterator begin ()
Return an iterator to the first image pixel.
const_iterator begin () const
iterator end ()
Return an iterator pointing after the last image pixel (STL-compliant name).
const_iterator end () const
const T & front () const
Return reference to the first image pixel (STL-compliant name).
T & front ()
const T & back () const
Return a reference to the last image pixel (STL-compliant name).
T & back ()
T & at (const int off, const T out_val)
Read a pixel value with Dirichlet boundary conditions.
T at (const int off, const T out_val) const
T & at (const int off)
Read a pixel value with Neumann boundary conditions.
T at (const int off) const
T & atX (const int x, const int y, const int z, const int c, const T out_val)
Read a pixel value with Dirichlet boundary conditions for the first coordinates (x
).
T atX (const int x, const int y, const int z, const int c, const T out_val) const
T & atX (const int x, const int y=0, const int z=0, const int c=0)
Read a pixel value with Neumann boundary conditions for the first coordinates (x
).
T atX (const int x, const int y=0, const int z=0, const int c=0) const
T & atXY (const int x, const int y, const int z, const int c, const T out_val)
Read a pixel value with Dirichlet boundary conditions for the two first coordinates (x
,y
).
T atXY (const int x, const int y, const int z, const int c, const T out_val) const
T & atXY (const int x, const int y, const int z=0, const int c=0)
Read a pixel value with Neumann boundary conditions for the two first coordinates (x
,y
).
T atXY (const int x, const int y, const int z=0, const int c=0) const
T & atXYZ (const int x, const int y, const int z, const int c, const T out_val)
Read a pixel value with Dirichlet boundary conditions for the three first coordinates (x
,y
,z
).
T atXYZ (const int x, const int y, const int z, const int c, const T out_val) const
T & atXYZ (const int x, const int y, const int z, const int c=0)
Read a pixel value with Neumann boundary conditions for the three first coordinates (x
,y
,z
).
T atXYZ (const int x, const int y, const int z, const int c=0) const
T & atXYZC (const int x, const int y, const int z, const int c, const T out_val)
Read a pixel value with Dirichlet boundary conditions.
T atXYZC (const int x, const int y, const int z, const int c, const T out_val) const
T & atXYZC (const int x, const int y, const int z, const int c)
Read a pixel value with Neumann boundary conditions.
T atXYZC (const int x, const int y, const int z, const int c) const
Tfloat linear_atX (const float fx, const int y, const int z, const int c, const T out_val) const
Read a pixel value using linear interpolation and Dirichlet boundary conditions (first coordinate).
Tfloat linear_atX (const float fx, const int y=0, const int z=0, const int c=0) const
Read a pixel value using linear interpolation and Neumann boundary conditions (first coordinate).
Tfloat linear_atXY (const float fx, const float fy, const int z, const int c, const T out_val) const
Read a pixel value using linear interpolation and Dirichlet boundary conditions (first two coordinates).
Tfloat linear_atXY (const float fx, const float fy, const int z=0, const int c=0) const
Read a pixel value using linear interpolation and Neumann boundary conditions (first two coordinates).
Tfloat linear_atXYZ (const float fx, const float fy, const float fz, const int c, const T out_val) const
Read a pixel value using linear interpolation and Dirichlet boundary conditions (first three coordinates).
Tfloat linear_atXYZ (const float fx, const float fy=0, const float fz=0, const int c=0) const
Read a pixel value using linear interpolation and Neumann boundary conditions (first three coordinates).
Tfloat linear_atXYZC (const float fx, const float fy, const float fz, const float fc, const T out_val) const
Read a pixel value using linear interpolation and Dirichlet boundary conditions.
Tfloat linear_atXYZC (const float fx, const float fy=0, const float fz=0, const float fc=0) const
Read a pixel value using linear interpolation and Neumann boundary conditions.
Tfloat cubic_atX (const float fx, const int y, const int z, const int c, const T out_val) const
Read a pixel value using cubic interpolation and Dirichlet boundary conditions (first coordinates).
Tfloat cubic_atX (const float fx, const int y, const int z, const int c, const T out_val, const Tfloat min_val, const Tfloat max_val) const
Read a pixel value using cubic interpolation and Dirichlet boundary conditions (first coordinates).
Tfloat cubic_atX (const float fx, const int y=0, const int z=0, const int c=0) const
Read a pixel value using cubic interpolation and Neumann boundary conditions (first coordinates).
Tfloat cubic_atX (const float fx, const int y, const int z, const int c, const Tfloat min_val, const Tfloat max_val) const
Read a pixel value using cubic interpolation and Neumann boundary conditions (first coordinates).
Tfloat cubic_atXY (const float fx, const float fy, const int z, const int c, const T out_val) const
Read a pixel value using cubic interpolation and Dirichlet boundary conditions.
Tfloat cubic_atXY (const float fx, const float fy, const int z, const int c, const T out_val, const Tfloat min_val, const Tfloat max_val) const
Read a pixel value using cubic interpolation and Dirichlet boundary conditions.
Tfloat cubic_atXY (const float fx, const float fy, const int z=0, const int c=0) const
Read a pixel value using cubic interpolation and Neumann boundary conditions.
Tfloat cubic_atXY (const float fx, const float fy, const int z, const int c, const Tfloat min_val, const Tfloat max_val) const
Read a pixel value using cubic interpolation and Neumann boundary conditions.
Tfloat cubic_atXYZ (const float fx, const float fy, const float fz, const int c, const T out_val) const
Read a pixel value using cubic interpolation and Dirichlet boundary conditions.
Tfloat cubic_atXYZ (const float fx, const float fy, const float fz, const int c, const T out_val, const Tfloat min_val, const Tfloat max_val) const
Read a pixel value using cubic interpolation and Dirichlet boundary conditions.
Tfloat cubic_atXYZ (const float fx, const float fy, const float fz, const int c=0) const
Read a pixel value using cubic interpolation and Neumann boundary conditions.
Tfloat cubic_atXYZ (const float fx, const float fy, const float fz, const int c, const Tfloat min_val, const Tfloat max_val) const
Read a pixel value using cubic interpolation and Neumann boundary conditions.
CImg < T > & set_linear_atXYZ (const T &val, const float fx, const float fy=0, const float fz=0, const int c=0, const bool add=false)
Set a pixel value, with 3d float coordinates, using linear interpolation.
CImg < T > & set_linear_atXY (const T &val, const float fx, const float fy=0, const int z=0, const int c=0, const bool add=false)
Set a pixel value, with 2d float coordinates, using linear interpolation.
CImg < charT > value_string (const char separator=',', const unsigned int max_size=0) const
Return a C-string containing the values of the instance image.
static const char * pixel_type ()
Return the type of the pixel values.
Instance Checking
bool is_shared () const
Return true
if current image has shared memory.
bool is_empty () const
Return true
if current image is empty.
bool is_sameX (const unsigned int dx) const
Return true
if image (*this) has the specified width.
template<typename t >
bool is_sameX (const CImg < t > &img) const
Return true
if images
(*this) and img
have same width.
bool is_sameX (const CImgDisplay &disp) const
Return true
if images
(*this) and the display disp
have same width.
bool is_sameY (const unsigned int dy) const
Return true
if image (*this) has the specified height.
template<typename t >
bool is_sameY (const CImg < t > &img) const
Return true
if images
(*this) and img
have same height.
bool is_sameY (const CImgDisplay &disp) const
Return true
if images
(*this) and the display disp
have same height.
bool is_sameZ (const unsigned int dz) const
Return true
if image (*this) has the specified depth.
template<typename t >
bool is_sameZ (const CImg < t > &img) const
Return true
if images
(*this) and img
have same depth.
bool is_sameC (const unsigned int dc) const
Return true
if image (*this) has the specified number of channels.
template<typename t >
bool is_sameC (const CImg < t > &img) const
Return true
if images
(*this) and img
have same _spectrum.
bool is_sameXY (const unsigned int dx, const unsigned int dy) const
Return true
if image (*this) has the specified width and height.
template<typename t >
bool is_sameXY (const CImg < t > &img) const
Return true
if images have same width and same height.
bool is_sameXY (const CImgDisplay &disp) const
Return true
if image
(*this) and the display disp
have same width and same height.
bool is_sameXZ (const unsigned int dx, const unsigned int dz) const
Return true
if image (*this) has the specified width and depth.
template<typename t >
bool is_sameXZ (const CImg < t > &img) const
Return true
if images have same width and same depth.
bool is_sameXC (const unsigned int dx, const unsigned int dc) const
Return true
if image (*this) has the specified width and number of channels.
template<typename t >
bool is_sameXC (const CImg < t > &img) const
Return true
if images have same width and same number of channels.
bool is_sameYZ (const unsigned int dy, const unsigned int dz) const
Return true
if image (*this) has the specified height and depth.
template<typename t >
bool is_sameYZ (const CImg < t > &img) const
Return true
if images have same height and same depth.
bool is_sameYC (const unsigned int dy, const unsigned int dc) const
Return true
if image (*this) has the specified height and number of channels.
template<typename t >
bool is_sameYC (const CImg < t > &img) const
Return true
if images have same height and same number of channels.
bool is_sameZC (const unsigned int dz, const unsigned int dc) const
Return true
if image (*this) has the specified depth and number of channels.
template<typename t >
bool is_sameZC (const CImg < t > &img) const
Return true
if images have same depth and same number of channels.
bool is_sameXYZ (const unsigned int dx, const unsigned int dy, const unsigned int dz) const
Return true
if image (*this) has the specified width, height and depth.
template<typename t >
bool is_sameXYZ (const CImg < t > &img) const
Return true
if images have same width, same height and same depth.
bool is_sameXYC (const unsigned int dx, const unsigned int dy, const unsigned int dc) const
Return true
if image (*this) has the specified width, height and depth.
template<typename t >
bool is_sameXYC (const CImg < t > &img) const
Return true
if images have same width, same height and same number of channels.
bool is_sameXZC (const unsigned int dx, const unsigned int dz, const unsigned int dc) const
Return true
if image (*this) has the specified width, height and number of channels.
template<typename t >
bool is_sameXZC (const CImg < t > &img) const
Return true
if images have same width, same depth and same number of channels.
bool is_sameYZC (const unsigned int dy, const unsigned int dz, const unsigned int dc) const
Return true
if image (*this) has the specified height, depth and number of channels.
template<typename t >
bool is_sameYZC (const CImg < t > &img) const
Return true
if images have same heigth, same depth and same number of channels.
bool is_sameXYZC (const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc) const
Return true
if image (*this) has the specified width, height, depth and number of channels.
template<typename t >
bool is_sameXYZC (const CImg < t > &img) const
Return true
if images
(*this) and img
have same width, same height, same depth and same number of channels.
bool containsXYZC (const int x, const int y=0, const int z=0, const int c=0) const
Return true
if pixel (x,y,z,c) is inside image boundaries.
template<typename t >
bool contains (const T &pixel, t &x, t &y, t &z, t &c) const
Return true
if specified referenced value is inside image boundaries. If true, returns pixel coordinates in (x,y,z,c).
template<typename t >
bool contains (const T &pixel, t &x, t &y, t &z) const
Return true
if specified referenced value is inside image boundaries. If true, returns pixel coordinates in (x,y,z).
template<typename t >
bool contains (const T &pixel, t &x, t &y) const
Return true
if specified referenced value is inside image boundaries. If true, returns pixel coordinates in (x,y).
template<typename t >
bool contains (const T &pixel, t &x) const
Return true
if specified referenced value is inside image boundaries. If true, returns pixel coordinates in (x).
bool contains (const T &pixel) const
Return true
if specified referenced value is inside the image boundaries.
template<typename t >
bool is_overlapped (const CImg < t > &img) const
Return true
if the memory buffers of the two images overlaps.
template<typename tp , typename tc , typename to >
bool is_object3d (const CImgList < tp > &primitives, const CImgList < tc > &colors, const to &opacities, const bool full_check=true, char *const error_message=0) const
Return true if the set (instance,primitives,colors,opacities) stands for a valid 3d object.
bool is_CImg3d (const bool full_check=true, char *const error_message=0) const
Test if an image is a valid CImg3d object.
Mathematical Functions
CImg < T > & sqr ()
Compute the square value of each pixel.
CImg < Tfloat > get_sqr () const
CImg < T > & sqrt ()
Compute the square root of each pixel value.
CImg < Tfloat > get_sqrt () const
CImg < T > & exp ()
Compute the exponential of each pixel value.
CImg < Tfloat > get_exp () const
CImg < T > & log ()
Compute the log of each each pixel value.
CImg < Tfloat > get_log () const
CImg < T > & log10 ()
Compute the log10 of each each pixel value.
CImg < Tfloat > get_log10 () const
CImg < T > & abs ()
Compute the absolute value of each pixel value.
CImg < Tfloat > get_abs () const
CImg < T > & sign ()
Compute the sign of each pixel value.
CImg < Tfloat > get_sign () const
CImg < T > & cos ()
Compute the cosinus of each pixel value.
CImg < Tfloat > get_cos () const
CImg < T > & sin ()
Compute the sinus of each pixel value.
CImg < Tfloat > get_sin () const
CImg < T > & sinc ()
Compute the sinus cardinal of each pixel value.
CImg < Tfloat > get_sinc () const
CImg < T > & tan ()
Compute the tangent of each pixel.
CImg < Tfloat > get_tan () const
CImg < T > & cosh ()
Compute the hyperbolic cosine of each pixel value.
CImg < Tfloat > get_cosh () const
CImg < T > & sinh ()
Compute the hyperbolic sine of each pixel value.
CImg < Tfloat > get_sinh () const
CImg < T > & tanh ()
Compute the hyperbolic tangent of each pixel value.
CImg < Tfloat > get_tanh () const
CImg < T > & acos ()
Compute the arc-cosine of each pixel value.
CImg < Tfloat > get_acos () const
CImg < T > & asin ()
Compute the arc-sinus of each pixel value.
CImg < Tfloat > get_asin () const
CImg < T > & atan ()
Compute the arc-tangent of each pixel.
CImg < Tfloat > get_atan () const
template<typename t >
CImg < T > & atan2 (const CImg < t > &img)
Compute the arc-tangent of each pixel.
template<typename t >
CImg < Tfloat > get_atan2 (const CImg < t > &img) const
CImg < T > & mul (const char *const expression)
Pointwise multiplication between an image and an expression.
template<typename t >
CImg < T > & mul (const CImg < t > &img)
Pointwise multiplication between two images.
template<typename t >
CImg < typename cimg::superset
< T, t >::type > get_mul (const CImg < t > &img) const
CImg < T > & div (const char *const expression)
Pointwise division between an image and an expression.
template<typename t >
CImg < T > & div (const CImg < t > &img)
Pointwise division between two images.
template<typename t >
CImg < typename cimg::superset
< T, t >::type > get_div (const CImg < t > &img) const
CImg < T > & pow (const double p)
Compute the power by p of each pixel value.
CImg < Tfloat > get_pow (const double p) const
template<typename t >
CImg < T > & pow (const CImg < t > &img)
Compute the power of each pixel value.
template<typename t >
CImg < Tfloat > get_pow (const CImg < t > &img) const
CImg < T > & pow (const char *const expression)
Compute the power of each pixel value.
CImg < Tfloat > get_pow (const char *const expression) const
CImg < T > & rol (const unsigned int n=1)
Compute the bitwise left rotation of each pixel value.
CImg < T > get_rol (const unsigned int n=1) const
template<typename t >
CImg < T > & rol (const CImg < t > &img)
template<typename t >
CImg < T > get_rol (const CImg < t > &img) const
CImg < T > & rol (const char *const expression)
CImg < T > get_rol (const char *const expression) const
CImg < T > & ror (const unsigned int n=1)
Compute the bitwise right rotation of each pixel value.
CImg < T > get_ror (const unsigned int n=1) const
template<typename t >
CImg < T > & ror (const CImg < t > &img)
template<typename t >
CImg < T > get_ror (const CImg < t > &img) const
CImg < T > & ror (const char *const expression)
CImg < T > get_ror (const char *const expression) const
CImg < T > & min (const T val)
Pointwise min operator between an image and a value.
CImg < T > get_min (const T val) const
template<typename t >
CImg < T > & min (const CImg < t > &img)
Pointwise min operator between two images.
template<typename t >
CImg < typename cimg::superset
< T, t >::type > get_min (const CImg < t > &img) const
CImg < T > & min (const char *const expression)
Pointwise min operator between an image and a string.
CImg < Tfloat > get_min (const char *const expression) const
CImg < T > & max (const T val)
Pointwise max operator between an image and a value.
CImg < T > get_max (const T val) const
template<typename t >
CImg < T > & max (const CImg < t > &img)
Pointwise max operator between two images.
template<typename t >
CImg < typename cimg::superset
< T, t >::type > get_max (const CImg < t > &img) const
CImg < T > & max (const char *const expression)
Pointwise max operator between an image and a string.
CImg < Tfloat > get_max (const char *const expression) const
T & min ()
Return a reference to the minimum pixel value of the instance image.
const T & min () const
T & max ()
Return a reference to the maximum pixel value of the instance image.
const T & max () const
template<typename t >
T & min_max (t &max_val)
Return a reference to the minimum pixel value and return also the maximum pixel value.
template<typename t >
const T & min_max (t &max_val) const
template<typename t >
T & max_min (t &min_val)
Return a reference to the maximum pixel value and return also the minimum pixel value.
template<typename t >
const T & max_min (t &min_val) const
T kth_smallest (const unsigned int k) const
Return the kth smallest element of the image.
T median () const
Return the median value of the image.
Tdouble sum () const
Return the sum of all the pixel values in an image.
Tdouble mean () const
Return the mean pixel value of the instance image.
Tdouble variance (const unsigned int variance_method=1) const
Return the variance of the image.
template<typename t >
Tdouble variance_mean (const unsigned int variance_method, t &mean) const
Return the variance and the mean of the image.
Tdouble variance_noise (const unsigned int variance_method=1) const
Estimate noise variance of the instance image.
template<typename t >
Tdouble MSE (const CImg < t > &img) const
Compute the MSE (Mean-Squared Error) between two images.
template<typename t >
Tdouble PSNR (const CImg < t > &img, const Tdouble valmax=255) const
Compute the PSNR between two images.
double eval (const char *const expression, const double x=0, const double y=0, const double z=0, const double c=0) const
Evaluate math expression.
CImg < T > & stats (const unsigned int variance_method=1)
Compute a statistics vector (min,max,mean,variance,xmin,ymin,zmin,cmin,xmax,ymax,zmax,cmax).
CImg < Tdouble > get_stats (const unsigned int variance_method=1) const
Vector / Matrix Operations
Tdouble magnitude (const int magnitude_type=2) const
Return the norm of the current vector/matrix. ntype
= norm type (0=L2, 1=L1, -1=Linf).
Tdouble trace () const
Return the trace of the image, viewed as a matrix.
Tdouble det () const
Return the determinant of the image, viewed as a matrix.
template<typename t >
Tdouble dot (const CImg < t > &img) const
Return the dot product of the current vector/matrix with the vector/matrix img
.
CImg < T > get_vector_at (const unsigned int x, const unsigned int y=0, const unsigned int z=0) const
Return a new image corresponding to the vector located at (x
,y
,z
) of the current vector-valued image.
CImg < T > get_matrix_at (const unsigned int x=0, const unsigned int y=0, const unsigned int z=0) const
Return a new image corresponding to the square matrix located at (x
,y
,z
) of the current vector-valued image.
CImg < T > get_tensor_at (const unsigned int x, const unsigned int y=0, const unsigned int z=0) const
Return a new image corresponding to the diffusion tensor located at (x
,y
,z
) of the current vector-valued image.
template<typename t >
CImg < T > & set_vector_at (const CImg < t > &vec, const unsigned int x, const unsigned int y=0, const unsigned int z=0)
Set the image vec
as the vector valued pixel located at (x
,y
,z
) of the current vector-valued image.
template<typename t >
CImg < T > & set_matrix_at (const CImg < t > &mat, const unsigned int x=0, const unsigned int y=0, const unsigned int z=0)
Set the image vec
as the square matrix-valued pixel located at (x
,y
,z
) of the current vector-valued image.
template<typename t >
CImg < T > & set_tensor_at (const CImg < t > &ten, const unsigned int x=0, const unsigned int y=0, const unsigned int z=0)
Set the image vec
as the tensor valued pixel located at (x
,y
,z
) of the current vector-valued image.
CImg < T > & vector ()
Unroll all images values into a one-column vector.
CImg < T > get_vector () const
CImg < T > & matrix ()
Realign pixel values of the instance image as a square matrix.
CImg < T > get_matrix () const
CImg < T > & tensor ()
Realign pixel values of the instance image as a symmetric tensor.
CImg < T > get_tensor () const
CImg < T > & diagonal ()
Get a diagonal matrix, whose diagonal coefficients are the coefficients of the input image.
CImg < T > get_diagonal () const
CImg < T > & identity_matrix ()
Get an identity matrix having same dimension than instance image.
CImg < T > get_identity_matrix () const
CImg < T > & sequence (const T a0, const T a1)
Return a N-numbered sequence vector from a0
to a1
.
CImg < T > get_sequence (const T a0, const T a1) const
CImg < T > & transpose ()
Transpose the current matrix.
CImg < T > get_transpose () const
template<typename t >
CImg < T > & cross (const CImg < t > &img)
Compute the cross product between two 3d vectors.
template<typename t >
CImg < typename cimg::superset
< T, t >::type > get_cross (const CImg < t > &img) const
CImg < T > & invert (const bool use_LU=true)
Invert the current matrix.
CImg < Tfloat > get_invert (const bool use_LU=true) const
CImg < T > & pseudoinvert ()
Compute the pseudo-inverse (Moore-Penrose) of the matrix.
CImg < Tfloat > get_pseudoinvert () const
template<typename t >
CImg < T > & solve (const CImg < t > &A)
Solve a linear system AX=B where B=*this.
template<typename t >
CImg < typename cimg::superset2
< T, t, float >::type > get_solve (const CImg < t > &A) const
template<typename t >
CImg < T > & solve_tridiagonal (const CImg < t > &A)
Solve a linear system AX=B where B=*this and A is a tridiagonal matrix A = [ b0,c0,0,...; a1,b1,c1,0,... ; ... ; ...,0,aN,bN ],.
template<typename t >
CImg < typename cimg::superset2
< T, t, float >::type > get_solve_tridiagonal (const CImg < t > &A) const
template<typename t >
const CImg < T > & eigen (CImg < t > &val, CImg < t > &vec) const
Compute the eigenvalues and eigenvectors of a matrix.
CImgList < Tfloat > get_eigen () const
template<typename t >
const CImg < T > & symmetric_eigen (CImg < t > &val, CImg < t > &vec) const
Compute the eigenvalues and eigenvectors of a symmetric matrix.
CImgList < Tfloat > get_symmetric_eigen () const
template<typename t >
CImg < T > & sort (CImg < t > &permutations, const bool increasing=true)
Sort values of a vector and get corresponding permutations.
template<typename t >
CImg < T > get_sort (CImg < t > &permutations, const bool increasing=true) const
CImg < T > & sort (const bool increasing=true, const char axis=0)
Sort image values.
CImg < T > get_sort (const bool increasing=true, const char axis=0) const
template<typename t >
const CImg < T > & SVD (CImg < t > &U, CImg < t > &S, CImg < t > &V, const bool sorting=true, const unsigned int max_iteration=40, const float lambda=0) const
Compute the SVD of a general matrix.
CImgList < Tfloat > get_SVD (const bool sorting=true, const unsigned int max_iteration=40, const float lambda=0) const
template<typename t >
CImg < T > & dijkstra (const unsigned int starting_node, const unsigned int ending_node, CImg < t > &previous)
Return minimal path in a graph, using the Dijkstra algorithm.
template<typename t >
CImg < T > get_dijkstra (const unsigned int starting_node, const unsigned int ending_node, CImg < t > &previous) const
CImg < T > & dijkstra (const unsigned int starting_node, const unsigned int ending_node=~0U)
Return minimal path in a graph, using the Dijkstra algorithm.
CImg < Tfloat > get_dijkstra (const unsigned int starting_node, const unsigned int ending_node=~0U) const
CImg < floatT > get_streamline (const float x, const float y, const float z, const float L=256, const float dl=0.1f, const unsigned int interpolation_type=2, const bool is_backward_tracking=false, const bool is_oriented_only=false) const
Return stream line of a 2d or 3d vector field.
template<typename tf , typename t >
static CImg < T > dijkstra (const tf &distance, const unsigned int nb_nodes, const unsigned int starting_node, const unsigned int ending_node, CImg < t > &previous)
Compute minimal path in a graph, using the Dijkstra algorithm.
template<typename tf , typename t >
static CImg < T > dijkstra (const tf &distance, const unsigned int nb_nodes, const unsigned int starting_node, const unsigned int ending_node=~0U)
Return minimal path in a graph, using the Dijkstra algorithm.
template<typename tfunc >
static CImg < floatT > streamline (const tfunc &func, const float x, const float y, const float z, const float L=256, const float dl=0.1f, const unsigned int interpolation_type=2, const bool is_backward_tracking=false, const bool is_oriented_only=false, const float x0=0, const float y0=0, const float z0=0, const float x1=0, const float y1=0, const float z1=0)
Return stream line of a 3d vector field.
static CImg < floatT > streamline (const char *const expression, const float x, const float y, const float z, const float L=256, const float dl=0.1f, const unsigned int interpolation_type=2, const bool is_backward_tracking=true, const bool is_oriented_only=false, const float x0=0, const float y0=0, const float z0=0, const float x1=0, const float y1=0, const float z1=0)
Return stream line of a vector field.
static CImg < T > string (const char *const str)
Return an image containing the specified string.
static CImg < T > vector (const T &a0)
Return a vector with specified coefficients.
static CImg < T > vector (const T &a0, const T &a1)
Return a vector with specified coefficients.
static CImg < T > vector (const T &a0, const T &a1, const T &a2)
Return a vector with specified coefficients.
static CImg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3)
Return a vector with specified coefficients.
static CImg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4)
Return a vector with specified coefficients.
static CImg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5)
Return a vector with specified coefficients.
static CImg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6)
Return a vector with specified coefficients.
static CImg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7)
Return a vector with specified coefficients.
static CImg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8)
Return a vector with specified coefficients.
static CImg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9)
Return a vector with specified coefficients.
static CImg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10)
Return a vector with specified coefficients.
static CImg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11)
Return a vector with specified coefficients.
static CImg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12)
Return a vector with specified coefficients.
static CImg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13)
Return a vector with specified coefficients.
static CImg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13, const T &a14)
Return a vector with specified coefficients.
static CImg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13, const T &a14, const T &a15)
Return a vector with specified coefficients.
static CImg < T > matrix (const T &a0)
Return a 1x1 square matrix with specified coefficients.
static CImg < T > matrix (const T &a0, const T &a1, const T &a2, const T &a3)
Return a 2x2 square matrix with specified coefficients.
static CImg < T > matrix (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8)
Return a 3x3 square matrix with specified coefficients.
static CImg < T > matrix (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13, const T &a14, const T &a15)
Return a 4x4 square matrix with specified coefficients.
static CImg < T > matrix (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13, const T &a14, const T &a15, const T &a16, const T &a17, const T &a18, const T &a19, const T &a20, const T &a21, const T &a22, const T &a23, const T &a24)
Return a 5x5 square matrix with specified coefficients.
static CImg < T > tensor (const T &a1)
Return a 1x1 symmetric matrix with specified coefficients.
static CImg < T > tensor (const T &a1, const T &a2, const T &a3)
Return a 2x2 symmetric matrix tensor with specified coefficients.
static CImg < T > tensor (const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6)
Return a 3x3 symmetric matrix with specified coefficients.
static CImg < T > diagonal (const T &a0)
Return a 1x1 diagonal matrix with specified coefficients.
static CImg < T > diagonal (const T &a0, const T &a1)
Return a 2x2 diagonal matrix with specified coefficients.
static CImg < T > diagonal (const T &a0, const T &a1, const T &a2)
Return a 3x3 diagonal matrix with specified coefficients.
static CImg < T > diagonal (const T &a0, const T &a1, const T &a2, const T &a3)
Return a 4x4 diagonal matrix with specified coefficients.
static CImg < T > diagonal (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4)
Return a 5x5 diagonal matrix with specified coefficients.
static CImg < T > identity_matrix (const unsigned int N)
Return a NxN identity matrix.
static CImg < T > sequence (const unsigned int N, const T a0, const T a1)
Return a N-numbered sequence vector from a0
to a1
.
static CImg < T > rotation_matrix (const float x, const float y, const float z, const float w, const bool quaternion_data=false)
Return a 3x3 rotation matrix along the (x,y,z)-axis with an angle w.
Value Manipulation
CImg < T > & fill (const T val)
Fill an image by a value val
.
CImg < T > get_fill (const T val) const
CImg < T > & fill (const T val0, const T val1)
Fill sequentially all pixel values with values val0 and val1 respectively.
CImg < T > get_fill (const T val0, const T val1) const
CImg < T > & fill (const T val0, const T val1, const T val2)
Fill sequentially all pixel values with values val0 and val1 and val2 .
CImg < T > get_fill (const T val0, const T val1, const T val2) const
CImg < T > & fill (const T val0, const T val1, const T val2, const T val3)
Fill sequentially all pixel values with values val0 and val1 and val2 and val3 .
CImg < T > get_fill (const T val0, const T val1, const T val2, const T val3) const
CImg < T > & fill (const T val0, const T val1, const T val2, const T val3, const T val4)
Fill sequentially all pixel values with values val0 and val1 and val2 and val3 and val4 .
CImg < T > get_fill (const T val0, const T val1, const T val2, const T val3, const T val4) const
CImg < T > & fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5)
Fill sequentially all pixel values with values val0 and val1 and val2 and val3 and val4 and val5 .
CImg < T > get_fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5) const
CImg < T > & fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6)
Fill sequentially pixel values.
CImg < T > get_fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6) const
CImg < T > & fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7)
Fill sequentially pixel values.
CImg < T > get_fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7) const
CImg < T > & fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8)
Fill sequentially pixel values.
CImg < T > get_fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8) const
CImg < T > & fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8, const T val9)
Fill sequentially pixel values.
CImg < T > get_fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8, const T val9) const
CImg < T > & fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8, const T val9, const T val10)
Fill sequentially pixel values.
CImg < T > get_fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8, const T val9, const T val10) const
CImg < T > & fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8, const T val9, const T val10, const T val11)
Fill sequentially pixel values.
CImg < T > get_fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8, const T val9, const T val10, const T val11) const
CImg < T > & fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8, const T val9, const T val10, const T val11, const T val12)
Fill sequentially pixel values.
CImg < T > get_fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8, const T val9, const T val10, const T val11, const T val12) const
CImg < T > & fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8, const T val9, const T val10, const T val11, const T val12, const T val13)
Fill sequentially pixel values.
CImg < T > get_fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8, const T val9, const T val10, const T val11, const T val12, const T val13) const
CImg < T > & fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8, const T val9, const T val10, const T val11, const T val12, const T val13, const T val14)
Fill sequentially pixel values.
CImg < T > get_fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8, const T val9, const T val10, const T val11, const T val12, const T val13, const T val14) const
CImg < T > & fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8, const T val9, const T val10, const T val11, const T val12, const T val13, const T val14, const T val15)
Fill sequentially pixel values.
CImg < T > get_fill (const T val0, const T val1, const T val2, const T val3, const T val4, const T val5, const T val6, const T val7, const T val8, const T val9, const T val10, const T val11, const T val12, const T val13, const T val14, const T val15) const
CImg < T > & fill (const char *const expression, const bool repeat_flag)
Fill image values according to the given expression, which can be a formula or a list of values.
CImg < T > get_fill (const char *const values, const bool repeat_values) const
template<typename t >
CImg < T > & fill (const CImg < t > &values, const bool repeat_values=true)
Fill image values according to the values found in the specified image.
template<typename t >
CImg < T > get_fill (const CImg < t > &values, const bool repeat_values=true) const
CImg < T > & fillX (const unsigned int y, const unsigned int z, const unsigned int c, const int a0,...)
Fill image values along the X-axis at the specified pixel position (y,z,c).
CImg < T > & fillX (const unsigned int y, const unsigned int z, const unsigned int c, const double a0,...)
CImg < T > & fillY (const unsigned int x, const unsigned int z, const unsigned int c, const int a0,...)
Fill image values along the Y-axis at the specified pixel position (x,z,c).
CImg < T > & fillY (const unsigned int x, const unsigned int z, const unsigned int c, const double a0,...)
CImg < T > & fillZ (const unsigned int x, const unsigned int y, const unsigned int c, const int a0,...)
Fill image values along the Z-axis at the specified pixel position (x,y,c).
CImg < T > & fillZ (const unsigned int x, const unsigned int y, const unsigned int c, const double a0,...)
CImg < T > & fillC (const unsigned int x, const unsigned int y, const unsigned int z, const int a0,...)
Fill image values along the C-axis at the specified pixel position (x,y,z).
CImg < T > & fillC (const unsigned int x, const unsigned int y, const unsigned int z, const double a0,...)
CImg < T > & discard (const T value)
Remove specified value from the image buffer, and return resulting buffer as a one-column vector.
CImg < T > get_discard (const T value) const
template<typename t >
CImg < T > & discard (const CImg < t > &values)
Remove specified values sequence from the image buffer, and return resulting buffer as a one-column vector.
template<typename t >
CImg < T > get_discard (const CImg < t > &values) const
CImg < T > & invert_endianness ()
Invert endianness of the image buffer.
CImg < T > get_invert_endianness () const
CImg < T > & rand (const T val_min, const T val_max)
Fill the instance image with random values between specified range.
CImg < T > get_rand (const T val_min, const T val_max) const
CImg < T > & round (const double y=1, const int rounding_type=0)
Compute image with rounded pixel values.
CImg < T > get_round (const double y=1, const unsigned int rounding_type=0) const
CImg < T > & noise (const double sigma, const unsigned int noise_type=0)
Add random noise to the values of the instance image.
CImg < T > get_noise (const double sigma, const unsigned int noise_type=0) const
CImg < T > & normalize (const T value_min, const T value_max)
Linearly normalize values of the instance image between value_min
and value_max
.
CImg < Tfloat > get_normalize (const T value_min, const T value_max) const
CImg < T > & normalize ()
Normalize multi-valued pixels of the instance image, with respect to their L2-norm.
CImg < Tfloat > get_normalize () const
CImg < T > & norm (const int norm_type=2)
Compute L2-norm of each multi-valued pixel of the instance image.
CImg < Tfloat > get_norm (const int norm_type=2) const
CImg < T > & cut (const T value_min, const T value_max)
Cut values of the instance image between value_min
and value_max
.
CImg < T > get_cut (const T value_min, const T value_max) const
CImg < T > & quantize (const unsigned int nb_levels, const bool keep_range=true)
Uniformly quantize values of the instance image into nb_levels
levels.
CImg < T > get_quantize (const unsigned int n, const bool keep_range=true) const
CImg < T > & threshold (const T value, const bool soft_threshold=false, const bool strict_threshold=false)
Threshold values of the instance image.
CImg < T > get_threshold (const T value, const bool soft_threshold=false, const bool strict_threshold=false) const
CImg < T > & histogram (const unsigned int nb_levels, const T value_min=(T) 0, const T value_max=(T) 0)
Compute the histogram of the instance image.
CImg < floatT > get_histogram (const unsigned int nb_levels, const T value_min=(T) 0, const T value_max=(T) 0) const
CImg < T > & equalize (const unsigned int nb_levels, const T value_min=(T) 0, const T value_max=(T) 0)
Compute the histogram-equalized version of the instance image.
CImg < T > get_equalize (const unsigned int nblevels, const T val_min=(T) 0, const T val_max=(T) 0) const
template<typename t >
CImg < T > & index (const CImg < t > &palette, const bool dithering=false, const bool map_indexes=false)
Index multi-valued pixels of the instance image, regarding to a predefined palette.
template<typename t >
CImg < typename CImg < t >::Tuint > get_index (const CImg < t > &palette, const bool dithering=false, const bool map_indexes=true) const
template<typename t >
CImg < T > & map (const CImg < t > &palette)
Map predefined palette on the scalar (indexed) instance image.
template<typename t >
CImg < t > get_map (const CImg < t > &palette) const
CImg < T > & label (const bool is_high_connectivity=false, const Tfloat tolerance=0)
Label connected components.
CImg < unsigned long > get_label (const bool is_high_connectivity=false, const Tfloat tolerance=0) const
template<typename t >
CImg < T > & label (const CImg < t > &connectivity_mask, const Tfloat tolerance=0)
template<typename t >
CImg < unsigned long > get_label (const CImg < t > &connectivity_mask, const Tfloat tolerance=0) const
Color Base Management
CImg < T > & RGBtoHSV ()
Convert color pixels from (R,G,B) to (H,S,V).
CImg < Tfloat > get_RGBtoHSV () const
CImg < T > & HSVtoRGB ()
Convert color pixels from (H,S,V) to (R,G,B).
CImg < Tuchar > get_HSVtoRGB () const
CImg < T > & RGBtoHSL ()
Convert color pixels from (R,G,B) to (H,S,L).
CImg < Tfloat > get_RGBtoHSL () const
CImg < T > & HSLtoRGB ()
Convert color pixels from (H,S,L) to (R,G,B).
CImg < Tuchar > get_HSLtoRGB () const
CImg < T > & RGBtoHSI ()
CImg < Tfloat > get_RGBtoHSI () const
CImg < T > & HSItoRGB ()
Convert color pixels from (H,S,I) to (R,G,B).
CImg < Tfloat > get_HSItoRGB () const
CImg < T > & RGBtoYCbCr ()
Convert color pixels from (R,G,B) to (Y,Cb,Cr).
CImg < Tuchar > get_RGBtoYCbCr () const
CImg < T > & YCbCrtoRGB ()
Convert color pixels from (R,G,B) to (Y,Cb,Cr).
CImg < Tuchar > get_YCbCrtoRGB () const
CImg < T > & RGBtoYUV ()
Convert color pixels from (R,G,B) to (Y,U,V).
CImg < Tfloat > get_RGBtoYUV () const
CImg < T > & YUVtoRGB ()
Convert color pixels from (Y,U,V) to (R,G,B).
CImg < Tuchar > get_YUVtoRGB () const
CImg < T > & RGBtoCMY ()
Convert color pixels from (R,G,B) to (C,M,Y).
CImg < Tuchar > get_RGBtoCMY () const
CImg < T > & CMYtoRGB ()
Convert (C,M,Y) pixels of a color image into the (R,G,B) color space.
CImg < Tuchar > get_CMYtoRGB () const
CImg < T > & CMYtoCMYK ()
Convert color pixels from (C,M,Y) to (C,M,Y,K).
CImg < Tuchar > get_CMYtoCMYK () const
CImg < T > & CMYKtoCMY ()
Convert (C,M,Y,K) pixels of a color image into the (C,M,Y) color space.
CImg < Tfloat > get_CMYKtoCMY () const
CImg < T > & RGBtoXYZ ()
Convert color pixels from (R,G,B) to (X,Y,Z)_709.
CImg < Tfloat > get_RGBtoXYZ () const
CImg < T > & XYZtoRGB ()
Convert (X,Y,Z)_709 pixels of a color image into the (R,G,B) color space.
CImg < Tuchar > get_XYZtoRGB () const
CImg < T > & XYZtoLab ()
Convert (X,Y,Z)_709 pixels of a color image into the (L*,a*,b*) color space.
CImg < Tfloat > get_XYZtoLab () const
CImg < T > & LabtoXYZ ()
Convert (L,a,b) pixels of a color image into the (X,Y,Z) color space.
CImg < Tfloat > get_LabtoXYZ () const
CImg < T > & XYZtoxyY ()
Convert (X,Y,Z)_709 pixels of a color image into the (x,y,Y) color space.
CImg < Tfloat > get_XYZtoxyY () const
CImg < T > & xyYtoXYZ ()
Convert (x,y,Y) pixels of a color image into the (X,Y,Z)_709 color space.
CImg < Tfloat > get_xyYtoXYZ () const
CImg < T > & RGBtoLab ()
Convert a (R,G,B) image to a (L,a,b) one.
CImg < Tfloat > get_RGBtoLab () const
CImg < T > & LabtoRGB ()
Convert a (L,a,b) image to a (R,G,B) one.
CImg < Tuchar > get_LabtoRGB () const
CImg < T > & RGBtoxyY ()
Convert a (R,G,B) image to a (x,y,Y) one.
CImg < Tfloat > get_RGBtoxyY () const
CImg < T > & xyYtoRGB ()
Convert a (x,y,Y) image to a (R,G,B) one.
CImg < Tuchar > get_xyYtoRGB () const
CImg < T > & RGBtoCMYK ()
Convert a (R,G,B) image to a (C,M,Y,K) one.
CImg < Tfloat > get_RGBtoCMYK () const
CImg < T > & CMYKtoRGB ()
Convert a (C,M,Y,K) image to a (R,G,B) one.
CImg < Tuchar > get_CMYKtoRGB () const
CImg < T > & RGBtoBayer ()
Convert a (R,G,B) image to a Bayer-coded representation.
CImg < T > get_RGBtoBayer () const
CImg < T > & BayertoRGB (const unsigned int interpolation_type=3)
Convert a Bayer-coded image to a (R,G,B) color image.
CImg < Tuchar > get_BayertoRGB (const unsigned int interpolation_type=3) const
static const CImg < Tuchar > & default_LUT256 ()
Return a palette 'default' with 256 (R,G,B) entries.
static const CImg < Tuchar > & HSV_LUT256 ()
Return palette 'HSV' with 256 (R,G,B) entries.
static const CImg < Tuchar > & lines_LUT256 ()
Return palette 'lines' with 256 (R,G,B) entries.
static const CImg < Tuchar > & hot_LUT256 ()
Return the palette 'hot' with 256 (R,G,B) entries.
static const CImg < Tuchar > & cool_LUT256 ()
Return the palette 'cool' with 256 (R,G,B) entries.
static const CImg < Tuchar > & jet_LUT256 ()
Return palette 'jet' with 256 (R,G,B) entries.
static const CImg < Tuchar > & flag_LUT256 ()
Return palette 'flag' with 256 (R,G,B) entries.
static const CImg < Tuchar > & cube_LUT256 ()
Return palette 'cube' with 256 (R,G,B) entries.
Geometric / Spatial Manipulation
CImg < T > & resize (const int size_x, const int size_y=-100, const int size_z=-100, const int size_c=-100, const int interpolation_type=1, const unsigned int border_conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_c=0)
Resize an image.
CImg < T > get_resize (const int size_x, const int size_y=-100, const int size_z=-100, const int size_c=-100, const int interpolation_type=1, const unsigned int border_conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_c=0) const
template<typename t >
CImg < T > & resize (const CImg < t > &src, const int interpolation_type=1, const unsigned int border_conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_c=0)
Resize an image.
template<typename t >
CImg < T > get_resize (const CImg < t > &src, const int interpolation_type=1, const unsigned int border_conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_c=0) const
CImg < T > & resize (const CImgDisplay &disp, const int interpolation_type=1, const unsigned int border_conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_c=0)
Resize an image.
CImg < T > get_resize (const CImgDisplay &disp, const int interpolation_type=1, const unsigned int border_conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_c=0) const
CImg < T > & resize_halfXY ()
Half-resize an image, using a special optimized filter.
CImg < T > get_resize_halfXY () const
CImg < T > & resize_doubleXY ()
Upscale an image by a factor 2x.
CImg < T > get_resize_doubleXY () const
CImg < T > & resize_tripleXY ()
Upscale an image by a factor 3x.
CImg < T > get_resize_tripleXY () const
CImg < T > & mirror (const char axis)
Mirror an image along the specified axis.
CImg < T > get_mirror (const char axis) const
CImg < T > & shift (const int deltax, const int deltay=0, const int deltaz=0, const int deltac=0, const int border_condition=0)
Shift the image.
CImg < T > get_shift (const int deltax, const int deltay=0, const int deltaz=0, const int deltac=0, const int border_condition=0) const
CImg < T > & permute_axes (const char *const order)
Permute axes order.
CImg < T > get_permute_axes (const char *const order) const
CImg < T > & unroll (const char axis)
Unroll all images values into specified axis.
CImg < T > get_unroll (const char axis) const
CImg < T > & rotate (const float angle, const unsigned int border_conditions=0, const unsigned int interpolation=1)
Rotate an image.
CImg < T > get_rotate (const float angle, const unsigned int border_conditions=0, const unsigned int interpolation=1) const
CImg < T > & rotate (const float angle, const float cx, const float cy, const float zoom, const unsigned int border_conditions=3, const unsigned int interpolation=1)
Rotate an image around a center point (cx
,cy
).
CImg < T > get_rotate (const float angle, const float cx, const float cy, const float zoom, const unsigned int border_conditions=3, const unsigned int interpolation=1) const
template<typename t >
CImg < T > & warp (const CImg < t > &warp, const bool is_relative=false, const bool interpolation=true, const unsigned int border_conditions=0)
Warp an image.
template<typename t >
CImg < T > get_warp (const CImg < t > &warp, const bool is_relative=false, const bool interpolation=true, const unsigned int border_conditions=0) const
CImg < T > & projections2d (const unsigned int x0, const unsigned int y0, const unsigned int z0)
Return a 2d representation of a 3d image, with three slices.
CImg < T > get_projections2d (const unsigned int x0, const unsigned int y0, const unsigned int z0) const
CImg < T > & crop (const int x0, const int y0, const int z0, const int c0, const int x1, const int y1, const int z1, const int c1, const bool border_condition=false)
Get a square region of the image.
CImg < T > get_crop (const int x0, const int y0, const int z0, const int c0, const int x1, const int y1, const int z1, const int c1, const bool border_condition=false) const
CImg < T > & crop (const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const bool border_condition=false)
Get a rectangular part of the instance image.
CImg < T > get_crop (const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const bool border_condition=false) const
CImg < T > & crop (const int x0, const int y0, const int x1, const int y1, const bool border_condition=false)
Get a rectangular part of the instance image.
CImg < T > get_crop (const int x0, const int y0, const int x1, const int y1, const bool border_condition=false) const
CImg < T > & crop (const int x0, const int x1, const bool border_condition=false)
Get a rectangular part of the instance image.
CImg < T > get_crop (const int x0, const int x1, const bool border_condition=false) const
CImg < T > & autocrop (const T value, const char *const axes="czyx")
Autocrop an image, regarding of the specified backround value.
CImg < T > get_autocrop (const T value, const char *const axes="czyx") const
CImg < T > & autocrop (const T *const color, const char *const axes="zyx")
Autocrop an image, regarding of the specified backround color.
CImg < T > get_autocrop (const T *const color, const char *const axes="zyx") const
template<typename t >
CImg < T > & autocrop (const CImg < t > &color, const char *const axes="zyx")
Autocrop an image, regarding of the specified backround color.
template<typename t >
CImg < T > get_autocrop (const CImg < t > &color, const char *const axes="zyx") const
CImg < T > & column (const unsigned int x0)
Get one column.
CImg < T > get_column (const unsigned int x0) const
CImg < T > & columns (const unsigned int x0, const unsigned int x1)
Get a set of columns.
CImg < T > get_columns (const unsigned int x0, const unsigned int x1) const
CImg < T > & line (const unsigned int y0)
Get a line.
CImg < T > get_line (const unsigned int y0) const
CImg < T > & lines (const unsigned int y0, const unsigned int y1)
Get a set of lines.
CImg < T > get_lines (const unsigned int y0, const unsigned int y1) const
CImg < T > & slice (const unsigned int z0)
Get a slice.
CImg < T > get_slice (const unsigned int z0) const
CImg < T > & slices (const unsigned int z0, const unsigned int z1)
Get a set of slices.
CImg < T > get_slices (const unsigned int z0, const unsigned int z1) const
CImg < T > & channel (const unsigned int c0)
Get a channel.
CImg < T > get_channel (const unsigned int c0) const
CImg < T > & channels (const unsigned int c0, const unsigned int c1)
Get a set of channels.
CImg < T > get_channels (const unsigned int c0, const unsigned int c1) const
CImg < T > get_shared_points (const unsigned int x0, const unsigned int x1, const unsigned int y0=0, const unsigned int z0=0, const unsigned int c0=0)
Get a shared-memory image referencing a set of points of the instance image.
const CImg < T > get_shared_points (const unsigned int x0, const unsigned int x1, const unsigned int y0=0, const unsigned int z0=0, const unsigned int c0=0) const
CImg < T > get_shared_lines (const unsigned int y0, const unsigned int y1, const unsigned int z0=0, const unsigned int c0=0)
Return a shared-memory image referencing a set of lines of the instance image.
const CImg < T > get_shared_lines (const unsigned int y0, const unsigned int y1, const unsigned int z0=0, const unsigned int c0=0) const
CImg < T > get_shared_line (const unsigned int y0, const unsigned int z0=0, const unsigned int c0=0)
Return a shared-memory image referencing one particular line (y0,z0,c0) of the instance image.
const CImg < T > get_shared_line (const unsigned int y0, const unsigned int z0=0, const unsigned int c0=0) const
CImg < T > get_shared_planes (const unsigned int z0, const unsigned int z1, const unsigned int c0=0)
Return a shared memory image referencing a set of planes (z0->z1,c0) of the instance image.
const CImg < T > get_shared_planes (const unsigned int z0, const unsigned int z1, const unsigned int c0=0) const
CImg < T > get_shared_plane (const unsigned int z0, const unsigned int c0=0)
Return a shared-memory image referencing one plane (z0,c0) of the instance image.
const CImg < T > get_shared_plane (const unsigned int z0, const unsigned int c0=0) const
CImg < T > get_shared_channels (const unsigned int c0, const unsigned int c1)
Return a shared-memory image referencing a set of channels (c0->c1) of the instance image.
const CImg < T > get_shared_channels (const unsigned int c0, const unsigned int c1) const
CImg < T > get_shared_channel (const unsigned int c0)
Return a shared-memory image referencing one channel c0 of the instance image.
const CImg < T > get_shared_channel (const unsigned int c0) const
CImg < T > get_shared ()
Return a shared version of the instance image.
const CImg < T > get_shared () const
CImgList < T > get_split (const char axis, const int nb=0) const
Split image into a list.
CImgList < T > get_split (const T value, const bool keep_values, const bool is_shared) const
Split image into a list of one-column vectors, according to specified splitting value.
template<typename t >
CImgList < T > get_split (const CImg < t > &values, const bool keep_values, const bool is_shared) const
Split image into a list of one-column vectors, according to specified sequence of splitting values.
template<typename t >
CImg < T > & append (const CImg < t > &img, const char axis='x', const float align=0)
Append an image.
CImg < T > & append (const CImg < T > &img, const char axis='x', const float align=0)
template<typename t >
CImg < typename cimg::superset
< T, t >::type > get_append (const CImg < T > &img, const char axis='x', const float align=0) const
CImg < T > get_append (const CImg < T > &img, const char axis='x', const float align=0) const
Filtering / Transforms
template<typename t >
CImg < T > & correlate (const CImg < t > &mask, const unsigned int border_conditions=1, const bool is_normalized=false)
Compute the correlation of the instance image by a mask.
template<typename t >
CImg < typename cimg::superset2
< T, t, float >::type > get_correlate (const CImg < t > &mask, const unsigned int border_conditions=1, const bool is_normalized=false) const
template<typename t >
CImg < T > & convolve (const CImg < t > &mask, const unsigned int border_conditions=1, const bool is_normalized=false)
Compute the convolution of the image by a mask.
template<typename t >
CImg < typename cimg::superset2
< T, t, float >::type > get_convolve (const CImg < t > &mask, const unsigned int border_conditions=1, const bool is_normalized=false) const
template<typename t >
CImg < T > & erode (const CImg < t > &mask, const unsigned int border_conditions=1, const bool is_normalized=false)
Return the erosion of the image by a structuring element.
template<typename t >
CImg < typename cimg::superset
< T, t >::type > get_erode (const CImg < t > &mask, const unsigned int border_conditions=1, const bool is_normalized=false) const
CImg < T > & erode (const unsigned int sx, const unsigned int sy, const unsigned int sz=1)
Erode the image by a rectangular structuring element of size sx,sy,sz.
CImg < T > get_erode (const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const
CImg < T > & erode (const unsigned int s)
Erode the image by a square structuring element of size sx.
CImg < T > get_erode (const unsigned int s) const
template<typename t >
CImg < T > & dilate (const CImg < t > &mask, const unsigned int border_conditions=1, const bool is_normalized=false)
Dilate the image by a structuring element.
template<typename t >
CImg < typename cimg::superset
< T, t >::type > get_dilate (const CImg < t > &mask, const unsigned int border_conditions=1, const bool is_normalized=false) const
CImg < T > & dilate (const unsigned int sx, const unsigned int sy, const unsigned int sz=1)
Dilate the image by a rectangular structuring element of size sx,sy,sz.
CImg < T > get_dilate (const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const
CImg < T > & dilate (const unsigned int s)
Erode the image by a square structuring element of size sx.
CImg < T > get_dilate (const unsigned int s) const
template<typename t >
CImg < T > & watershed (const CImg < t > &priority, const bool fill_lines=true)
Compute the watershed transform, from an instance image of non-zero labels.
template<typename t >
CImg < T > get_watershed (const CImg < t > &priority, const bool fill_lines=true) const
CImg < T > & deriche (const float sigma, const int order=0, const char axis='x', const bool cond=true)
Compute the result of the Deriche filter.
CImg < Tfloat > get_deriche (const float sigma, const int order=0, const char axis='x', const bool cond=true) const
CImg < T > & blur (const float sigmax, const float sigmay, const float sigmaz, const bool cond=true)
Return a blurred version of the image, using a Canny-Deriche filter.
CImg < Tfloat > get_blur (const float sigmax, const float sigmay, const float sigmaz, const bool cond=true) const
CImg < T > & blur (const float sigma, const bool cond=true)
Return a blurred version of the image, using a Canny-Deriche filter.
CImg < Tfloat > get_blur (const float sigma, const bool cond=true) const
template<typename t >
CImg < T > & blur_anisotropic (const CImg < t > &G, const float amplitude=60, const float dl=0.8f, const float da=30, const float gauss_prec=2, const unsigned int interpolation_type=0, const bool fast_approx=1)
Blur the image anisotropically following a field of diffusion tensors.
template<typename t >
CImg < T > get_blur_anisotropic (const CImg < t > &G, const float amplitude=60, const float dl=0.8f, const float da=30, const float gauss_prec=2, const unsigned int interpolation_type=0, const bool fast_approx=true) const
CImg < T > & blur_anisotropic (const float amplitude, const float sharpness=0.7f, const float anisotropy=0.6f, const float alpha=0.6f, const float sigma=1.1f, const float dl=0.8f, const float da=30, const float gauss_prec=2, const unsigned int interpolation_type=0, const bool fast_approx=true)
Blur an image following in an anisotropic way.
CImg < T > get_blur_anisotropic (const float amplitude, const float sharpness=0.7f, const float anisotropy=0.6f, const float alpha=0.6f, const float sigma=1.1f, const float dl=0.8f, const float da=30, const float gauss_prec=2, const unsigned int interpolation_type=0, const bool fast_approx=true) const
CImg < T > & blur_bilateral (const float sigma_x, const float sigma_y, const float sigma_z, const float sigma_r, const int bgrid_x, const int bgrid_y, const int bgrid_z, const int bgrid_r, const bool interpolation_type=true)
Blur an image using the bilateral filter.
CImg < T > get_blur_bilateral (const float sigma_x, const float sigma_y, const float sigma_z, const float sigma_r, const int bgrid_x, const int bgrid_y, const int bgrid_z, const int bgrid_r, const bool interpolation_type=true) const
CImg < T > & blur_bilateral (const float sigma_s, const float sigma_r, const int bgrid_s=-33, const int bgrid_r=32, const bool interpolation_type=true)
Blur an image using the bilateral filter.
CImg < T > get_blur_bilateral (const float sigma_s, const float sigma_r, const int bgrid_s=-33, const int bgrid_r=32, const bool interpolation_type=true) const
CImg < T > & blur_patch (const float sigma_s, const float sigma_p, const unsigned int patch_size=3, const unsigned int lookup_size=4, const float smoothness=0, const bool fast_approx=true)
Blur an image in its patch-based space.
CImg < T > get_blur_patch (const float sigma_s, const float sigma_p, const unsigned int patch_size=3, const unsigned int lookup_size=4, const float smoothness=0, const bool fast_approx=true) const
CImg < T > & blur_median (const unsigned int n)
Apply a median filter.
CImg < T > get_blur_median (const unsigned int n) const
CImg < T > & sharpen (const float amplitude, const bool sharpen_type=false, const float edge=1, const float alpha=0, const float sigma=0)
Sharpen image using anisotropic shock filters or inverse diffusion.
CImg < T > get_sharpen (const float amplitude, const bool sharpen_type=false, const float edge=1, const float alpha=0, const float sigma=0) const
CImgList < Tfloat > get_gradient (const char *const axes=0, const int scheme=3) const
Compute the list of images, corresponding to the XY-gradients of an image.
CImgList < Tfloat > get_hessian (const char *const axes=0) const
Get components of the Hessian matrix of an image.
CImg < T > & laplacian ()
Compute the laplacian of the instance image.
CImg < Tfloat > get_laplacian () const
CImg < T > & structure_tensors (const unsigned int scheme=2)
Compute the structure tensor field of an image.
CImg < Tfloat > get_structure_tensors (const unsigned int scheme=2) const
CImg < T > & edge_tensors (const float sharpness=0.7f, const float anisotropy=0.6f, const float alpha=0.6f, const float sigma=1.1f, const bool is_sqrt=false)
Get a diffusion tensor for edge-preserving anisotropic smoothing of an image.
CImg < Tfloat > get_edge_tensors (const float sharpness=0.7f, const float anisotropy=0.6f, const float alpha=0.6f, const float sigma=1.1f, const bool is_sqrt=false) const
CImg < T > & displacement (const CImg < T > &source, const float smooth=0.1f, const float precision=5.0f, const unsigned int nb_scales=0, const unsigned int iteration_max=10000, const bool is_backward=false)
Estimate a displacement field between specified source image and instance image.
CImg < Tfloat > get_displacement (const CImg < T > &source, const float smoothness=0.1f, const float precision=5.0f, const unsigned int nb_scales=0, const unsigned int iteration_max=10000, const bool is_backward=false) const
CImg < T > & distance (const T value, const unsigned int metric=2)
Compute the distance transform according to a specified value.
CImg < Tfloat > get_distance (const T value, const unsigned int metric=2) const
template<typename t >
CImg < T > & distance (const T value, const CImg < t > &metric_mask)
Compute the chamfer distance transform according to a specified value, with a custom metric.
template<typename t >
CImg < Tfloat > get_distance (const T value, const CImg < t > &metric_mask) const
CImg < T > & distance_eikonal (const unsigned int nb_iterations, const float band_size=0, const float time_step=0.5f)
Compute distance function from 0-valued isophotes by the application of an Eikonal PDE.
CImg < Tfloat > get_distance_eikonal (const unsigned int nb_iterations, const float band_size=0, const float time_step=0.5f) const
CImg < T > & haar (const char axis, const bool invert=false, const unsigned int nb_scales=1)
Compute the Haar multiscale wavelet transform (monodimensional version).
CImg < Tfloat > get_haar (const char axis, const bool invert=false, const unsigned int nb_scales=1) const
CImg < T > & haar (const bool invert=false, const unsigned int nb_scales=1)
Compute the Haar multiscale wavelet transform.
CImg < Tfloat > get_haar (const bool invert=false, const unsigned int nb_scales=1) const
CImgList < Tfloat > get_FFT (const char axis, const bool invert=false) const
Compute a 1d Fast Fourier Transform, along a specified axis.
CImgList < Tfloat > get_FFT (const bool invert=false) const
Compute a n-d Fast-Fourier Transform.
static void FFT (CImg < T > &real, CImg < T > &imag, const char axis, const bool invert=false)
Compute a 1d Fast Fourier Transform, along a specified axis.
static void FFT (CImg < T > &real, CImg < T > &imag, const bool invert=false)
Compute a n-d Fast Fourier Transform.
3d Objects Management
CImg < T > & shift_object3d (const float tx, const float ty=0, const float tz=0)
Shift a 3d object.
CImg < Tfloat > get_shift_object3d (const float tx, const float ty=0, const float tz=0) const
CImg < T > & shift_object3d ()
Shift a 3d object so that it becomes centered.
CImg < Tfloat > get_shift_object3d () const
CImg < T > & resize_object3d (const float sx, const float sy=-100, const float sz=-100)
Resize a 3d object.
CImg < Tfloat > get_resize_object3d (const float sx, const float sy=-100, const float sz=-100) const
CImg < T > resize_object3d ()
Resize a 3d object so that its max dimension if one.
CImg < Tfloat > get_resize_object3d () const
template<typename tf , typename tp , typename tff >
CImg < T > & append_object3d (CImgList < tf > &primitives, const CImg < tp > &obj_vertices, const CImgList < tff > &obj_primitives)
Append a 3d object to another one.
template<typename tp , typename tc , typename tt , typename tx >
const CImg < T > & texturize_object3d (CImgList < tp > &primitives, CImgList < tc > &colors, const CImg < tt > &texture, const CImg < tx > &coords=CImg < tx >::empty()) const
Texturize primitives of a 3d object.
template<typename tf , typename tc , typename te >
CImg < floatT > get_elevation3d (CImgList < tf > &primitives, CImgList < tc > &colors, const CImg < te > &elevation) const
Create and return a 3d elevation of the instance image.
template<typename tf , typename tc >
CImg < floatT > get_projections3d (CImgList < tf > &primitives, CImgList < tc > &colors, const unsigned int x0, const unsigned int y0, const unsigned int z0, const bool normalize_colors=false) const
Create and return the 3d projection planes of the instance image.
template<typename tf >
CImg < floatT > get_isoline3d (CImgList < tf > &primitives, const float isovalue, const int size_x=-100, const int size_y=-100) const
Create and return a isoline of the instance image as a 3d object.
template<typename tf >
CImg < floatT > get_isosurface3d (CImgList < tf > &primitives, const float isovalue, const int size_x=-100, const int size_y=-100, const int size_z=-100) const
Create and return a isosurface of the instance image as a 3d object.
template<typename tp , typename tc , typename to >
CImg < T > & object3dtoCImg3d (const CImgList < tp > &primitives, const CImgList < tc > &colors, const to &opacities)
Convert a 3d object into a CImg3d.
template<typename tp , typename tc >
CImg < T > & object3dtoCImg3d (const CImgList < tp > &primitives, const CImgList < tc > &colors)
template<typename tp >
CImg < T > & object3dtoCImg3d (const CImgList < tp > &primitives)
CImg < T > & object3dtoCImg3d ()
template<typename tp , typename tc , typename to >
CImg < floatT > get_object3dtoCImg3d (const CImgList < tp > &primitives, const CImgList < tc > &colors, const to &opacities) const
template<typename tp , typename tc >
CImg < floatT > get_object3dtoCImg3d (const CImgList < tp > &primitives, const CImgList < tc > &colors) const
template<typename tp >
CImg < floatT > get_object3dtoCImg3d (const CImgList < tp > &primitives) const
CImg < floatT > get_object3dtoCImg3d () const
template<typename tp , typename tc , typename to >
CImg < T > get_CImg3dtoobject3d (CImgList < tp > &primitives, CImgList < tc > &colors, CImgList < to > &opacities) const
Convert a CImg3d (one-column image) into a 3d object.
template<typename tp , typename tc , typename to >
CImg < T > & CImg3dtoobject3d (CImgList < tp > &primitives, CImgList < tc > &colors, CImgList < to > &opacities)
template<typename tf , typename tfunc >
static CImg < floatT > elevation3d (CImgList < tf > &primitives, const tfunc &func, const float x0, const float y0, const float x1, const float y1, const int size_x=256, const int size_y=256)
Get elevation3d of a function.
template<typename tf >
static CImg < floatT > elevation3d (CImgList < tf > &primitives, const char *const expression, const float x0, const float y0, const float x1, const float y1, const int sizex=256, const int sizey=256)
template<typename tf , typename tfunc >
static CImg < floatT > isoline3d (CImgList < tf > &primitives, const tfunc &func, const float isovalue, const float x0, const float y0, const float x1, const float y1, const int sizex=256, const int sizey=256)
Get isoline as a 3d object.
template<typename tf >
static CImg < floatT > isoline3d (CImgList < tf > &primitives, const char *const expression, const float isovalue, const float x0, const float y0, const float x1, const float y1, const int sizex=256, const int sizey=256)
template<typename tf , typename tfunc >
static CImg < floatT > isosurface3d (CImgList < tf > &primitives, const tfunc &func, const float isovalue, const float x0, const float y0, const float z0, const float x1, const float y1, const float z1, const int size_x=32, const int size_y=32, const int size_z=32)
Get isosurface as a 3d object.
template<typename tf >
static CImg < floatT > isosurface3d (CImgList < tf > &primitives, const char *const expression, const float isovalue, const float x0, const float y0, const float z0, const float x1, const float y1, const float z1, const int dx=32, const int dy=32, const int dz=32)
template<typename tf >
static CImg < floatT > box3d (CImgList < tf > &primitives, const float size_x=200, const float size_y=100, const float size_z=100)
Create and return a 3d box object.
template<typename tf >
static CImg < floatT > cone3d (CImgList < tf > &primitives, const float radius=50, const float size_z=100, const unsigned int subdivisions=24)
Create and return a 3d cone.
template<typename tf >
static CImg < floatT > cylinder3d (CImgList < tf > &primitives, const float radius=50, const float size_z=100, const unsigned int subdivisions=24)
Create and return a 3d cylinder.
template<typename tf >
static CImg < floatT > torus3d (CImgList < tf > &primitives, const float radius1=100, const float radius2=30, const unsigned int subdivisions1=24, const unsigned int subdivisions2=12)
Create and return a 3d torus.
template<typename tf >
static CImg < floatT > plane3d (CImgList < tf > &primitives, const float size_x=100, const float size_y=100, const unsigned int subdivisions_x=10, const unsigned int subdivisions_y=10)
Create and return a 3d XY-plane.
template<typename tf >
static CImg < floatT > sphere3d (CImgList < tf > &primitives, const float radius=50, const unsigned int subdivisions=3)
Create and return a 3d sphere.
template<typename tf , typename t >
static CImg < floatT > ellipsoid3d (CImgList < tf > &primitives, const CImg < t > &tensor, const unsigned int subdivisions=3)
Create and return a 3d ellipsoid.
Drawing Functions
template<typename tc >
CImg < T > & draw_point (const int x0, const int y0, const tc *const color, const float opacity=1)
Draw a 2d colored point (pixel).
template<typename tc >
CImg < T > & draw_point (const int x0, const int y0, const int z0, const tc *const color, const float opacity=1)
Draw a 3d colored point (voxel).
template<typename t , typename tc >
CImg < T > & draw_point (const CImg < t > &points, const tc *const color, const float opacity=1)
template<typename tc >
CImg < T > & draw_line (const int x0, const int y0, const int x1, const int y1, const tc *const color, const float opacity=1, const unsigned int pattern=~0U, const bool init_hatch=true)
Draw a 2d colored line.
template<typename tz , typename tc >
CImg < T > & draw_line (CImg < tz > &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const tc *const color, const float opacity=1, const unsigned int pattern=~0U, const bool init_hatch=true)
Draw a 2d colored line, with z-buffering.
template<typename tc >
CImg < T > & draw_line (const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const tc *const color, const float opacity=1, const unsigned int pattern=~0U, const bool init_hatch=true)
Draw a 3d colored line.
template<typename tc >
CImg < T > & draw_line (const int x0, const int y0, const int x1, const int y1, const CImg < tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const float opacity=1, const unsigned int pattern=~0U, const bool init_hatch=true)
Draw a 2d textured line.
template<typename tc >
CImg < T > & draw_line (const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const CImg < tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const float opacity=1, const unsigned int pattern=~0U, const bool init_hatch=true)
Draw a 2d textured line, with perspective correction.
template<typename tz , typename tc >
CImg < T > & draw_line (CImg < tz > &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const CImg < tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const float opacity=1, const unsigned int pattern=~0U, const bool init_hatch=true)
Draw a 2d textured line, with z-buffering and perspective correction.
template<typename t , typename tc >
CImg < T > & draw_line (const CImg < t > &points, const tc *const color, const float opacity=1, const unsigned int pattern=~0U, const bool init_hatch=true)
Draw a set of consecutive colored lines in the instance image.
template<typename tc >
CImg < T > & draw_arrow (const int x0, const int y0, const int x1, const int y1, const tc *const color, const float opacity=1, const float angle=30, const float length=-10, const unsigned int pattern=~0U)
Draw a colored arrow in the instance image.
template<typename tc >
CImg < T > & draw_spline (const int x0, const int y0, const float u0, const float v0, const int x1, const int y1, const float u1, const float v1, const tc *const color, const float opacity=1, const float precision=0.25, const unsigned int pattern=~0U, const bool init_hatch=true)
Draw a cubic spline curve in the instance image.
template<typename tc >
CImg < T > & draw_spline (const int x0, const int y0, const int z0, const float u0, const float v0, const float w0, const int x1, const int y1, const int z1, const float u1, const float v1, const float w1, const tc *const color, const float opacity=1, const float precision=4, const unsigned int pattern=~0U, const bool init_hatch=true)
Draw a cubic spline curve in the instance image (for volumetric images).
template<typename t >
CImg < T > & draw_spline (const int x0, const int y0, const float u0, const float v0, const int x1, const int y1, const float u1, const float v1, const CImg < t > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const float opacity=1, const float precision=4, const unsigned int pattern=~0U, const bool init_hatch=true)
Draw a cubic spline curve in the instance image.
template<typename tp , typename tt , typename tc >
CImg < T > & draw_spline (const CImg < tp > &points, const CImg < tt > &tangents, const tc *const color, const float opacity=1, const bool close_set=false, const float precision=4, const unsigned int pattern=~0U, const bool init_hatch=true)
template<typename tp , typename tc >
CImg < T > & draw_spline (const CImg < tp > &points, const tc *const color, const float opacity=1, const bool close_set=false, const float precision=4, const unsigned int pattern=~0U, const bool init_hatch=true)
Draw a set of consecutive colored splines in the instance image.
template<typename tc >
CImg < T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const tc *const color, const float opacity=1)
Draw a 2d filled colored triangle.
template<typename tc >
CImg < T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const tc *const color, const float opacity, const unsigned int pattern)
Draw a 2d outlined colored triangle.
template<typename tz , typename tc >
CImg < T > & draw_triangle (CImg < tz > &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const tc *const color, const float opacity=1, const float brightness=1)
Draw a 2d filled colored triangle, with z-buffering.
template<typename tc >
CImg < T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const tc *const color, const float brightness0, const float brightness1, const float brightness2, const float opacity=1)
Draw a 2d Gouraud-shaded colored triangle.
template<typename tz , typename tc >
CImg < T > & draw_triangle (CImg < tz > &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const tc *const color, const float brightness0, const float brightness1, const float brightness2, const float opacity=1)
Draw a 2d Gouraud-shaded colored triangle, with z-buffering.
template<typename tc1 , typename tc2 , typename tc3 >
CImg < T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const tc1 *const color1, const tc2 *const color2, const tc3 *const color3, const float opacity=1)
Draw a colored triangle with interpolated colors.
template<typename tc >
CImg < T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const CImg < tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int tx2, const int ty2, const float opacity=1, const float brightness=1)
Draw a 2d textured triangle.
template<typename tc >
CImg < T > & draw_triangle (const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const CImg < tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int tx2, const int ty2, const float opacity=1, const float brightness=1)
Draw a 2d textured triangle, with perspective correction.
template<typename tz , typename tc >
CImg < T > & draw_triangle (CImg < tz > &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const CImg < tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int tx2, const int ty2, const float opacity=1, const float brightness=1)
Draw a 2d textured triangle, with z-buffering and perspective correction.
template<typename tc , typename tl >
CImg < T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const tc *const color, const CImg < tl > &light, const int lx0, const int ly0, const int lx1, const int ly1, const int lx2, const int ly2, const float opacity=1)
Draw a 2d Pseudo-Phong-shaded triangle.
template<typename tz , typename tc , typename tl >
CImg < T > & draw_triangle (CImg < tz > &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const tc *const color, const CImg < tl > &light, const int lx0, const int ly0, const int lx1, const int ly1, const int lx2, const int ly2, const float opacity=1)
Draw a 2d Pseudo-Phong-shaded triangle, with z-buffering.
template<typename tc >
CImg < T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const CImg < tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int tx2, const int ty2, const float brightness0, const float brightness1, const float brightness2, const float opacity=1)
Draw a 2d Gouraud-shaded textured triangle.
template<typename tc >
CImg < T > & draw_triangle (const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const CImg < tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int tx2, const int ty2, const float brightness0, const float brightness1, const float brightness2, const float opacity=1)
Draw a 2d Gouraud-shaded textured triangle, with perspective correction.
template<typename tz , typename tc >
CImg < T > & draw_triangle (CImg < tz > &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const CImg < tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int tx2, const int ty2, const float brightness0, const float brightness1, const float brightness2, const float opacity=1)
Draw a 2d Gouraud-shaded textured triangle, with z-buffering and perspective correction.
template<typename tc , typename tl >
CImg < T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const CImg < tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int tx2, const int ty2, const CImg < tl > &light, const int lx0, const int ly0, const int lx1, const int ly1, const int lx2, const int ly2, const float opacity=1)
Draw a 2d Pseudo-Phong-shaded textured triangle.
template<typename tc , typename tl >
CImg < T > & draw_triangle (const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const CImg < tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int tx2, const int ty2, const CImg < tl > &light, const int lx0, const int ly0, const int lx1, const int ly1, const int lx2, const int ly2, const float opacity=1)
Draw a 2d Pseudo-Phong-shaded textured triangle, with perspective correction.
template<typename tz , typename tc , typename tl >
CImg < T > & draw_triangle (CImg < tz > &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const CImg < tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int tx2, const int ty2, const CImg < tl > &light, const int lx0, const int ly0, const int lx1, const int ly1, const int lx2, const int ly2, const float opacity=1)
Draw a 2d Pseudo-Phong-shaded textured triangle, with z-buffering and perspective correction.
CImg < T > & draw_rectangle (const int x0, const int y0, const int z0, const int c0, const int x1, const int y1, const int z1, const int c1, const T val, const float opacity=1)
Draw a 4d filled rectangle in the instance image, at coordinates (x0
,y0
,z0
,c0
)-(x1
,y1
,z1
,c1
).
template<typename tc >
CImg < T > & draw_rectangle (const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const tc *const color, const float opacity=1)
Draw a 3d filled colored rectangle in the instance image, at coordinates (x0
,y0
,z0
)-(x1
,y1
,z1
).
template<typename tc >
CImg < T > & draw_rectangle (const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const tc *const color, const float opacity, const unsigned int pattern)
Draw a 3d outlined colored rectangle in the instance image.
template<typename tc >
CImg < T > & draw_rectangle (const int x0, const int y0, const int x1, const int y1, const tc *const color, const float opacity=1)
Draw a 2d filled colored rectangle in the instance image, at coordinates (x0
,y0
)-(x1
,y1
).
template<typename tc >
CImg < T > & draw_rectangle (const int x0, const int y0, const int x1, const int y1, const tc *const color, const float opacity, const unsigned int pattern)
Draw a 2d outlined colored rectangle.
template<typename t , typename tc >
CImg < T > & draw_polygon (const CImg < t > &points, const tc *const color, const float opacity=1)
Draw a filled polygon in the instance image.
template<typename t , typename tc >
CImg < T > & draw_polygon (const CImg < t > &points, const tc *const color, const float opacity, const unsigned int pattern)
Draw a outlined polygon in the instance image.
template<typename tc >
CImg < T > & draw_circle (const int x0, const int y0, int radius, const tc *const color, const float opacity=1)
Draw a filled circle.
template<typename tc >
CImg < T > & draw_circle (const int x0, const int y0, int radius, const tc *const color, const float opacity, const unsigned int)
Draw an outlined circle.
template<typename tc >
CImg < T > & draw_ellipse (const int x0, const int y0, const float r1, const float r2, const float angle, const tc *const color, const float opacity=1)
Draw a filled ellipse.
template<typename t , typename tc >
CImg < T > & draw_ellipse (const int x0, const int y0, const CImg < t > &tensor, const tc *const color, const float opacity=1)
Draw a filled ellipse.
template<typename tc >
CImg < T > & draw_ellipse (const int x0, const int y0, const float r1, const float r2, const float angle, const tc *const color, const float opacity, const unsigned int pattern)
Draw an outlined ellipse.
template<typename t , typename tc >
CImg < T > & draw_ellipse (const int x0, const int y0, const CImg < t > &tensor, const tc *const color, const float opacity, const unsigned int pattern)
Draw an outlined ellipse.
template<typename t >
CImg < T > & draw_image (const int x0, const int y0, const int z0, const int c0, const CImg < t > &sprite, const float opacity=1)
Draw an image.
CImg < T > & draw_image (const int x0, const int y0, const int z0, const int c0, const CImg < T > &sprite, const float opacity=1)
template<typename t >
CImg < T > & draw_image (const int x0, const int y0, const int z0, const CImg < t > &sprite, const float opacity=1)
Draw an image.
template<typename t >
CImg < T > & draw_image (const int x0, const int y0, const CImg < t > &sprite, const float opacity=1)
Draw an image.
template<typename t >
CImg < T > & draw_image (const int x0, const CImg < t > &sprite, const float opacity=1)
Draw an image.
template<typename t >
CImg < T > & draw_image (const CImg < t > &sprite, const float opacity=1)
Draw an image.
template<typename ti , typename tm >
CImg < T > & draw_image (const int x0, const int y0, const int z0, const int c0, const CImg < ti > &sprite, const CImg < tm > &mask, const float opacity=1, const float mask_valmax=1)
Draw a sprite image in the instance image (masked version).
template<typename ti , typename tm >
CImg < T > & draw_image (const int x0, const int y0, const int z0, const CImg < ti > &sprite, const CImg < tm > &mask, const float opacity=1, const float mask_valmax=1)
Draw an image.
template<typename ti , typename tm >
CImg < T > & draw_image (const int x0, const int y0, const CImg < ti > &sprite, const CImg < tm > &mask, const float opacity=1, const float mask_valmax=1)
Draw an image.
template<typename ti , typename tm >
CImg < T > & draw_image (const int x0, const CImg < ti > &sprite, const CImg < tm > &mask, const float opacity=1, const float mask_valmax=1)
Draw an image.
template<typename ti , typename tm >
CImg < T > & draw_image (const CImg < ti > &sprite, const CImg < tm > &mask, const float opacity=1, const float mask_valmax=1)
Draw an image.
template<typename tc1 , typename tc2 , typename t >
CImg < T > & draw_text (const int x0, const int y0, const char *const text, const tc1 *const foreground_color, const tc2 *const background_color, const float opacity, const CImgList < t > &font,...)
Draw a text.
template<typename tc , typename t >
CImg < T > & draw_text (const int x0, const int y0, const char *const text, const tc *const foreground_color, const int, const float opacity, const CImgList < t > &font,...)
template<typename tc , typename t >
CImg < T > & draw_text (const int x0, const int y0, const char *const text, const int, const tc *const background_color, const float opacity, const CImgList < t > &font,...)
template<typename tc1 , typename tc2 >
CImg < T > & draw_text (const int x0, const int y0, const char *const text, const tc1 *const foreground_color, const tc2 *const background_color, const float opacity=1, const unsigned int font_height=13,...)
Draw a text.
template<typename tc >
CImg < T > & draw_text (const int x0, const int y0, const char *const text, const tc *const foreground_color, const int background_color=0, const float opacity=1, const unsigned int font_height=13,...)
template<typename tc >
CImg < T > & draw_text (const int x0, const int y0, const char *const text, const int, const tc *const background_color, const float opacity=1, const unsigned int font_height=13,...)
template<typename t1 , typename t2 >
CImg < T > & draw_quiver (const CImg < t1 > &flow, const t2 *const color, const float opacity=1, const unsigned int sampling=25, const float factor=-20, const bool arrows=true, const unsigned int pattern=~0U)
Draw a vector field in the instance image, using a colormap.
template<typename t1 , typename t2 >
CImg < T > & draw_quiver (const CImg < t1 > &flow, const CImg < t2 > &color, const float opacity=1, const unsigned int sampling=25, const float factor=-20, const bool arrows=true, const unsigned int pattern=~0U)
Draw a vector field in the instance image, using a colormap.
template<typename t , typename tc >
CImg < T > & draw_axis (const CImg < t > &xvalues, const int y, const tc *const color, const float opacity=1, const unsigned int pattern=~0U)
Draw a labeled horizontal axis on the instance image.
template<typename t , typename tc >
CImg < T > & draw_axis (const int x, const CImg < t > &yvalues, const tc *const color, const float opacity=1, const unsigned int pattern=~0U)
Draw a labeled vertical axis on the instance image.
template<typename tx , typename ty , typename tc >
CImg < T > & draw_axes (const CImg < tx > &xvalues, const CImg < ty > &yvalues, const tc *const color, const float opacity=1, const unsigned int patternx=~0U, const unsigned int patterny=~0U)
Draw a labeled horizontal+vertical axis on the instance image.
template<typename tc >
CImg < T > & draw_axes (const float x0, const float x1, const float y0, const float y1, const tc *const color, const float opacity=1, const int subdivisionx=-60, const int subdivisiony=-60, const float precisionx=0, const float precisiony=0, const unsigned int patternx=~0U, const unsigned int patterny=~0U)
Draw a labeled horizontal+vertical axis on the instance image.
template<typename tx , typename ty , typename tc >
CImg < T > & draw_grid (const CImg < tx > &xvalues, const CImg < ty > &yvalues, const tc *const color, const float opacity=1, const unsigned int patternx=~0U, const unsigned int patterny=~0U)
Draw grid.
template<typename tc >
CImg < T > & draw_grid (const float deltax, const float deltay, const float offsetx, const float offsety, const bool invertx, const bool inverty, const tc *const color, const float opacity=1, const unsigned int patternx=~0U, const unsigned int patterny=~0U)
Draw grid.
template<typename t , typename tc >
CImg < T > & draw_graph (const CImg < t > &data, const tc *const color, const float opacity=1, const unsigned int plot_type=1, const int vertex_type=1, const double ymin=0, const double ymax=0, const unsigned int pattern=~0U)
Draw a 1d graph on the instance image.
template<typename tc , typename t >
CImg < T > & draw_fill (const int x, const int y, const int z, const tc *const color, const float opacity, CImg < t > ®ion, const float sigma=0, const bool high_connexity=false)
Draw a 3d filled region starting from a point (x
,y
,\ z) in the instance image.
template<typename tc >
CImg < T > & draw_fill (const int x, const int y, const int z, const tc *const color, const float opacity=1, const float sigma=0, const bool high_connexity=false)
Draw a 3d filled region starting from a point (x
,y
,\ z) in the instance image.
template<typename tc >
CImg < T > & draw_fill (const int x, const int y, const tc *const color, const float opacity=1, const float sigma=0, const bool high_connexity=false)
Draw a 2d filled region starting from a point (x
,y
) in the instance image.
CImg < T > & draw_plasma (const int x0, const int y0, const int x1, const int y1, const float alpha=1, const float beta=1, const float opacity=1)
Draw a plasma random texture.
CImg < T > & draw_plasma (const float alpha=1, const float beta=1, const float opacity=1)
Draw a plasma random texture.
template<typename tc >
CImg < T > & draw_mandelbrot (const int x0, const int y0, const int x1, const int y1, const CImg < tc > &color_palette, const float opacity=1, const double z0r=-2, const double z0i=-2, const double z1r=2, const double z1i=2, const unsigned int iteration_max=255, const bool normalized_iteration=false, const bool julia_set=false, const double paramr=0, const double parami=0)
Draw a quadratic Mandelbrot or Julia fractal set, computed using the Escape Time Algorithm.
template<typename tc >
CImg < T > & draw_mandelbrot (const CImg < tc > &color_palette, const float opacity=1, const double z0r=-2, const double z0i=-2, const double z1r=2, const double z1i=2, const unsigned int iteration_max=255, const bool normalized_iteration=false, const bool julia_set=false, const double paramr=0, const double parami=0)
Draw a quadratic Mandelbrot or Julia fractal set, computed using the Escape Time Algorithm.
template<typename tc >
CImg < T > & draw_gaussian (const float xc, const float sigma, const tc *const color, const float opacity=1)
Draw a 1d gaussian function in the instance image.
template<typename t , typename tc >
CImg < T > & draw_gaussian (const float xc, const float yc, const CImg < t > &tensor, const tc *const color, const float opacity=1)
Draw an anisotropic 2d gaussian function.
template<typename tc >
CImg < T > & draw_gaussian (const int xc, const int yc, const float r1, const float r2, const float ru, const float rv, const tc *const color, const float opacity=1)
Draw an anisotropic 2d gaussian function.
template<typename tc >
CImg < T > & draw_gaussian (const float xc, const float yc, const float sigma, const tc *const color, const float opacity=1)
Draw an isotropic 2d gaussian function.
template<typename t , typename tc >
CImg < T > & draw_gaussian (const float xc, const float yc, const float zc, const CImg < t > &tensor, const tc *const color, const float opacity=1)
Draw an anisotropic 3d gaussian function.
template<typename tc >
CImg < T > & draw_gaussian (const float xc, const float yc, const float zc, const float sigma, const tc *const color, const float opacity=1)
Draw an isotropic 3d gaussian function.
template<typename tp , typename tf , typename tc , typename to >
CImg < T > & draw_object3d (const float x0, const float y0, const float z0, const CImg < tp > &vertices, const CImgList < tf > &primitives, const CImgList < tc > &colors, const CImg < to > &opacities, const unsigned int render_type=4, const bool double_sided=false, const float focale=500, const float lightx=0, const float lighty=0, const float lightz=-5e8, const float specular_light=0.2f, const float specular_shine=0.1f)
Draw a 3d object.
template<typename tp , typename tf , typename tc , typename to , typename tz >
CImg < T > & draw_object3d (const float x0, const float y0, const float z0, const CImg < tp > &vertices, const CImgList < tf > &primitives, const CImgList < tc > &colors, const CImg < to > &opacities, const unsigned int render_type, const bool double_sided, const float focale, const float lightx, const float lighty, const float lightz, const float specular_light, const float specular_shine, CImg < tz > &zbuffer)
template<typename tp , typename tf , typename tc , typename to >
CImg < T > & draw_object3d (const float x0, const float y0, const float z0, const CImg < tp > &vertices, const CImgList < tf > &primitives, const CImgList < tc > &colors, const CImgList < to > &opacities, const unsigned int render_type=4, const bool double_sided=false, const float focale=500, const float lightx=0, const float lighty=0, const float lightz=-5e8, const float specular_light=0.2f, const float specular_shine=0.1f)
template<typename tp , typename tf , typename tc , typename to , typename tz >
CImg < T > & draw_object3d (const float x0, const float y0, const float z0, const CImg < tp > &vertices, const CImgList < tf > &primitives, const CImgList < tc > &colors, const CImgList < to > &opacities, const unsigned int render_type, const bool double_sided, const float focale, const float lightx, const float lighty, const float lightz, const float specular_light, const float specular_shine, CImg < tz > &zbuffer)
template<typename tp , typename tf , typename tc >
CImg < T > & draw_object3d (const float x0, const float y0, const float z0, const CImg < tp > &vertices, const CImgList < tf > &primitives, const CImgList < tc > &colors, const unsigned int render_type=4, const bool double_sided=false, const float focale=500, const float lightx=0, const float lighty=0, const float lightz=-5e8, const float specular_light=0.2f, const float specular_shine=0.1f)
Draw a 3d object.
template<typename tp , typename tf , typename tc , typename tz >
CImg < T > & draw_object3d (const float x0, const float y0, const float z0, const CImg < tp > &vertices, const CImgList < tf > &primitives, const CImgList < tc > &colors, const unsigned int render_type, const bool double_sided, const float focale, const float lightx, const float lighty, const float lightz, const float specular_light, const float specular_shine, CImg < tz > &zbuffer)
Data Input
CImg < T > & select (CImgDisplay &disp, const unsigned int feature_type=2, unsigned int *const XYZ=0)
Simple interface to select a shape from an image.
CImg < T > & select (const char *const title, const unsigned int feature_type=2, unsigned int *const XYZ=0)
Simple interface to select a shape from an image.
CImg < intT > get_select (CImgDisplay &disp, const unsigned int feature_type=2, unsigned int *const XYZ=0) const
Simple interface to select a shape from an image.
CImg < intT > get_select (const char *const title, const unsigned int feature_type=2, unsigned int *const XYZ=0) const
Simple interface to select a shape from an image.
CImg < intT > get_select_graph (CImgDisplay &disp, const unsigned int plot_type=1, const unsigned int vertex_type=1, const char *const labelx=0, const double xmin=0, const double xmax=0, const char *const labely=0, const double ymin=0, const double ymax=0) const
Select sub-graph in a graph.
CImg < T > & load (const char *const filename)
Load an image from a file.
CImg < T > & load_ascii (const char *const filename)
Load an image from an ASCII file.
CImg < T > & load_ascii (std::FILE *const file)
Load an image from an ASCII file.
CImg < T > & load_dlm (const char *const filename)
Load an image from a DLM file.
CImg < T > & load_dlm (std::FILE *const file)
Load an image from a DLM file.
CImg < T > & load_bmp (const char *const filename)
Load an image from a BMP file.
CImg < T > & load_bmp (std::FILE *const file)
Load an image from a BMP file.
CImg < T > & load_jpeg (const char *const filename)
Load an image from a JPEG file.
CImg < T > & load_jpeg (std::FILE *const file)
Load an image from a JPEG file.
CImg < T > & load_magick (const char *const filename)
Load an image from a file, using Magick++ library.
CImg < T > & load_png (const char *const filename)
Load an image from a PNG file.
CImg < T > & load_png (std::FILE *const file)
Load an image from a PNG file.
CImg < T > & load_pnm (const char *const filename)
Load an image from a PNM file.
CImg < T > & load_pnm (std::FILE *const file)
Load an image from a PNM file.
CImg < T > & load_pfm (const char *const filename)
Load an image from a PFM file.
CImg < T > & load_pfm (std::FILE *const file)
Load an image from a PFM file.
CImg < T > & load_rgb (const char *const filename, const unsigned int dimw, const unsigned int dimh=1)
Load an image from a RGB file.
CImg < T > & load_rgb (std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1)
Load an image from a RGB file.
CImg < T > & load_rgba (const char *const filename, const unsigned int dimw, const unsigned int dimh=1)
Load an image from a RGBA file.
CImg < T > & load_rgba (std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1)
Load an image from a RGBA file.
CImg < T > & load_tiff (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1)
Load an image from a TIFF file.
CImg < T > & load_minc2 (const char *const filename)
Load an image from a MINC2 file.
CImg < T > & load_analyze (const char *const filename, float *const voxsize=0)
Load an image from an ANALYZE7.5/NIFTI file.
CImg < T > & load_analyze (std::FILE *const file, float *const voxsize=0)
Load an image from an ANALYZE7.5/NIFTI file.
CImg < T > & load_cimg (const char *const filename, const char axis='z', const float align=0)
Load an image (list) from a .cimg file.
CImg < T > & load_cimg (std::FILE *const file, const char axis='z', const float align=0)
Load an image (list) from a .cimg file.
CImg < T > & load_cimg (const char *const filename, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1, const char axis='z', const float align=0)
Load a sub-image (list) from a .cimg file.
CImg < T > & load_cimg (std::FILE *const file, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1, const char axis='z', const float align=0)
Load a sub-image (list) from a non-compressed .cimg file.
CImg < T > & load_inr (const char *const filename, float *const voxsize=0)
Load an image from an INRIMAGE-4 file.
CImg < T > & load_inr (std::FILE *const file, float *const voxsize=0)
Load an image from an INRIMAGE-4 file.
CImg < T > & load_exr (const char *const filename)
Load an image from a EXR file.
CImg < T > & load_pandore (const char *const filename)
Load an image from a PANDORE file.
CImg < T > & load_pandore (std::FILE *const file)
Load an image from a PANDORE file.
CImg < T > & load_parrec (const char *const filename, const char axis='c', const float align=0)
Load an image from a PAR-REC (Philips) file.
CImg < T > & load_raw (const char *const filename, const unsigned int sizex, const unsigned int sizey=1, const unsigned int sizez=1, const unsigned int sizev=1, const bool multiplexed=false, const bool invert_endianness=false)
Load an image from a .RAW file.
CImg < T > & load_raw (std::FILE *const file, const unsigned int sizex, const unsigned int sizey=1, const unsigned int sizez=1, const unsigned int sizev=1, const bool multiplexed=false, const bool invert_endianness=false)
Load an image from a .RAW file.
CImg < T > & load_ffmpeg (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const bool pixel_format=true, const bool resume=false, const char axis='z', const float align=0)
Load a video sequence using FFMPEG av's libraries.
CImg < T > & load_yuv (const char *const filename, const unsigned int sizex, const unsigned int sizey=1, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z', const float align=0)
Load an image sequence from a YUV file.
CImg < T > & load_yuv (std::FILE *const file, const unsigned int sizex, const unsigned int sizey=1, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z', const float align=0)
Load an image sequence from a YUV file.
template<typename tf , typename tc >
CImg < T > & load_off (const char *const filename, CImgList < tf > &primitives, CImgList < tc > &colors)
Load a 3d object from a .OFF file.
template<typename tf , typename tc >
CImg < T > & load_off (std::FILE *const file, CImgList < tf > &primitives, CImgList < tc > &colors)
Load a 3d object from a .OFF file.
CImg < T > & load_ffmpeg_external (const char *const filename, const char axis='z', const float align=0)
Load a video sequence using FFMPEG's external tool 'ffmpeg'.
CImg < T > & load_graphicsmagick_external (const char *const filename)
Load an image using GraphicsMagick's external tool 'gm'.
CImg < T > & load_gzip_external (const char *const filename)
Load a gzipped image file, using external tool 'gunzip'.
CImg < T > & load_imagemagick_external (const char *const filename)
Load an image using ImageMagick's external tool 'convert'.
CImg < T > & load_medcon_external (const char *const filename)
Load a DICOM image file, using XMedcon's external tool 'medcon'.
CImg < T > & load_dcraw_external (const char *const filename)
Load a RAW Color Camera image file, using external tool 'dcraw'.
CImg < T > & load_camera (const int camera_index=-1, const unsigned int skip_frames=0, const bool release_camera=false)
Load an image from a camera stream, using OpenCV.
CImg < T > & load_other (const char *const filename)
Load an image using ImageMagick's or GraphicsMagick's executables.
static CImg < T > get_load (const char *const filename)
static CImg < T > get_load_ascii (const char *const filename)
static CImg < T > get_load_ascii (std::FILE *const file)
static CImg < T > get_load_dlm (const char *const filename)
static CImg < T > get_load_dlm (std::FILE *const file)
static CImg < T > get_load_bmp (const char *const filename)
static CImg < T > get_load_bmp (std::FILE *const file)
static CImg < T > get_load_jpeg (const char *const filename)
static CImg < T > get_load_jpeg (std::FILE *const file)
static CImg < T > get_load_magick (const char *const filename)
static CImg < T > get_load_png (const char *const filename)
static CImg < T > get_load_png (std::FILE *const file)
static CImg < T > get_load_pnm (const char *const filename)
static CImg < T > get_load_pnm (std::FILE *const file)
static CImg < T > get_load_pfm (const char *const filename)
static CImg < T > get_load_pfm (std::FILE *const file)
static CImg < T > get_load_rgb (const char *const filename, const unsigned int dimw, const unsigned int dimh=1)
static CImg < T > get_load_rgb (std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1)
static CImg < T > get_load_rgba (const char *const filename, const unsigned int dimw, const unsigned int dimh=1)
static CImg < T > get_load_rgba (std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1)
static CImg < T > get_load_tiff (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1)
static CImg < T > get_load_analyze (const char *const filename, float *const voxsize=0)
static CImg < T > get_load_analyze (std::FILE *const file, float *const voxsize=0)
static CImg < T > get_load_cimg (const char *const filename, const char axis='z', const float align=0)
static CImg < T > get_load_cimg (std::FILE *const file, const char axis='z', const float align=0)
static CImg < T > get_load_cimg (const char *const filename, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1, const char axis='z', const float align=0)
static CImg < T > get_load_cimg (std::FILE *const file, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1, const char axis='z', const float align=0)
static CImg < T > get_load_inr (const char *const filename, float *const voxsize=0)
static CImg < T > get_load_inr (std::FILE *const file, float *voxsize=0)
static CImg < T > get_load_exr (const char *const filename)
static CImg < T > get_load_pandore (const char *const filename)
static CImg < T > get_load_pandore (std::FILE *const file)
static CImg < T > get_load_parrec (const char *const filename, const char axis='c', const float align=0)
static CImg < T > get_load_raw (const char *const filename, const unsigned int sizex, const unsigned int sizey=1, const unsigned int sizez=1, const unsigned int sizev=1, const bool multiplexed=false, const bool invert_endianness=false)
static CImg < T > get_load_raw (std::FILE *const file, const unsigned int sizex, const unsigned int sizey=1, const unsigned int sizez=1, const unsigned int sizev=1, const bool multiplexed=false, const bool invert_endianness=false)
static CImg < T > get_load_ffmpeg (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const bool pixel_format=true, const bool resume=false, const char axis='z', const float align=0)
static CImg < T > get_load_yuv (const char *const filename, const unsigned int sizex, const unsigned int sizey=1, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z', const float align=0)
static CImg < T > get_load_yuv (std::FILE *const file, const unsigned int sizex, const unsigned int sizey=1, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z', const float align=0)
template<typename tf , typename tc >
static CImg < T > get_load_off (const char *const filename, CImgList < tf > &primitives, CImgList < tc > &colors)
template<typename tf , typename tc >
static CImg < T > get_load_off (std::FILE *const file, CImgList < tf > &primitives, CImgList < tc > &colors)
static CImg < T > get_load_ffmpeg_external (const char *const filename, const char axis='z', const float align=0)
static CImg < T > get_load_graphicsmagick_external (const char *const filename)
static CImg < T > get_load_gzip_external (const char *const filename)
static CImg < T > get_load_imagemagick_external (const char *const filename)
static CImg < T > get_load_medcon_external (const char *const filename)
static CImg < T > get_load_dcraw_external (const char *const filename)
static CImg < T > get_load_camera (const int camera_index=-1, const unsigned int skip_frames=0, const bool release_camera=false)
static CImg < T > get_load_other (const char *const filename)
Data Output
const CImg < T > & print (const char *const title=0, const bool display_stats=true) const
Display informations about the image on the standard error output.
const CImg < T > & display (CImgDisplay &disp) const
Display an image into a CImgDisplay window.
const CImg < T > & display (CImgDisplay &disp, const bool display_info) const
Display an image in a window with a title title
, and wait a '_is_closed' or 'keyboard' event.
.
const CImg < T > & display (const char *const title=0, const bool display_info=true) const
Display an image in a window with a title title
, and wait a '_is_closed' or 'keyboard' event.
.
template<typename tp , typename tf , typename tc , typename to >
const CImg < T > & display_object3d (CImgDisplay &disp, const CImg < tp > &vertices, const CImgList < tf > &primitives, const CImgList < tc > &colors, const to &opacities, const bool centering=true, const int render_static=4, const int render_motion=1, const bool double_sided=true, const float focale=500, const float light_x=0, const float light_y=0, const float light_z=-5000, const float specular_light=0.2f, const float specular_shine=0.1f, const bool display_axes=true, float *const pose_matrix=0) const
High-level interface for displaying a 3d object.
template<typename tp , typename tf , typename tc , typename to >
const CImg < T > & display_object3d (const char *const title, const CImg < tp > &vertices, const CImgList < tf > &primitives, const CImgList < tc > &colors, const to &opacities, const bool centering=true, const int render_static=4, const int render_motion=1, const bool double_sided=true, const float focale=500, const float light_x=0, const float light_y=0, const float light_z=-5000, const float specular_light=0.2f, const float specular_shine=0.1f, const bool display_axes=true, float *const pose_matrix=0) const
High-level interface for displaying a 3d object.
template<typename tp , typename tf , typename tc >
const CImg < T > & display_object3d (CImgDisplay &disp, const CImg < tp > &vertices, const CImgList < tf > &primitives, const CImgList < tc > &colors, const bool centering=true, const int render_static=4, const int render_motion=1, const bool double_sided=true, const float focale=500, const float light_x=0, const float light_y=0, const float light_z=-5000, const float specular_light=0.2f, const float specular_shine=0.1f, const bool display_axes=true, float *const pose_matrix=0) const
High-level interface for displaying a 3d object.
template<typename tp , typename tf , typename tc >
const CImg < T > & display_object3d (const char *const title, const CImg < tp > &vertices, const CImgList < tf > &primitives, const CImgList < tc > &colors, const bool centering=true, const int render_static=4, const int render_motion=1, const bool double_sided=true, const float focale=500, const float light_x=0, const float light_y=0, const float light_z=-5000, const float specular_light=0.2f, const float specular_shine=0.1f, const bool display_axes=true, float *const pose_matrix=0) const
High-level interface for displaying a 3d object.
template<typename tp , typename tf >
const CImg < T > & display_object3d (CImgDisplay &disp, const CImg < tp > &vertices, const CImgList < tf > &primitives, const bool centering=true, const int render_static=4, const int render_motion=1, const bool double_sided=true, const float focale=500, const float light_x=0, const float light_y=0, const float light_z=-5000, const float specular_light=0.2f, const float specular_shine=0.1f, const bool display_axes=true, float *const pose_matrix=0) const
High-level interface for displaying a 3d object.
template<typename tp , typename tf >
const CImg < T > & display_object3d (const char *const title, const CImg < tp > &vertices, const CImgList < tf > &primitives, const bool centering=true, const int render_static=4, const int render_motion=1, const bool double_sided=true, const float focale=500, const float light_x=0, const float light_y=0, const float light_z=-5000, const float specular_light=0.2f, const float specular_shine=0.1f, const bool display_axes=true, float *const pose_matrix=0) const
High-level interface for displaying a 3d object.
template<typename tp >
const CImg < T > & display_object3d (CImgDisplay &disp, const CImg < tp > &vertices, const bool centering=true, const int render_static=4, const int render_motion=1, const bool double_sided=true, const float focale=500, const float light_x=0, const float light_y=0, const float light_z=-5000, const float specular_light=0.2f, const float specular_shine=0.1f, const bool display_axes=true, float *const pose_matrix=0) const
High-level interface for displaying a 3d object.
template<typename tp >
const CImg < T > & display_object3d (const char *const title, const CImg < tp > &vertices, const bool centering=true, const int render_static=4, const int render_motion=1, const bool double_sided=true, const float focale=500, const float light_x=0, const float light_y=0, const float light_z=-5000, const float specular_light=0.2f, const float specular_shine=0.1f, const bool display_axes=true, float *const pose_matrix=0) const
High-level interface for displaying a 3d object.
const CImg < T > & display_graph (CImgDisplay &disp, const unsigned int plot_type=1, const unsigned int vertex_type=1, const char *const labelx=0, const double xmin=0, const double xmax=0, const char *const labely=0, const double ymin=0, const double ymax=0) const
High-level interface for displaying a graph.
const CImg < T > & display_graph (const char *const title=0, const unsigned int plot_type=1, const unsigned int vertex_type=1, const char *const labelx=0, const double xmin=0, const double xmax=0, const char *const labely=0, const double ymin=0, const double ymax=0) const
High-level interface for displaying a graph.
const CImg < T > & save (const char *const filename, const int number=-1) const
Save the image as a file.
const CImg < T > & save_ascii (const char *const filename) const
Save the image as an ASCII file (ASCII Raw + simple header).
const CImg < T > & save_ascii (std::FILE *const file) const
Save the image as an ASCII file (ASCII Raw + simple header).
const CImg < T > & save_cpp (const char *const filename) const
Save the image as a CPP source file.
const CImg < T > & save_cpp (std::FILE *const file) const
Save the image as a CPP source file.
const CImg < T > & save_dlm (const char *const filename) const
Save the image as a DLM file.
const CImg < T > & save_dlm (std::FILE *const file) const
Save the image as a DLM file.
const CImg < T > & save_bmp (const char *const filename) const
Save the image as a BMP file.
const CImg < T > & save_bmp (std::FILE *const file) const
Save the image as a BMP file.
const CImg < T > & save_jpeg (const char *const filename, const unsigned int quality=100) const
Save a file in JPEG format.
const CImg < T > & save_jpeg (std::FILE *const file, const unsigned int quality=100) const
Save a file in JPEG format.
const CImg < T > & save_magick (const char *const filename, const unsigned int bytes_per_pixel=0) const
Save the image using built-in ImageMagick++ library.
const CImg < T > & save_png (const char *const filename, const unsigned int bytes_per_pixel=0) const
Save a file in PNG format.
const CImg < T > & save_png (std::FILE *const file, const unsigned int bytes_per_pixel=0) const
Save a file in PNG format.
const CImg < T > & save_pnm (const char *const filename, const unsigned int bytes_per_pixel=0) const
Save the image as a PNM file.
const CImg < T > & save_pnm (std::FILE *const file, const unsigned int bytes_per_pixel=0) const
Save the image as a PNM file.
const CImg < T > & save_pnk (const char *const filename) const
Save the image as a PNK file (PINK library extension of PGM).
const CImg < T > & save_pnk (std::FILE *const file) const
Save the image as a PNk file (PINK library extension of PGM).
const CImg < T > & save_pfm (const char *const filename) const
Save the image as a PFM file.
const CImg < T > & save_pfm (std::FILE *const file) const
Save the image as a PFM file.
const CImg < T > & save_rgb (const char *const filename) const
Save the image as a RGB file.
const CImg < T > & save_rgb (std::FILE *const file) const
Save the image as a RGB file.
const CImg < T > & save_rgba (const char *const filename) const
Save the image as a RGBA file.
const CImg < T > & save_rgba (std::FILE *const file) const
Save the image as a RGBA file.
const CImg < T > & save_tiff (const char *const filename, const unsigned int compression=0) const
Save a file in TIFF format.
const CImg < T > & save_minc2 (const char *const filename) const
Save the image as a MINC2 file.
const CImg < T > & save_analyze (const char *const filename, const float *const voxsize=0) const
Save the image as an ANALYZE7.5 or NIFTI file.
const CImg < T > & save_cimg (const char *const filename, const bool compression=false) const
Save the image as a .cimg file.
const CImg < T > & save_cimg (std::FILE *const file, const bool compression=false) const
const CImg < T > & save_cimg (const char *const filename, const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0) const
Insert the image into an existing .cimg file, at specified coordinates.
const CImg < T > & save_cimg (std::FILE *const file, const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0) const
Insert the image into an existing .cimg file, at specified coordinates.
const CImg < T > & save_inr (const char *const filename, const float *const voxsize=0) const
Save the image as an INRIMAGE-4 file.
const CImg < T > & save_inr (std::FILE *const file, const float *const voxsize=0) const
Save the image as an INRIMAGE-4 file.
const CImg < T > & save_exr (const char *const filename) const
Save the image as a EXR file.
const CImg < T > & save_pandore (const char *const filename, const unsigned int colorspace=0) const
Save the image as a PANDORE-5 file.
const CImg < T > & save_pandore (std::FILE *const file, const unsigned int colorspace=0) const
Save the image as a PANDORE-5 file.
const CImg < T > & save_raw (const char *const filename, const bool multiplexed=false) const
Save the image as a RAW file.
const CImg < T > & save_raw (std::FILE *const file, const bool multiplexed=false) const
Save the image as a RAW file.
const CImg < T > & save_ffmpeg (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int fps=25, const unsigned int bitrate=2048) const
Save the image as a video sequence file, using FFMPEG library.
const CImg < T > & save_yuv (const char *const filename, const bool rgb2yuv=true) const
Save the image as a YUV video sequence file.
const CImg < T > & save_yuv (std::FILE *const file, const bool rgb2yuv=true) const
Save the image as a YUV video sequence file.
template<typename tf , typename tc >
const CImg < T > & save_off (const char *const filename, const CImgList < tf > &primitives, const CImgList < tc > &colors) const
Save OFF files.
template<typename tf , typename tc >
const CImg < T > & save_off (std::FILE *const file, const CImgList < tf > &primitives, const CImgList < tc > &colors) const
Save OFF files.
const CImg < T > & save_ffmpeg_external (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const char *const codec="mpeg2video", const unsigned int fps=25, const unsigned int bitrate=2048) const
Save the image as a video sequence file, using the external tool 'ffmpeg'.
const CImg < T > & save_graphicsmagick_external (const char *const filename, const unsigned int quality=100) const
Save the image using GraphicsMagick's gm.
const CImg < T > & save_gzip_external (const char *const filename) const
Save an image as a gzipped file, using external tool 'gzip'.
const CImg < T > & save_imagemagick_external (const char *const filename, const unsigned int quality=100) const
Save the image using ImageMagick's convert.
const CImg < T > & save_medcon_external (const char *const filename) const
Save an image as a Dicom file (need '(X)Medcon' : http://xmedcon.sourceforge.net ).
const CImg < T > & save_other (const char *const filename, const unsigned int quality=100) const
static void save_empty_cimg (const char *const filename, const unsigned int dx, const unsigned int dy=1, const unsigned int dz=1, const unsigned int dc=1)
Save an empty .cimg file with specified dimensions.
static void save_empty_cimg (std::FILE *const file, const unsigned int dx, const unsigned int dy=1, const unsigned int dz=1, const unsigned int dc=1)
Save an empty .cimg file with specified dimensions.
static CImg < T > logo40x38 ()
Detailed Description
template<typename T>
struct cimg_library::CImg< T >
Class representing an image (up to 4 dimensions wide), each pixel being of type T
.
This is the main class of the CImg Library. It declares and constructs an image, allows access to its pixel values, and is able to perform various image operations.
Image representation
A CImg image is defined as an instance of the container CImg <T>
, which contains a regular grid of pixels, each pixel value being of type T
. The image grid can have up to 4 dimensions : width, height, depth and number of channels. Usually, the three first dimensions are used to describe spatial coordinates (x,y,z)
, while the number of channels is rather used as a vector-valued dimension (it may describe the R,G,B color channels for instance). If you need a fifth dimension, you can use image lists CImgList <T>
rather than simple images CImg <T>
.
Thus, the CImg <T>
class is able to represent volumetric images of vector-valued pixels, as well as images with less dimensions (1d scalar signal, 2d color images, ...). Most member functions of the class CImg <T>
are designed to handle this maximum case of (3+1) dimensions.
Concerning the pixel value type T
: fully supported template types are the basic C++ types : unsigned char, char, short, unsigned int, int, unsigned long, long, float, double, ...
. Typically, fast image display can be done using CImg<unsigned char>
images, while complex image processing algorithms may be rather coded using CImg<float>
or CImg<double>
images that have floating-point pixel values. The default value for the template T is float
. Using your own template types may be possible. However, you will certainly have to define the complete set of arithmetic and logical operators for your class.
Image structure
The CImg <T>
structure contains six fields :
width defines the number of columns of the image (size along the X-axis).
height defines the number of rows of the image (size along the Y-axis).
depth defines the number of slices of the image (size along the Z-axis).
spectrum defines the number of channels of the image (size along the C-axis).
data defines a pointer to the pixel data (of type T
).
is_shared is a boolean that tells if the memory buffer data is shared with another image.
You can access these fields publicly although it is recommended to use the dedicated functions width() , height() , depth() , spectrum() and ptr() to do so. Image dimensions are not limited to a specific range (as long as you got enough available memory). A value of 1 usually means that the corresponding dimension is flat . If one of the dimensions is 0 , or if the data pointer is null, the image is considered as empty . Empty images should not contain any pixel data and thus, will not be processed by CImg member functions (a CImgInstanceException will be thrown instead). Pixel data are stored in memory, in a non interlaced mode (See How pixel data are stored with CImg. ).
Image declaration and construction
Declaring an image can be done by using one of the several available constructors. Here is a list of the most used :
Construct images from arbitrary dimensions :
CImg<char> img;
declares an empty image.
CImg<unsigned char> img(128,128);
declares a 128x128 greyscale image with unsigned
char
pixel values.
CImg<double> img(3,3);
declares a 3x3 matrix with double
coefficients.
CImg<unsigned char> img(256,256,1,3);
declares a 256x256x1x3 (color) image (colors are stored as an image with three channels).
CImg<double> img(128,128,128);
declares a 128x128x128 volumetric and greyscale image (with double
pixel values).
CImg<> img(128,128,128,3);
declares a 128x128x128 volumetric color image (with float
pixels, which is the default value of the template parameter T
).
Note : images pixels are not automatically initialized to 0 . You may use the function fill() to do it, or use the specific constructor taking 5 parameters like this : CImg<> img(128,128,128,3,0);
declares a 128x128x128 volumetric color image with all pixel values to 0.
Construct images from filenames :
CImg<unsigned char> img("image.jpg");
reads a JPEG color image from the file "image.jpg".
CImg<float> img("analyze.hdr");
reads a volumetric image (ANALYZE7.5 format) from the file "analyze.hdr".
Note : You need to install ImageMagick to be able to read common compressed image formats (JPG,PNG, ...) (See Files IO in CImg. ).
Construct images from C-style arrays :
CImg<int> img(data_buffer,256,256);
constructs a 256x256 greyscale image from a int*
buffer data_buffer
(of size 256x256=65536).
CImg<unsigned char> img(data_buffer,256,256,1,3,false);
constructs a 256x256 color image from a unsigned
char*
buffer data_buffer
(where R,G,B channels follow each others).
CImg<unsigned char> img(data_buffer,256,256,1,3,true);
constructs a 256x256 color image from a unsigned
char*
buffer data_buffer
(where R,G,B channels are multiplexed).
The complete list of constructors can be found here .
Most useful functions
The CImg <T>
class contains a lot of functions that operates on images. Some of the most useful are :
Member Typedef Documentation
Iterator type for CImg<T>.
Const iterator type for CImg<T>.
Constructor & Destructor Documentation
Destructor.
The destructor destroys the instance image.
Default constructor.
The default constructor creates an empty instance image.
CImg
(
const unsigned int
dx ,
const unsigned int
dy = 1
,
const unsigned int
dz = 1
,
const unsigned int
dc = 1
)
[explicit]
Constructs a new image with given size (dx
,dy
,dz
,dc
).
This constructors create an instance image of size (dx
,dy
,dz
,dc
) with pixels of type T
.
Parameters:
dx Desired size along the X-axis, i.e. the width of the image.
dy Desired size along the Y-axis, i.e. the height of the image.
dz Desired size along the Z-axis, i.e. the depth of the image.
dc Desired size along the C-axis, i.e. the number of image channels spectrum .
CImg
(
const unsigned int
dx ,
const unsigned int
dy ,
const unsigned int
dz ,
const unsigned int
dc ,
const T
val
)
Construct an image with given size (dx
,dy
,dz
,dc
) and with pixel having a default value val
.
This constructor creates an instance image of size (dx
,dy
,dz
,dc
) with pixels of type T
and sets all pixel values of the created instance image to val
.
Parameters:
dx Desired size along the X-axis, i.e. the width of the image.
dy Desired size along the Y-axis, i.e. the height of the image.
dz Desired size along the Z-axis, i.e. the depth of the image.
dc Desired size along the C-axis, i.e. the number of image channels spectrum
.
val Default value for image pixels.
CImg
(
const t *const
data_buffer ,
const unsigned int
dx ,
const unsigned int
dy = 1
,
const unsigned int
dz = 1
,
const unsigned int
dc = 1
,
const bool
shared = false
)
Construct an image from a raw memory buffer.
This constructor creates an instance image of size (dx
,dy
,dz
,dc
) and fill its pixel buffer by copying data values from the input raw pixel buffer data_buffer
.
CImg
(
const char *const
filename
)
[explicit]
Construct an image from an image file.
This constructor creates an instance image by reading it from a file.
Parameters:
filename Filename of the image file.
Default copy constructor.
The default copy constructor creates a new instance image having same dimensions (width , height , depth , _spectrum) and same pixel values as the input image img
.
Parameters:
img The input image to copy.
CImg
(
const CImg < t > &
img ,
const bool
shared
)
Advanced copy constructor.
The advanced copy constructor - as the default constructor CImg(const CImg< t >&) - creates a new instance image having same dimensions width , height , depth , spectrum and same pixel values as the input image img
. But it also decides if the created instance image shares its memory with the input image img
(if the input parameter shared
is set to true
) or not (if the input parameter shared
is set to false
).
Parameters:
img The input image to copy.
shared Boolean flag that decides if the copy is shared on non-shared.
Member Function Documentation
In-place version of the default constructor (STL-compliant name).
This function is strictly equivalent to assign() and has been introduced for having a STL-compatible function name.
In-place version of the default constructor/destructor.
This function replaces the instance image by an empty image.
CImg <T>& assign
(
const unsigned int
dx ,
const unsigned int
dy = 1
,
const unsigned int
dz = 1
,
const unsigned int
dc = 1
)
In-place version of the previous constructor.
This function replaces the instance image by a new image of size (dx
,dy
,dz
,dc
) with pixels of type T
.
Parameters:
dx Desired size along the X-axis, i.e. the width of the image.
dy Desired size along the Y-axis, i.e. the height of the image.
dz Desired size along the Z-axis, i.e. the depth of the image.
dc Desired size along the C-axis, i.e. the number of image channels _spectrum
.
If one of the input dimension dx
,dy
,dz
or dc
is set to 0, the instance image becomes empty and all has its dimensions set to 0. No memory for pixel data is then allocated.
Memory buffer used to store previous pixel values is freed if necessary.
If the instance image is shared, this constructor actually does nothing more than verifying that new and old image dimensions fit.
Image pixels allocated by this function are not initialized . Use the function assign(const unsigned int,const unsigned int,const unsigned int,const unsigned int,const T) to assign an image of desired size with pixels set to a particular value.
CImg <T>& assign
(
const unsigned int
dx ,
const unsigned int
dy ,
const unsigned int
dz ,
const unsigned int
dc ,
const T
val
)
In-place version of the previous constructor.
This function replaces the instance image by a new image of size (dx
,dy
,dz
,dc
) with pixels of type T
and sets all pixel values of the instance image to val
.
Parameters:
dx Desired size along the X-axis, i.e. the width of the image.
dy Desired size along the Y-axis, i.e. the height of the image.
dz Desired size along the Z-axis, i.e. the depth of the image.
dc Desired size along the C-axis, i.e. the number of image channels _spectrum
.
val Default value for image pixels.
CImg <T>& assign
(
const char *const
filename
)
In-place version of the previous constructor.
This function replaces the instance image by the one that have been read from the given file.
Parameters:
filename Filename of the image file.
The image format is deduced from the filename only by looking for the filename extension i.e. without analyzing the file itself.
Recognized image formats depend on the tools installed on your system or the external libraries you use to link your code with. More informations on this topic can be found in cimg_files_io.
If the filename is not found, a CImgIOException is thrown by this constructor.
CImg <T>& assign
(
const CImg < t > &
img
)
In-place version of the default copy constructor.
This function assigns a copy of the input image img
to the current instance image.
Parameters:
img The input image to copy.
CImg <T>& assign
(
const CImg < t > &
img ,
const bool
shared
)
In-place version of the advanced constructor.
This function - as the simpler function assign(const CImg< t >&) - assigns a copy of the input image img
to the current instance image. But it also decides if the copy is shared (if the input parameter shared
is set to true
) or non-shared (if the input parameter shared
is set to false
).
Parameters:
img The input image to copy.
shared Boolean flag that decides if the copy is shared or non-shared.
Move the content of the instance image into another one in a way that memory copies are avoided if possible.
The instance image is always empty after a call to this function.
T& operator()
(
const unsigned int
x
)
Fast access to pixel value for reading or writing.
Parameters:
x X-coordinate of the pixel.
y Y-coordinate of the pixel.
z Z-coordinate of the pixel.
v C-coordinate of the pixel.
If one image dimension is equal to 1, it can be omitted in the coordinate list (see example below).
If the macro 'cimg_verbosity'>=3
, boundary checking is performed and warning messages may appear (but function performances decrease).
example: CImg<float> img(100,100,1,3,0);
const float valR = img(10,10,0,0);
const float valG = img(10,10,0,1);
const float valB = img(10,10,2);
const float avg = (valR + valG + valB)/3;
img(10,10,0) = img(10,10,1) = img(10,10,2) = avg;
CImg <T>& operator=
(
const T
val
)
Operator=().
Assignment operator. Fill all pixels of the instance image with the same value. The image size is not modified.
CImg <T>& operator=
(
const char *const
expression
)
Operator=().
Assignment operator. If expression
is a formula or a list of values, the image pixels are filled according to the expression and the image size is not modified. If expression
is a filename, the image is replaced by the input file data (image size is then modified).
CImg <T>& operator=
(
const CImg < t > &
img
)
Operator=().
Assignement operator. If instance image is non-shared, replace the instance image by a copy of the argument image. If instance image is shared, replace the image content by the content of the argument image.
CImg <T> operator+
(
)
const
static const char* pixel_type
(
)
[static]
Return the type of the pixel values.
Returns: a string describing the type of the image pixels (template parameter T
).
The string returned may contains spaces ("unsigned char"
).
If the template parameter T does not correspond to a registered type, the string "unknown"
is returned.
unsigned int size
(
)
const
Return the number of image buffer elements.
example: CImg<> img(100,100,1,3);
if (img.size()==100*100*3) std::fprintf(stderr,"This statement is true" );
T* data
(
const unsigned int
x ,
const unsigned int
y = 0
,
const unsigned int
z = 0
,
const unsigned int
c = 0
)
Return a pointer to the pixel value located at (x
,y
,z
,v
).
Parameters:
x X-coordinate of the pixel.
y Y-coordinate of the pixel.
z Z-coordinate of the pixel.
v C-coordinate of the pixel.
When called without parameters, data() returns a pointer to the begining of the pixel buffer.
If the macro 'cimg_verbosity'>=3
, boundary checking is performed and warning messages may appear if given coordinates are outside the image range (but function performances decrease).
example: CImg<float> img(100,100,1,1,0);
float *ptr = data (10,10);
float val = *ptr;
int offset
(
const int
x ,
const int
y = 0
,
const int
z = 0
,
const int
c = 0
)
const
Return the offset of the pixel coordinates (x
,y
,z
,v
) with respect to the data pointer data
.
Parameters:
x X-coordinate of the pixel.
y Y-coordinate of the pixel.
z Z-coordinate of the pixel.
v C-coordinate of the pixel.
No checking is done on the validity of the given coordinates.
Example: CImg<float> img(100,100,1,3,0);
long off = img.offset(10,10,0,2);
float val = img[off];
Tdouble variance
(
const unsigned int
variance_method = 1
)
const
double eval
(
const char *const
expression ,
const double
x = 0
,
const double
y = 0
,
const double
z = 0
,
const double
c = 0
)
const
Evaluate math expression.
If you make successive evaluations on the same image and with the same expression, you can set 'expr' to 0 after the first call, to skip the math parsing step.
static CImg <T> dijkstra
(
const tf &
distance ,
const unsigned int
nb_nodes ,
const unsigned int
starting_node ,
const unsigned int
ending_node ,
CImg < t > &
previous
)
[static]
Compute minimal path in a graph, using the Dijkstra algorithm.
Parameters:
distance An object having operator()(unsigned int i, unsigned int j) which returns distance between two nodes (i,j).
nb_nodes Number of graph nodes.
starting_node Indice of the starting node.
ending_node Indice of the ending node (set to ~0U to ignore ending node).
previous Array that gives the previous node indice in the path to the starting node (optional parameter).
Returns: Array of distances of each node to the starting node.
CImg <T>& dijkstra
(
const unsigned int
starting_node ,
const unsigned int
ending_node ,
CImg < t > &
previous
)
Return minimal path in a graph, using the Dijkstra algorithm.
Instance image corresponds to the adjacency matrix of the graph.
Parameters:
starting_node Indice of the starting node.
previous Array that gives the previous node indice in the path to the starting node (optional parameter).
Returns: Array of distances of each node to the starting node.
static CImg <floatT> streamline
(
const tfunc &
func ,
const float
x ,
const float
y ,
const float
z ,
const float
L = 256
,
const float
dl = 0.1f
,
const unsigned int
interpolation_type = 2
,
const bool
is_backward_tracking = false
,
const bool
is_oriented_only = false
,
const float
x0 = 0
,
const float
y0 = 0
,
const float
z0 = 0
,
const float
x1 = 0
,
const float
y1 = 0
,
const float
z1 = 0
)
[static]
Return stream line of a 3d vector field.
Parameters:
interpolation_type Type of interpolation (can be 0=nearest int, 1=linear, 2=2nd-order RK, 3=4th-order RK.
CImg <T>& fill
(
const T
val
)
Fill an image by a value val
.
Parameters:
Note: All pixel values of the instance image will be initialized by val
.
CImg <T>& round
(
const double
y = 1
,
const int
rounding_type = 0
)
Compute image with rounded pixel values.
Parameters:
y Rounding precision.
rounding_type Roundin type, can be 0 (nearest), 1 (forward), -1(backward).
CImg <T>& noise
(
const double
sigma ,
const unsigned int
noise_type = 0
)
Add random noise to the values of the instance image.
Parameters:
sigma Amplitude of the random additive noise. If sigma<0
, it stands for a percentage of the global value range.
noise_type Type of additive noise (can be 0=gaussian
, 1=uniform
, 2=Salt
and Pepper, 3=Poisson
or 4=Rician
).
Returns: A reference to the modified instance image.
Note:
For Poisson noise (noise_type=3
), parameter sigma
is ignored, as Poisson noise only depends on the image value itself.
Function CImg<T>::get_noise()
is also defined. It returns a non-shared modified copy of the instance image.
Sample code : const CImg<float> img("reference.jpg" ), res = img.get_noise(40);
(img,res.normalize(0,255)).display ();
CImg <T>& normalize
(
const T
value_min ,
const T
value_max
)
Linearly normalize values of the instance image between value_min
and value_max
.
Parameters:
value_min Minimum desired value of the resulting image.
value_max Maximum desired value of the resulting image.
Returns: A reference to the modified instance image.
Note:
Function CImg<T>::get_normalize()
is also defined. It returns a non-shared modified copy of the instance image.
Sample code : const CImg<float> img("reference.jpg" ), res = img.get_normalize(160,220);
(img,res).display ();
Normalize multi-valued pixels of the instance image, with respect to their L2-norm.
Returns: A reference to the modified instance image.
Note:
Function CImg<T>::get_normalize()
is also defined. It returns a non-shared modified copy of the instance image.
Sample code : const CImg<float> img("reference.jpg" ), res = img.get_normalize();
(img,res.normalize(0,255)).display ();
CImg <T>& norm
(
const int
norm_type = 2
)
Compute L2-norm of each multi-valued pixel of the instance image.
Parameters:
norm_type Type of computed vector norm (can be 0=Linf
, 1=L1
or 2=L2
).
Returns: A reference to the modified instance image.
Note:
Function CImg<T>::get_norm()
is also defined. It returns a non-shared modified copy of the instance image.
Sample code : const CImg<float> img("reference.jpg" ), res = img.get_norm();
(img,res.normalize(0,255)).display ();
CImg <T>& cut
(
const T
value_min ,
const T
value_max
)
Cut values of the instance image between value_min
and value_max
.
Parameters:
value_min Minimum desired value of the resulting image.
value_max Maximum desired value of the resulting image.
Returns: A reference to the modified instance image.
Note:
Function CImg<T>::get_cut()
is also defined. It returns a non-shared modified copy of the instance image.
Sample code : const CImg<float> img("reference.jpg" ), res = img.get_cut(160,220);
(img,res).display ();
CImg <T>& quantize
(
const unsigned int
nb_levels ,
const bool
keep_range = true
)
Uniformly quantize values of the instance image into nb_levels
levels.
Parameters:
nb_levels Number of quantization levels.
keep_range Tells if resulting values keep the same range as the original ones.
Returns: A reference to the modified instance image.
Note:
Function CImg<T>::get_quantize()
is also defined. It returns a non-shared modified copy of the instance image.
Sample code : const CImg<float> img("reference.jpg" ), res = img.get_quantize(4);
(img,res).display ();
CImg <T>& threshold
(
const T
value ,
const bool
soft_threshold = false
,
const bool
strict_threshold = false
)
Threshold values of the instance image.
Parameters:
value Threshold value
soft_threshold Tells if soft thresholding must be applied (instead of hard one).
strict_threshold Tells if threshold value is strict.
Returns: A reference to the modified instance image. Resulting pixel values are either equal to 0 or 1.
Note:
Function CImg<T>::get_threshold()
is also defined. It returns a non-shared modified copy of the instance image.
Sample code : const CImg<float> img("reference.jpg" ), res = img.get_threshold(128);
(img,res.normalize(0,255)).display ();
CImg <T>& histogram
(
const unsigned int
nb_levels ,
const T
value_min = (T)0
,
const T
value_max = (T)0
)
Compute the histogram of the instance image.
Parameters:
nb_levels Number of desired histogram levels.
value_min Minimum pixel value considered for the histogram computation. All pixel values lower than value_min
will not be counted.
value_max Maximum pixel value considered for the histogram computation. All pixel values higher than value_max
will not be counted.
Returns: Instance image is replaced by its histogram, defined as a CImg<T>(nb_levels)
image.
Note:
The histogram H of an image I is the 1d function where H(x) counts the number of occurences of the value x in the image I.
If value_min==value_max==0
(default behavior), the function first estimates the whole range of pixel values then uses it to compute the histogram.
The resulting histogram is always defined in 1d. Histograms of multi-valued images are not multi-dimensional.
Function CImg<T>::get_histogram()
is also defined. It returns a non-shared modified copy of the instance image.
Sample code : const CImg<float> img = CImg<float>("reference.jpg" ).histogram (256);
img.display_graph(0,3);
CImg <T>& equalize
(
const unsigned int
nb_levels ,
const T
value_min = (T)0
,
const T
value_max = (T)0
)
Compute the histogram-equalized version of the instance image.
Parameters:
nb_levels Number of histogram levels used for the equalization.
value_min Minimum pixel value considered for the histogram computation. All pixel values lower than value_min
will not be counted.
value_max Maximum pixel value considered for the histogram computation. All pixel values higher than value_max
will not be counted.
Returns: A reference to the modified instance image.
Note:
If value_min==value_max==0
(default behavior), the function first estimates the whole range of pixel values then uses it to equalize the histogram.
Function CImg<T>::get_equalize()
is also defined. It returns a non-shared modified copy of the instance image.
Sample code : const CImg<float> img("reference.jpg" ), res = img.get_equalize(256);
(img,res).display ();
CImg <T>& index
(
const CImg < t > &
palette ,
const bool
dithering = false
,
const bool
map_indexes = false
)
Index multi-valued pixels of the instance image, regarding to a predefined palette.
Parameters:
palette Multi-valued palette used as the basis for multi-valued pixel indexing.
dithering Tells if Floyd-Steinberg dithering is activated or not.
map_indexes Tell if the values of the resulting image are the palette indices or the palette vectors.
Returns: A reference to the modified instance image.
Note:
img.index(palette,dithering,1)
is equivalent to img.index(palette,dithering,0).map(palette)
.
Function CImg<T>::get_index()
is also defined. It returns a non-shared modified copy of the instance image.
Sample code : const CImg<float> img("reference.jpg" ), palette(3,1,1,3, 0,128,255, 0,128,255, 0,128,255);
const CImg<float> res = img.get_index(palette,true ,true );
(img,res).display ();
CImg <T>& map
(
const CImg < t > &
palette
)
Map predefined palette on the scalar (indexed) instance image.
Parameters:
palette Multi-valued palette used for mapping the indexes.
Returns: A reference to the modified instance image.
Note:
Function CImg<T>::get_map()
is also defined. It returns a non-shared modified copy of the instance image.
Sample code : const CImg<float> img("reference.jpg" ),
palette1(3,1,1,3, 0,128,255, 0,128,255, 0,128,255),
palette2(3,1,1,3, 255,0,0, 0,255,0, 0,0,255),
res = img.get_index(palette1,false ).map(palette2);
(img,res).display ();
CImg <T>& label
(
const bool
is_high_connectivity = false
,
const Tfloat
tolerance = 0
)
Label connected components.
Parameters:
is_high_connectivity Boolean that choose between 4(false)- or 8(true)-connectivity in 2d case, and between 6(false)- or 26(true)-connectivity in 3d case.
Note: The algorithm of connected components computation has been primarily done by A. Meijster, according to the publication : 'W.H. Hesselink, A. Meijster, C. Bron, "Concurrent Determination of Connected Components.", In: Science of Computer Programming 41 (2001), pp. 173--194'. The submitted code has then been modified to fit CImg coding style and constraints.
Convert color pixels from (R,G,B) to (H,S,I). Reference: "Digital Image Processing, 2nd. edition", R. Gonzalez and R. Woods. Prentice Hall, 2002.
Convert a (R,G,B) image to a Bayer-coded representation.
Note: First (upper-left) pixel if the red component of the pixel color.
CImg <T>& resize
(
const int
size_x ,
const int
size_y = -100
,
const int
size_z = -100
,
const int
size_c = -100
,
const int
interpolation_type = 1
,
const unsigned int
border_conditions = 0
,
const float
centering_x = 0
,
const float
centering_y = 0
,
const float
centering_z = 0
,
const float
centering_c = 0
)
Resize an image.
Parameters:
size_x Number of columns (new size along the X-axis).
size_y Number of rows (new size along the Y-axis).
size_z Number of slices (new size along the Z-axis).
size_c Number of vector-channels (new size along the C-axis).
interpolation_type Method of interpolation :
-1 = no interpolation : raw memory resizing.
0 = no interpolation : additional space is filled according to border_condition
.
1 = nearest-neighbor interpolation.
2 = moving average interpolation.
3 = linear interpolation.
4 = grid interpolation.
5 = bicubic interpolation.
6 = lanczos interpolation.
border_conditions Border condition type.
centering_x Set centering type (only if interpolation_type=0
).
centering_y Set centering type (only if interpolation_type=0
).
centering_z Set centering type (only if interpolation_type=0
).
centering_c Set centering type (only if interpolation_type=0
).
Note: If pd[x,y,z,v]<0, it corresponds to a percentage of the original size (the default value is -100).
CImg <T>& resize_doubleXY
(
)
CImg <T>& resize_tripleXY
(
)
CImg <T>& shift
(
const int
deltax ,
const int
deltay = 0
,
const int
deltaz = 0
,
const int
deltac = 0
,
const int
border_condition = 0
)
Shift the image.
Parameters:
deltax Amount of displacement along the X-axis.
deltay Amount of displacement along the Y-axis.
deltaz Amount of displacement along the Z-axis.
deltac Amount of displacement along the C-axis.
border_condition Border condition.
border_condition
can be :
0 : Zero border condition (Dirichlet).
1 : Nearest neighbors (Neumann).
2 : Repeat Pattern (Fourier style).
CImg <T>& permute_axes
(
const char *const
order
)
Permute axes order.
This function permutes image axes.
Parameters:
permut = String describing the permutation (4 characters).
CImg <T>& rotate
(
const float
angle ,
const unsigned int
border_conditions = 0
,
const unsigned int
interpolation = 1
)
Rotate an image.
Parameters:
angle = rotation angle (in degrees).
cond = rotation type. can be :
0 = zero-value at borders
1 = nearest pixel.
2 = cyclic.
Note: Returned image will probably have a different size than the instance image *this.
CImg <T>& rotate
(
const float
angle ,
const float
cx ,
const float
cy ,
const float
zoom ,
const unsigned int
border_conditions = 3
,
const unsigned int
interpolation = 1
)
Rotate an image around a center point (cx
,cy
).
Parameters:
angle = rotation angle (in degrees).
cx = X-coordinate of the rotation center.
cy = Y-coordinate of the rotation center.
zoom = zoom.
cond = rotation type. can be :
0 = zero-value at borders
1 = repeat image at borders
2 = zero-value at borders and linear interpolation
CImg <T>& crop
(
const int
x0 ,
const int
y0 ,
const int
z0 ,
const int
c0 ,
const int
x1 ,
const int
y1 ,
const int
z1 ,
const int
c1 ,
const bool
border_condition = false
)
Get a square region of the image.
Parameters:
x0 = X-coordinate of the upper-left crop rectangle corner.
y0 = Y-coordinate of the upper-left crop rectangle corner.
z0 = Z-coordinate of the upper-left crop rectangle corner.
c0 = C-coordinate of the upper-left crop rectangle corner.
x1 = X-coordinate of the lower-right crop rectangle corner.
y1 = Y-coordinate of the lower-right crop rectangle corner.
z1 = Z-coordinate of the lower-right crop rectangle corner.
c1 = C-coordinate of the lower-right crop rectangle corner.
border_condition = Dirichlet (false) or Neumann border conditions.
CImg <T>& crop
(
const int
x0 ,
const int
y0 ,
const int
z0 ,
const int
x1 ,
const int
y1 ,
const int
z1 ,
const bool
border_condition = false
)
Get a rectangular part of the instance image.
Parameters:
x0 = X-coordinate of the upper-left crop rectangle corner.
y0 = Y-coordinate of the upper-left crop rectangle corner.
z0 = Z-coordinate of the upper-left crop rectangle corner.
x1 = X-coordinate of the lower-right crop rectangle corner.
y1 = Y-coordinate of the lower-right crop rectangle corner.
z1 = Z-coordinate of the lower-right crop rectangle corner.
border_condition = determine the type of border condition if some of the desired region is outside the image.
CImg <T>& crop
(
const int
x0 ,
const int
y0 ,
const int
x1 ,
const int
y1 ,
const bool
border_condition = false
)
Get a rectangular part of the instance image.
Parameters:
x0 = X-coordinate of the upper-left crop rectangle corner.
y0 = Y-coordinate of the upper-left crop rectangle corner.
x1 = X-coordinate of the lower-right crop rectangle corner.
y1 = Y-coordinate of the lower-right crop rectangle corner.
border_condition = determine the type of border condition if some of the desired region is outside the image.
CImg <T>& crop
(
const int
x0 ,
const int
x1 ,
const bool
border_condition = false
)
Get a rectangular part of the instance image.
Parameters:
x0 = X-coordinate of the upper-left crop rectangle corner.
x1 = X-coordinate of the lower-right crop rectangle corner.
border_condition = determine the type of border condition if some of the desired region is outside the image.
CImgList <T> get_split
(
const CImg < t > &
values ,
const bool
keep_values ,
const bool
is_shared
)
const
Split image into a list of one-column vectors, according to specified sequence of splitting values.
Parameters:
values The splitting pattern of values.
keep_values Can be :
false : Discard splitting values in resulting list.
true : Keep splitting values as separate images in resulting list.
CImg <T>& correlate
(
const CImg < t > &
mask ,
const unsigned int
border_conditions = 1
,
const bool
is_normalized = false
)
Compute the correlation of the instance image by a mask.
The correlation of the instance image *this
by the mask mask
is defined to be :
res(x,y,z) = sum_{i,j,k} (*this)(x+i,y+j,z+k)*mask(i,j,k)
Parameters:
mask = the correlation kernel.
border_conditions = the border condition type (0=zero, 1=dirichlet)
is_normalized = enable local normalization.
CImg <T>& convolve
(
const CImg < t > &
mask ,
const unsigned int
border_conditions = 1
,
const bool
is_normalized = false
)
Compute the convolution of the image by a mask.
The result res
of the convolution of an image img
by a mask mask
is defined to be :
res(x,y,z) = sum_{i,j,k} img(x-i,y-j,z-k)*mask(i,j,k)
Parameters:
mask = the correlation kernel.
border_conditions = the border condition type (0=zero, 1=dirichlet)
is_normalized = enable local normalization.
CImg <T>& deriche
(
const float
sigma ,
const int
order = 0
,
const char
axis = 'x'
,
const bool
cond = true
)
Compute the result of the Deriche filter.
The Canny-Deriche filter is a recursive algorithm allowing to compute blurred derivatives of order 0,1 or 2 of an image.
CImg <T>& blur
(
const float
sigmax ,
const float
sigmay ,
const float
sigmaz ,
const bool
cond = true
)
Return a blurred version of the image, using a Canny-Deriche filter.
Blur the image with an anisotropic exponential filter (Deriche filter of order 0).
CImg <T>& blur_anisotropic
(
const CImg < t > &
G ,
const float
amplitude = 60
,
const float
dl = 0.8f
,
const float
da = 30
,
const float
gauss_prec = 2
,
const unsigned int
interpolation_type = 0
,
const bool
fast_approx = 1
)
Blur the image anisotropically following a field of diffusion tensors.
Parameters:
G = Field of square roots of diffusion tensors/vectors used to drive the smoothing.
amplitude = amplitude of the smoothing.
dl = spatial discretization.
da = angular discretization.
gauss_prec = precision of the gaussian function.
interpolation Used interpolation scheme (0 = nearest-neighbor, 1 = linear, 2 = Runge-Kutta)
fast_approx = Tell to use the fast approximation or not.
CImg <T>& blur_bilateral
(
const float
sigma_x ,
const float
sigma_y ,
const float
sigma_z ,
const float
sigma_r ,
const int
bgrid_x ,
const int
bgrid_y ,
const int
bgrid_z ,
const int
bgrid_r ,
const bool
interpolation_type = true
)
Blur an image using the bilateral filter.
Parameters:
sigma_x Amount of blur along the X-axis.
sigma_y Amount of blur along the Y-axis.
sigma_z Amount of blur along the Z-axis.
sigma_r Amount of blur along the range axis.
bgrid_x Size of the bilateral grid along the X-axis.
bgrid_y Size of the bilateral grid along the Y-axis.
bgrid_z Size of the bilateral grid along the Z-axis.
bgrid_r Size of the bilateral grid along the range axis.
interpolation_type Use interpolation for image slicing.
Note: This algorithm uses the optimisation technique proposed by S. Paris and F. Durand, in ECCV'2006 (extended for 3d volumetric images).
CImgList <Tfloat> get_gradient
(
const char *const
axes = 0
,
const int
scheme = 3
)
const
Compute the list of images, corresponding to the XY-gradients of an image.
Parameters:
scheme = Numerical scheme used for the gradient computation :
-1 = Backward finite differences
0 = Centered finite differences
1 = Forward finite differences
2 = Using Sobel masks
3 = Using rotation invariant masks
4 = Using Deriche recusrsive filter.
CImg <T>& displacement
(
const CImg < T > &
source ,
const float
smooth = 0.1f
,
const float
precision = 5.0f
,
const unsigned int
nb_scales = 0
,
const unsigned int
iteration_max = 10000
,
const bool
is_backward = false
)
Estimate a displacement field between specified source image and instance image.
Parameters:
is_backward : if false, match I2(X+U(X)) = I1(X), else match I2(X) = I1(X-U(X)).
CImg <T>& distance
(
const T
value ,
const unsigned int
metric = 2
)
Compute the distance transform according to a specified value.
The distance transform implementation has been submitted by A. Meijster, and implements the article 'W.H. Hesselink, A. Meijster, J.B.T.M. Roerdink, "A general algorithm for computing distance transforms in linear time.", In: Mathematical Morphology and its Applications to Image and Signal Processing, J. Goutsias, L. Vincent, and D.S. Bloomberg (eds.), Kluwer, 2000, pp. 331-340.' The submitted code has then been modified to fit CImg coding style and constraints.
CImg <T>& distance
(
const T
value ,
const CImg < t > &
metric_mask
)
Compute the chamfer distance transform according to a specified value, with a custom metric.
The algorithm code has been initially proposed by A. Meijster, and modified by D. Tschumperlé.
CImg <T>& haar
(
const char
axis ,
const bool
invert = false
,
const unsigned int
nb_scales = 1
)
Compute the Haar multiscale wavelet transform (monodimensional version).
Parameters:
axis Axis considered for the transform.
invert Set inverse of direct transform.
nb_scales Number of scales used for the transform.
CImg <T>& haar
(
const bool
invert = false
,
const unsigned int
nb_scales = 1
)
Compute the Haar multiscale wavelet transform.
Parameters:
invert Set inverse of direct transform.
nb_scales Number of scales used for the transform.
CImg <floatT> get_elevation3d
(
CImgList < tf > &
primitives ,
CImgList < tc > &
colors ,
const CImg < te > &
elevation
)
const
Create and return a 3d elevation of the instance image.
Parameters:
[out] primitives The returned list of the 3d object primitives (template type tf should be at least unsigned int ).
[out] colors The returned list of the 3d object colors.
elevation The input elevation map.
Returns: The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg<float> image (0<=i<=N-1).
Sample code : const CImg<float> img("reference.jpg" );
CImgList<unsigned int> faces3d;
CImgList<unsigned char> colors3d;
const CImg<float> points3d = img.get_elevation3d(faces3d,colors,img.get_norm()*0.2);
CImg<unsigned char>().display_object3d ("Elevation3d" ,points3d,faces3d,colors3d);
CImg <floatT> get_isoline3d
(
CImgList < tf > &
primitives ,
const float
isovalue ,
const int
size_x = -100
,
const int
size_y = -100
)
const
Create and return a isoline of the instance image as a 3d object.
Parameters:
[out] primitives The returned list of the 3d object primitives (template type tf should be at least unsigned int ).
isovalue The returned list of the 3d object colors.
size_x The number of subdivisions along the X-axis.
size_y The number of subdisivions along the Y-axis.
Returns: The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg<float> image (0<=i<=N-1).
Sample code : const CImg<float> img("reference.jpg" );
CImgList<unsigned int> faces3d;
const CImg<float> points3d = img.get_isoline3d(faces3d,100);
CImg<unsigned char>().display_object3d ("Isoline3d" ,points3d,faces3d,colors3d);
CImg <floatT> get_isosurface3d
(
CImgList < tf > &
primitives ,
const float
isovalue ,
const int
size_x = -100
,
const int
size_y = -100
,
const int
size_z = -100
)
const
Create and return a isosurface of the instance image as a 3d object.
Parameters:
[out] primitives The returned list of the 3d object primitives (template type tf should be at least unsigned int ).
isovalue The returned list of the 3d object colors.
size_x The number of subdivisions along the X-axis.
size_y The number of subdisivions along the Y-axis.
Returns: The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg<float> image (0<=i<=N-1).
Sample code : const CImg<float> img = CImg<unsigned char>("reference.jpg" ).resize (-100,-100,20);
CImgList<unsigned int> faces3d;
const CImg<float> points3d = img.get_isosurface3d(faces3d,100);
CImg<unsigned char>().display_object3d ("Isosurface3d" ,points3d,faces3d,colors3d);
static CImg <floatT> box3d
(
CImgList < tf > &
primitives ,
const float
size_x = 200
,
const float
size_y = 100
,
const float
size_z = 100
)
[static]
Create and return a 3d box object.
Parameters:
[out] primitives The returned list of the 3d object primitives (template type tf should be at least unsigned int ).
size_x The width of the box (dimension along the X-axis).
size_y The height of the box (dimension along the Y-axis).
size_z The depth of the box (dimension along the Z-axis).
Returns: The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg<float> image (0<=i<=N-1).
Sample code :
static CImg <floatT> cone3d
(
CImgList < tf > &
primitives ,
const float
radius = 50
,
const float
size_z = 100
,
const unsigned int
subdivisions = 24
)
[static]
Create and return a 3d cone.
Parameters:
[out] primitives The returned list of the 3d object primitives (template type tf should be at least unsigned int ).
radius The radius of the cone basis.
size_z The cone's height.
subdivisions The number of basis angular subdivisions.
Returns: The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg<float> image (0<=i<=N-1).
Sample code :
static CImg <floatT> cylinder3d
(
CImgList < tf > &
primitives ,
const float
radius = 50
,
const float
size_z = 100
,
const unsigned int
subdivisions = 24
)
[static]
Create and return a 3d cylinder.
Parameters:
[out] primitives The returned list of the 3d object primitives (template type tf should be at least unsigned int ).
radius The radius of the cylinder basis.
size_z The cylinder's height.
subdivisions The number of basis angular subdivisions.
Returns: The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg<float> image (0<=i<=N-1).
Sample code :
static CImg <floatT> torus3d
(
CImgList < tf > &
primitives ,
const float
radius1 = 100
,
const float
radius2 = 30
,
const unsigned int
subdivisions1 = 24
,
const unsigned int
subdivisions2 = 12
)
[static]
Create and return a 3d torus.
Parameters:
[out] primitives The returned list of the 3d object primitives (template type tf should be at least unsigned int ).
radius1 The large radius.
radius2 The small radius.
subdivisions1 The number of angular subdivisions for the large radius.
subdivisions2 The number of angular subdivisions for the small radius.
Returns: The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg<float> image (0<=i<=N-1).
Sample code :
static CImg <floatT> plane3d
(
CImgList < tf > &
primitives ,
const float
size_x = 100
,
const float
size_y = 100
,
const unsigned int
subdivisions_x = 10
,
const unsigned int
subdivisions_y = 10
)
[static]
Create and return a 3d XY-plane.
Parameters:
[out] primitives The returned list of the 3d object primitives (template type tf should be at least unsigned int ).
size_x The width of the plane (dimension along the X-axis).
size_y The height of the plane (dimensions along the Y-axis).
subdivisions_x The number of planar subdivisions along the X-axis.
subdivisions_y The number of planar subdivisions along the Y-axis.
Returns: The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg<float> image (0<=i<=N-1).
Sample code :
static CImg <floatT> sphere3d
(
CImgList < tf > &
primitives ,
const float
radius = 50
,
const unsigned int
subdivisions = 3
)
[static]
Create and return a 3d sphere.
Parameters:
[out] primitives The returned list of the 3d object primitives (template type tf should be at least unsigned int ).
radius The radius of the sphere (dimension along the X-axis).
subdivisions The number of recursive subdivisions from an initial icosahedron.
Returns: The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg<float> image (0<=i<=N-1).
Sample code :
static CImg <floatT> ellipsoid3d
(
CImgList < tf > &
primitives ,
const CImg < t > &
tensor ,
const unsigned int
subdivisions = 3
)
[static]
Create and return a 3d ellipsoid.
Parameters:
[out] primitives The returned list of the 3d object primitives (template type tf should be at least unsigned int ).
tensor The tensor which gives the shape and size of the ellipsoid.
subdivisions The number of recursive subdivisions from an initial stretched icosahedron.
Returns: The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg<float> image (0<=i<=N-1).
Sample code :
CImg <T>& draw_point
(
const int
x0 ,
const int
y0 ,
const tc *const
color ,
const float
opacity = 1
)
Draw a 2d colored point (pixel).
Parameters:
x0 X-coordinate of the point.
y0 Y-coordinate of the point.
color Pointer to spectrum()
consecutive values, defining the color values.
opacity Drawing opacity (optional).
Note:
Clipping is supported.
To set pixel values without clipping needs, you should use the faster CImg::operator()() function.
Example: CImg<unsigned char> img(100,100,1,3,0);
const unsigned char color[] = { 255,128,64 };
img.draw_point(50,50,color);
CImg <T>& draw_line
(
const int
x0 ,
const int
y0 ,
const int
x1 ,
const int
y1 ,
const tc *const
color ,
const float
opacity = 1
,
const unsigned int
pattern = ~0U
,
const bool
init_hatch = true
)
Draw a 2d colored line.
Parameters:
x0 X-coordinate of the starting line point.
y0 Y-coordinate of the starting line point.
x1 X-coordinate of the ending line point.
y1 Y-coordinate of the ending line point.
color Pointer to spectrum()
consecutive values of type T
, defining the drawing color.
opacity Drawing opacity (optional).
pattern An integer whose bits describe the line pattern (optional).
init_hatch Flag telling if a reinitialization of the hash state must be done (optional).
Note:
Clipping is supported.
Line routine uses Bresenham's algorithm.
Set init_hatch
= false to draw consecutive hatched segments without breaking the line pattern.
Example: CImg<unsigned char> img(100,100,1,3,0);
const unsigned char color[] = { 255,128,64 };
img.draw_line(40,40,80,70,color);
CImg <T>& draw_line
(
const int
x0 ,
const int
y0 ,
const int
x1 ,
const int
y1 ,
const CImg < tc > &
texture ,
const int
tx0 ,
const int
ty0 ,
const int
tx1 ,
const int
ty1 ,
const float
opacity = 1
,
const unsigned int
pattern = ~0U
,
const bool
init_hatch = true
)
Draw a 2d textured line.
Parameters:
x0 X-coordinate of the starting line point.
y0 Y-coordinate of the starting line point.
x1 X-coordinate of the ending line point.
y1 Y-coordinate of the ending line point.
texture Texture image defining the pixel colors.
tx0 X-coordinate of the starting texture point.
ty0 Y-coordinate of the starting texture point.
tx1 X-coordinate of the ending texture point.
ty1 Y-coordinate of the ending texture point.
opacity Drawing opacity (optional).
pattern An integer whose bits describe the line pattern (optional).
init_hatch Flag telling if the hash variable must be reinitialized (optional).
Note:
Clipping is supported but not for texture coordinates.
Line routine uses the well known Bresenham's algorithm.
Example: CImg<unsigned char> img(100,100,1,3,0), texture("texture256x256.ppm" );
const unsigned char color[] = { 255,128,64 };
img.draw_line(40,40,80,70,texture,0,0,255,255);
CImg <T>& draw_line
(
const CImg < t > &
points ,
const tc *const
color ,
const float
opacity = 1
,
const unsigned int
pattern = ~0U
,
const bool
init_hatch = true
)
Draw a set of consecutive colored lines in the instance image.
Parameters:
points Coordinates of vertices, stored as a list of vectors.
color Pointer to spectrum()
consecutive values of type T
, defining the drawing color.
opacity Drawing opacity (optional).
pattern An integer whose bits describe the line pattern (optional).
init_hatch If set to true, init hatch motif.
Note:
This function uses several call to the single CImg::draw_line() procedure, depending on the vectors size in points
.
Example: CImg<unsigned char> img(100,100,1,3,0);
const unsigned char color[] = { 255,128,64 };
CImgList<int> points;
points.insert(CImg<int>::vector(0,0)).
.insert(CImg<int>::vector(70,10)).
.insert(CImg<int>::vector(80,60)).
.insert(CImg<int>::vector(10,90));
img.draw_line(points,color);
CImg <T>& draw_arrow
(
const int
x0 ,
const int
y0 ,
const int
x1 ,
const int
y1 ,
const tc *const
color ,
const float
opacity = 1
,
const float
angle = 30
,
const float
length = -10
,
const unsigned int
pattern = ~0U
)
Draw a colored arrow in the instance image.
Parameters:
x0 X-coordinate of the starting arrow point (tail).
y0 Y-coordinate of the starting arrow point (tail).
x1 X-coordinate of the ending arrow point (head).
y1 Y-coordinate of the ending arrow point (head).
color Pointer to spectrum()
consecutive values of type T
, defining the drawing color.
angle Aperture angle of the arrow head (optional).
length Length of the arrow head. If negative, describes a percentage of the arrow length (optional).
opacity Drawing opacity (optional).
pattern An integer whose bits describe the line pattern (optional).
Note:
CImg <T>& draw_spline
(
const int
x0 ,
const int
y0 ,
const float
u0 ,
const float
v0 ,
const int
x1 ,
const int
y1 ,
const float
u1 ,
const float
v1 ,
const tc *const
color ,
const float
opacity = 1
,
const float
precision = 0.25
,
const unsigned int
pattern = ~0U
,
const bool
init_hatch = true
)
Draw a cubic spline curve in the instance image.
Parameters:
x0 X-coordinate of the starting curve point
y0 Y-coordinate of the starting curve point
u0 X-coordinate of the starting velocity
v0 Y-coordinate of the starting velocity
x1 X-coordinate of the ending curve point
y1 Y-coordinate of the ending curve point
u1 X-coordinate of the ending velocity
v1 Y-coordinate of the ending velocity
color Pointer to spectrum()
consecutive values of type T
, defining the drawing color.
precision Curve drawing precision (optional).
opacity Drawing opacity (optional).
pattern An integer whose bits describe the line pattern (optional).
init_hatch If true
, init hatch motif.
Note:
The curve is a 2d cubic Bezier spline, from the set of specified starting/ending points and corresponding velocity vectors.
The spline is drawn as a serie of connected segments. The precision
parameter sets the average number of pixels in each drawn segment.
A cubic Bezier curve is sometimes defined by a set of 4 points { (x0
,y0
), (xa
,ya
), (xb
,yb
), (x1
,y1
) } where (x0
,y0
) is the starting point, (x1
,y1
) is the ending point and (xa
,ya
), (xb
,yb
) are two control points. The starting and ending velocities (u0
,v0
) and (u1
,v1
) can be deduced easily from the control points as u0
= (xa
- x0
), v0
= (ya
- y0
), u1
= (x1
- xb
) and v1
= (y1
- yb
).
Example: CImg<unsigned char> img(100,100,1,3,0);
const unsigned char color[] = { 255,255,255 };
img.draw_spline(30,30,0,100,90,40,0,-100,color);
CImg <T>& draw_spline
(
const int
x0 ,
const int
y0 ,
const int
z0 ,
const float
u0 ,
const float
v0 ,
const float
w0 ,
const int
x1 ,
const int
y1 ,
const int
z1 ,
const float
u1 ,
const float
v1 ,
const float
w1 ,
const tc *const
color ,
const float
opacity = 1
,
const float
precision = 4
,
const unsigned int
pattern = ~0U
,
const bool
init_hatch = true
)
Draw a cubic spline curve in the instance image (for volumetric images).
Note:
CImg <T>& draw_spline
(
const int
x0 ,
const int
y0 ,
const float
u0 ,
const float
v0 ,
const int
x1 ,
const int
y1 ,
const float
u1 ,
const float
v1 ,
const CImg < t > &
texture ,
const int
tx0 ,
const int
ty0 ,
const int
tx1 ,
const int
ty1 ,
const float
opacity = 1
,
const float
precision = 4
,
const unsigned int
pattern = ~0U
,
const bool
init_hatch = true
)
Draw a cubic spline curve in the instance image.
Parameters:
x0 X-coordinate of the starting curve point
y0 Y-coordinate of the starting curve point
u0 X-coordinate of the starting velocity
v0 Y-coordinate of the starting velocity
x1 X-coordinate of the ending curve point
y1 Y-coordinate of the ending curve point
u1 X-coordinate of the ending velocity
v1 Y-coordinate of the ending velocity
texture Texture image defining line pixel colors.
tx0 X-coordinate of the starting texture point.
ty0 Y-coordinate of the starting texture point.
tx1 X-coordinate of the ending texture point.
ty1 Y-coordinate of the ending texture point.
precision Curve drawing precision (optional).
opacity Drawing opacity (optional).
pattern An integer whose bits describe the line pattern (optional).
init_hatch if true
, reinit hatch motif.
CImg <T>& draw_triangle
(
const int
x0 ,
const int
y0 ,
const int
x1 ,
const int
y1 ,
const int
x2 ,
const int
y2 ,
const tc *const
color ,
const float
brightness0 ,
const float
brightness1 ,
const float
brightness2 ,
const float
opacity = 1
)
Draw a 2d Gouraud-shaded colored triangle.
Parameters:
x0 = X-coordinate of the first corner in the instance image.
y0 = Y-coordinate of the first corner in the instance image.
x1 = X-coordinate of the second corner in the instance image.
y1 = Y-coordinate of the second corner in the instance image.
x2 = X-coordinate of the third corner in the instance image.
y2 = Y-coordinate of the third corner in the instance image.
color = array of spectrum() values of type T
, defining the global drawing color.
brightness0 = brightness of the first corner (in [0,2]).
brightness1 = brightness of the second corner (in [0,2]).
brightness2 = brightness of the third corner (in [0,2]).
opacity = opacity of the drawing.
Note: Clipping is supported.
CImg <T>& draw_triangle
(
const int
x0 ,
const int
y0 ,
const int
x1 ,
const int
y1 ,
const int
x2 ,
const int
y2 ,
const CImg < tc > &
texture ,
const int
tx0 ,
const int
ty0 ,
const int
tx1 ,
const int
ty1 ,
const int
tx2 ,
const int
ty2 ,
const float
opacity = 1
,
const float
brightness = 1
)
Draw a 2d textured triangle.
Parameters:
x0 = X-coordinate of the first corner in the instance image.
y0 = Y-coordinate of the first corner in the instance image.
x1 = X-coordinate of the second corner in the instance image.
y1 = Y-coordinate of the second corner in the instance image.
x2 = X-coordinate of the third corner in the instance image.
y2 = Y-coordinate of the third corner in the instance image.
texture = texture image used to fill the triangle.
tx0 = X-coordinate of the first corner in the texture image.
ty0 = Y-coordinate of the first corner in the texture image.
tx1 = X-coordinate of the second corner in the texture image.
ty1 = Y-coordinate of the second corner in the texture image.
tx2 = X-coordinate of the third corner in the texture image.
ty2 = Y-coordinate of the third corner in the texture image.
opacity = opacity of the drawing.
brightness = brightness of the drawing (in [0,2]).
Note: Clipping is supported, but texture coordinates do not support clipping.
CImg <T>& draw_triangle
(
const int
x0 ,
const int
y0 ,
const int
x1 ,
const int
y1 ,
const int
x2 ,
const int
y2 ,
const tc *const
color ,
const CImg < tl > &
light ,
const int
lx0 ,
const int
ly0 ,
const int
lx1 ,
const int
ly1 ,
const int
lx2 ,
const int
ly2 ,
const float
opacity = 1
)
Draw a 2d Pseudo-Phong-shaded triangle.
Parameters:
x0 = X-coordinate of the first corner in the instance image.
y0 = Y-coordinate of the first corner in the instance image.
x1 = X-coordinate of the second corner in the instance image.
y1 = Y-coordinate of the second corner in the instance image.
x2 = X-coordinate of the third corner in the instance image.
y2 = Y-coordinate of the third corner in the instance image.
color = array of spectrum() values of type T
, defining the global drawing color.
light = light image.
lx0 = X-coordinate of the first corner in the light image.
ly0 = Y-coordinate of the first corner in the light image.
lx1 = X-coordinate of the second corner in the light image.
ly1 = Y-coordinate of the second corner in the light image.
lx2 = X-coordinate of the third corner in the light image.
ly2 = Y-coordinate of the third corner in the light image.
opacity = opacity of the drawing.
Note: Clipping is supported, but texture coordinates do not support clipping.
CImg <T>& draw_triangle
(
const int
x0 ,
const int
y0 ,
const int
x1 ,
const int
y1 ,
const int
x2 ,
const int
y2 ,
const CImg < tc > &
texture ,
const int
tx0 ,
const int
ty0 ,
const int
tx1 ,
const int
ty1 ,
const int
tx2 ,
const int
ty2 ,
const float
brightness0 ,
const float
brightness1 ,
const float
brightness2 ,
const float
opacity = 1
)
Draw a 2d Gouraud-shaded textured triangle.
Parameters:
x0 = X-coordinate of the first corner in the instance image.
y0 = Y-coordinate of the first corner in the instance image.
x1 = X-coordinate of the second corner in the instance image.
y1 = Y-coordinate of the second corner in the instance image.
x2 = X-coordinate of the third corner in the instance image.
y2 = Y-coordinate of the third corner in the instance image.
texture = texture image used to fill the triangle.
tx0 = X-coordinate of the first corner in the texture image.
ty0 = Y-coordinate of the first corner in the texture image.
tx1 = X-coordinate of the second corner in the texture image.
ty1 = Y-coordinate of the second corner in the texture image.
tx2 = X-coordinate of the third corner in the texture image.
ty2 = Y-coordinate of the third corner in the texture image.
brightness0 = brightness value of the first corner.
brightness1 = brightness value of the second corner.
brightness2 = brightness value of the third corner.
opacity = opacity of the drawing.
Note: Clipping is supported, but texture coordinates do not support clipping.
CImg <T>& draw_triangle
(
const int
x0 ,
const int
y0 ,
const int
x1 ,
const int
y1 ,
const int
x2 ,
const int
y2 ,
const CImg < tc > &
texture ,
const int
tx0 ,
const int
ty0 ,
const int
tx1 ,
const int
ty1 ,
const int
tx2 ,
const int
ty2 ,
const CImg < tl > &
light ,
const int
lx0 ,
const int
ly0 ,
const int
lx1 ,
const int
ly1 ,
const int
lx2 ,
const int
ly2 ,
const float
opacity = 1
)
Draw a 2d Pseudo-Phong-shaded textured triangle.
Parameters:
x0 = X-coordinate of the first corner in the instance image.
y0 = Y-coordinate of the first corner in the instance image.
x1 = X-coordinate of the second corner in the instance image.
y1 = Y-coordinate of the second corner in the instance image.
x2 = X-coordinate of the third corner in the instance image.
y2 = Y-coordinate of the third corner in the instance image.
texture = texture image used to fill the triangle.
tx0 = X-coordinate of the first corner in the texture image.
ty0 = Y-coordinate of the first corner in the texture image.
tx1 = X-coordinate of the second corner in the texture image.
ty1 = Y-coordinate of the second corner in the texture image.
tx2 = X-coordinate of the third corner in the texture image.
ty2 = Y-coordinate of the third corner in the texture image.
light = light image.
lx0 = X-coordinate of the first corner in the light image.
ly0 = Y-coordinate of the first corner in the light image.
lx1 = X-coordinate of the second corner in the light image.
ly1 = Y-coordinate of the second corner in the light image.
lx2 = X-coordinate of the third corner in the light image.
ly2 = Y-coordinate of the third corner in the light image.
opacity = opacity of the drawing.
Note: Clipping is supported, but texture coordinates do not support clipping.
CImg <T>& draw_rectangle
(
const int
x0 ,
const int
y0 ,
const int
z0 ,
const int
c0 ,
const int
x1 ,
const int
y1 ,
const int
z1 ,
const int
c1 ,
const T
val ,
const float
opacity = 1
)
Draw a 4d filled rectangle in the instance image, at coordinates (x0
,y0
,z0
,c0
)-(x1
,y1
,z1
,c1
).
Parameters:
x0 X-coordinate of the upper-left rectangle corner.
y0 Y-coordinate of the upper-left rectangle corner.
z0 Z-coordinate of the upper-left rectangle corner.
c0 C-coordinate of the upper-left rectangle corner.
x1 X-coordinate of the lower-right rectangle corner.
y1 Y-coordinate of the lower-right rectangle corner.
z1 Z-coordinate of the lower-right rectangle corner.
c1 C-coordinate of the lower-right rectangle corner.
val Scalar value used to fill the rectangle area.
opacity Drawing opacity (optional).
Note:
CImg <T>& draw_rectangle
(
const int
x0 ,
const int
y0 ,
const int
z0 ,
const int
x1 ,
const int
y1 ,
const int
z1 ,
const tc *const
color ,
const float
opacity = 1
)
Draw a 3d filled colored rectangle in the instance image, at coordinates (x0
,y0
,z0
)-(x1
,y1
,z1
).
Parameters:
x0 X-coordinate of the upper-left rectangle corner.
y0 Y-coordinate of the upper-left rectangle corner.
z0 Z-coordinate of the upper-left rectangle corner.
x1 X-coordinate of the lower-right rectangle corner.
y1 Y-coordinate of the lower-right rectangle corner.
z1 Z-coordinate of the lower-right rectangle corner.
color Pointer to spectrum()
consecutive values of type T
, defining the drawing color.
opacity Drawing opacity (optional).
Note:
CImg <T>& draw_rectangle
(
const int
x0 ,
const int
y0 ,
const int
x1 ,
const int
y1 ,
const tc *const
color ,
const float
opacity = 1
)
Draw a 2d filled colored rectangle in the instance image, at coordinates (x0
,y0
)-(x1
,y1
).
Parameters:
x0 X-coordinate of the upper-left rectangle corner.
y0 Y-coordinate of the upper-left rectangle corner.
x1 X-coordinate of the lower-right rectangle corner.
y1 Y-coordinate of the lower-right rectangle corner.
color Pointer to spectrum()
consecutive values of type T
, defining the drawing color.
opacity Drawing opacity (optional).
Note:
CImg <T>& draw_circle
(
const int
x0 ,
const int
y0 ,
int
radius ,
const tc *const
color ,
const float
opacity = 1
)
Draw a filled circle.
Parameters:
x0 X-coordinate of the circle center.
y0 Y-coordinate of the circle center.
radius Circle radius.
color Array of spectrum() values of type T
, defining the drawing color.
opacity Drawing opacity.
Note:
Circle version of the Bresenham's algorithm is used.
CImg <T>& draw_circle
(
const int
x0 ,
const int
y0 ,
int
radius ,
const tc *const
color ,
const float
opacity ,
const unsigned
int
)
Draw an outlined circle.
Parameters:
x0 X-coordinate of the circle center.
y0 Y-coordinate of the circle center.
radius Circle radius.
color Array of spectrum() values of type T
, defining the drawing color.
opacity Drawing opacity.
CImg <T>& draw_ellipse
(
const int
x0 ,
const int
y0 ,
const float
r1 ,
const float
r2 ,
const float
angle ,
const tc *const
color ,
const float
opacity = 1
)
Draw a filled ellipse.
Parameters:
x0 = X-coordinate of the ellipse center.
y0 = Y-coordinate of the ellipse center.
r1 = First radius of the ellipse.
r2 = Second radius of the ellipse.
angle = Angle of the first radius.
color = array of spectrum() values of type T
, defining the drawing color.
opacity = opacity of the drawing.
CImg <T>& draw_ellipse
(
const int
x0 ,
const int
y0 ,
const CImg < t > &
tensor ,
const tc *const
color ,
const float
opacity = 1
)
Draw a filled ellipse.
Parameters:
x0 = X-coordinate of the ellipse center.
y0 = Y-coordinate of the ellipse center.
tensor = Diffusion tensor describing the ellipse.
color = array of spectrum() values of type T
, defining the drawing color.
opacity = opacity of the drawing.
CImg <T>& draw_ellipse
(
const int
x0 ,
const int
y0 ,
const float
r1 ,
const float
r2 ,
const float
angle ,
const tc *const
color ,
const float
opacity ,
const unsigned int
pattern
)
Draw an outlined ellipse.
Parameters:
x0 = X-coordinate of the ellipse center.
y0 = Y-coordinate of the ellipse center.
r1 = First radius of the ellipse.
r2 = Second radius of the ellipse.
ru = X-coordinate of the orientation vector related to the first radius.
rv = Y-coordinate of the orientation vector related to the first radius.
color = array of spectrum() values of type T
, defining the drawing color.
pattern = If zero, the ellipse is filled, else pattern is an integer whose bits describe the outline pattern.
opacity = opacity of the drawing.
CImg <T>& draw_ellipse
(
const int
x0 ,
const int
y0 ,
const CImg < t > &
tensor ,
const tc *const
color ,
const float
opacity ,
const unsigned int
pattern
)
Draw an outlined ellipse.
Parameters:
x0 = X-coordinate of the ellipse center.
y0 = Y-coordinate of the ellipse center.
tensor = Diffusion tensor describing the ellipse.
color = array of spectrum() values of type T
, defining the drawing color.
opacity = opacity of the drawing.
CImg <T>& draw_image
(
const int
x0 ,
const int
y0 ,
const int
z0 ,
const int
c0 ,
const CImg < t > &
sprite ,
const float
opacity = 1
)
Draw an image.
Parameters:
sprite Sprite image.
x0 X-coordinate of the sprite position.
y0 Y-coordinate of the sprite position.
z0 Z-coordinate of the sprite position.
c0 C-coordinate of the sprite position.
opacity Drawing opacity (optional).
Note:
CImg <T>& draw_image
(
const int
x0 ,
const int
y0 ,
const int
z0 ,
const int
c0 ,
const CImg < ti > &
sprite ,
const CImg < tm > &
mask ,
const float
opacity = 1
,
const float
mask_valmax = 1
)
Draw a sprite image in the instance image (masked version).
Parameters:
sprite Sprite image.
mask Mask image.
x0 X-coordinate of the sprite position in the instance image.
y0 Y-coordinate of the sprite position in the instance image.
z0 Z-coordinate of the sprite position in the instance image.
c0 C-coordinate of the sprite position in the instance image.
mask_valmax Maximum pixel value of the mask image mask
(optional).
opacity Drawing opacity.
Note:
Pixel values of mask
set the opacity of the corresponding pixels in sprite
.
Clipping is supported.
Dimensions along x,y and z of sprite
and mask
must be the same.
CImg <T>& draw_text
(
const int
x0 ,
const int
y0 ,
const char *const
text ,
const tc1 *const
foreground_color ,
const tc2 *const
background_color ,
const float
opacity ,
const CImgList < t > &
font ,
...
)
Draw a text.
Parameters:
x0 X-coordinate of the text in the instance image.
y0 Y-coordinate of the text in the instance image.
foreground_color Array of spectrum() values of type T
, defining the foreground color (0 means 'transparent').
background_color Array of spectrum() values of type T
, defining the background color (0 means 'transparent').
font Font used for drawing text.
opacity Drawing opacity.
format 'printf'-style format string, followed by arguments.
Note: Clipping is supported.
CImg <T>& draw_text
(
const int
x0 ,
const int
y0 ,
const char *const
text ,
const tc1 *const
foreground_color ,
const tc2 *const
background_color ,
const float
opacity = 1
,
const unsigned int
font_height = 13
,
...
)
Draw a text.
Parameters:
x0 X-coordinate of the text in the instance image.
y0 Y-coordinate of the text in the instance image.
foreground_color Array of spectrum() values of type T
, defining the foreground color (0 means 'transparent').
background_color Array of spectrum() values of type T
, defining the background color (0 means 'transparent').
font_size Size of the font (exact match for 13,24,32,57).
opacity Drawing opacity.
format 'printf'-style format string, followed by arguments.
Note: Clipping is supported.
CImg <T>& draw_quiver
(
const CImg < t1 > &
flow ,
const t2 *const
color ,
const float
opacity = 1
,
const unsigned int
sampling = 25
,
const float
factor = -20
,
const bool
arrows = true
,
const unsigned int
pattern = ~0U
)
Draw a vector field in the instance image, using a colormap.
Parameters:
flow Image of 2d vectors used as input data.
color Image of spectrum() -D vectors corresponding to the color of each arrow.
sampling Length (in pixels) between each arrow.
factor Length factor of each arrow (if <0, computed as a percentage of the maximum length).
opacity Opacity of the drawing.
pattern Used pattern to draw lines.
Note: Clipping is supported.
CImg <T>& draw_quiver
(
const CImg < t1 > &
flow ,
const CImg < t2 > &
color ,
const float
opacity = 1
,
const unsigned int
sampling = 25
,
const float
factor = -20
,
const bool
arrows = true
,
const unsigned int
pattern = ~0U
)
Draw a vector field in the instance image, using a colormap.
Parameters:
flow Image of 2d vectors used as input data.
color Image of spectrum() -D vectors corresponding to the color of each arrow.
sampling Length (in pixels) between each arrow.
factor Length factor of each arrow (if <0, computed as a percentage of the maximum length).
opacity Opacity of the drawing.
pattern Used pattern to draw lines.
Note: Clipping is supported.
CImg <T>& draw_axis
(
const CImg < t > &
xvalues ,
const int
y ,
const tc *const
color ,
const float
opacity = 1
,
const unsigned int
pattern = ~0U
)
Draw a labeled horizontal axis on the instance image.
Parameters:
xvalues Lower bound of the x-range.
y Y-coordinate of the horizontal axis in the instance image.
color Array of spectrum() values of type T
, defining the drawing color.
opacity Drawing opacity.
pattern Drawing pattern.
opacity_out Drawing opacity of 'outside' axes.
Note: if precision==0
, precision of the labels is automatically computed.
CImg <T>& draw_graph
(
const CImg < t > &
data ,
const tc *const
color ,
const float
opacity = 1
,
const unsigned int
plot_type = 1
,
const int
vertex_type = 1
,
const double
ymin = 0
,
const double
ymax = 0
,
const unsigned int
pattern = ~0U
)
Draw a 1d graph on the instance image.
Parameters:
data Image containing the graph values I = f(x).
color Array of spectrum() values of type T
, defining the drawing color.
opacity Drawing opacity.
plot_type Define the type of the plot :
0 = No plot.
1 = Plot using segments.
2 = Plot using cubic splines.
3 = Plot with bars.
vertex_type Define the type of points :
0 = No points.
1 = Point.
2 = Straight cross.
3 = Diagonal cross.
4 = Filled circle.
5 = Outlined circle.
6 = Square.
7 = Diamond.
ymin Lower bound of the y-range.
ymax Upper bound of the y-range.
pattern Drawing pattern.
Note:
if ymin==ymax==0
, the y-range is computed automatically from the input samples.
CImg <T>& draw_fill
(
const int
x ,
const int
y ,
const int
z ,
const tc *const
color ,
const float
opacity ,
CImg < t > &
region ,
const float
sigma = 0
,
const bool
high_connexity = false
)
Draw a 3d filled region starting from a point (x
,y
,\ z) in the instance image.
Parameters:
x X-coordinate of the starting point of the region to fill.
y Y-coordinate of the starting point of the region to fill.
z Z-coordinate of the starting point of the region to fill.
color An array of spectrum() values of type T
, defining the drawing color.
region Image that will contain the mask of the filled region mask, as an output.
sigma Tolerance concerning neighborhood values.
opacity Opacity of the drawing.
high_connexity Tells if 8-connexity must be used (only for 2d images).
Returns: region
is initialized with the binary mask of the filled region.
CImg <T>& draw_fill
(
const int
x ,
const int
y ,
const int
z ,
const tc *const
color ,
const float
opacity = 1
,
const float
sigma = 0
,
const bool
high_connexity = false
)
Draw a 3d filled region starting from a point (x
,y
,\ z) in the instance image.
Parameters:
x = X-coordinate of the starting point of the region to fill.
y = Y-coordinate of the starting point of the region to fill.
z = Z-coordinate of the starting point of the region to fill.
color = an array of spectrum() values of type T
, defining the drawing color.
sigma = tolerance concerning neighborhood values.
opacity = opacity of the drawing.
CImg <T>& draw_fill
(
const int
x ,
const int
y ,
const tc *const
color ,
const float
opacity = 1
,
const float
sigma = 0
,
const bool
high_connexity = false
)
Draw a 2d filled region starting from a point (x
,y
) in the instance image.
Parameters:
x = X-coordinate of the starting point of the region to fill.
y = Y-coordinate of the starting point of the region to fill.
color = an array of spectrum() values of type T
, defining the drawing color.
sigma = tolerance concerning neighborhood values.
opacity = opacity of the drawing.
CImg <T>& draw_plasma
(
const int
x0 ,
const int
y0 ,
const int
x1 ,
const int
y1 ,
const float
alpha = 1
,
const float
beta = 1
,
const float
opacity = 1
)
Draw a plasma random texture.
Parameters:
x0 = X-coordinate of the upper-left corner of the plasma.
y0 = Y-coordinate of the upper-left corner of the plasma.
x1 = X-coordinate of the lower-right corner of the plasma.
y1 = Y-coordinate of the lower-right corner of the plasma.
alpha = Alpha-parameter of the plasma.
beta = Beta-parameter of the plasma.
opacity = opacity of the drawing.
CImg <T>& draw_plasma
(
const float
alpha = 1
,
const float
beta = 1
,
const float
opacity = 1
)
Draw a plasma random texture.
Parameters:
alpha = Alpha-parameter of the plasma.
beta = Beta-parameter of the plasma.
opacity = opacity of the drawing.
CImg <T>& draw_gaussian
(
const float
xc ,
const float
sigma ,
const tc *const
color ,
const float
opacity = 1
)
Draw a 1d gaussian function in the instance image.
Parameters:
xc = X-coordinate of the gaussian center.
sigma = Standard variation of the gaussian distribution.
color = array of spectrum() values of type T
, defining the drawing color.
opacity = opacity of the drawing.
CImg <T>& draw_gaussian
(
const float
xc ,
const float
yc ,
const CImg < t > &
tensor ,
const tc *const
color ,
const float
opacity = 1
)
Draw an anisotropic 2d gaussian function.
Parameters:
xc = X-coordinate of the gaussian center.
yc = Y-coordinate of the gaussian center.
tensor = 2x2 covariance matrix.
color = array of spectrum() values of type T
, defining the drawing color.
opacity = opacity of the drawing.
CImg <T>& draw_gaussian
(
const float
xc ,
const float
yc ,
const float
sigma ,
const tc *const
color ,
const float
opacity = 1
)
Draw an isotropic 2d gaussian function.
Parameters:
xc = X-coordinate of the gaussian center.
yc = Y-coordinate of the gaussian center.
sigma = standard variation of the gaussian distribution.
color = array of spectrum() values of type T
, defining the drawing color.
opacity = opacity of the drawing.
CImg <T>& draw_gaussian
(
const float
xc ,
const float
yc ,
const float
zc ,
const CImg < t > &
tensor ,
const tc *const
color ,
const float
opacity = 1
)
Draw an anisotropic 3d gaussian function.
Parameters:
xc = X-coordinate of the gaussian center.
yc = Y-coordinate of the gaussian center.
zc = Z-coordinate of the gaussian center.
tensor = 3x3 covariance matrix.
color = array of spectrum() values of type T
, defining the drawing color.
opacity = opacity of the drawing.
CImg <T>& draw_gaussian
(
const float
xc ,
const float
yc ,
const float
zc ,
const float
sigma ,
const tc *const
color ,
const float
opacity = 1
)
Draw an isotropic 3d gaussian function.
Parameters:
xc = X-coordinate of the gaussian center.
yc = Y-coordinate of the gaussian center.
zc = Z-coordinate of the gaussian center.
sigma = standard variation of the gaussian distribution.
color = array of spectrum() values of type T
, defining the drawing color.
opacity = opacity of the drawing.
CImg <T>& draw_object3d
(
const float
x0 ,
const float
y0 ,
const float
z0 ,
const CImg < tp > &
vertices ,
const CImgList < tf > &
primitives ,
const CImgList < tc > &
colors ,
const CImg < to > &
opacities ,
const unsigned int
render_type = 4
,
const bool
double_sided = false
,
const float
focale = 500
,
const float
lightx = 0
,
const float
lighty = 0
,
const float
lightz = -5e8
,
const float
specular_light = 0.2f
,
const float
specular_shine = 0.1f
)
Draw a 3d object.
Parameters:
X = X-coordinate of the 3d object position
Y = Y-coordinate of the 3d object position
Z = Z-coordinate of the 3d object position
vertices = Image Nx3 describing 3d point coordinates
primitives = List of P primitives
colors = List of P color (or textures)
opacities = Image or list of P opacities
render_type = Render type (0=Points, 1=Lines, 2=Faces (no light), 3=Faces (flat), 4=Faces(Gouraud)
double_sided = Tell if object faces have two sides or are oriented.
focale = length of the focale (0 for parallel projection)
lightx = X-coordinate of the light
lighty = Y-coordinate of the light
lightz = Z-coordinate of the light
specular_shine = Shininess of the object
CImg <T>& select
(
CImgDisplay &
disp ,
const unsigned int
feature_type = 2
,
unsigned int *const
XYZ = 0
)
Simple interface to select a shape from an image.
Parameters:
selection Array of 6 values containing the selection result
feature_type Determine feature to select (0=point, 1=vector, 2=rectangle, 3=circle)
disp Display window used to make the selection
XYZ Initial XYZ position (for volumetric images only)
color Color of the shape selector.
CImg <T>& load
(
const char *const
filename
)
Load an image from a file.
Parameters:
filename is the name of the image file to load.
Note: The extension of filename
defines the file format. If no filename extension is provided, CImg<T>::get_load() will try to load a .cimg file.
CImg <T>& load_tiff
(
const char *const
filename ,
const unsigned int
first_frame = 0
,
const unsigned int
last_frame = ~0U
,
const unsigned int
step_frame = 1
)
Load an image from a TIFF file.
libtiff support is enabled by defining the precompilation directive cimg_use_tif.
When libtiff is enabled, 2D and 3D (multipage) several channel per pixel are supported for char,uchar,short,ushort,float and double pixel type.
See also: CImg<T> & load_other(const char*)
CImg<T> & save_tiff(const char*, const unsigned int)
const CImg <T>& print
(
const char *const
title = 0
,
const bool
display_stats = true
)
const
Display informations about the image on the standard error output.
Parameters:
title Name for the considered image (optional).
display_stats Compute and display image statistics (optional).
const CImg <T>& save
(
const char *const
filename ,
const int
number = -1
)
const
Save the image as a file.
The used file format is defined by the file extension in the filename filename
. Parameter number
can be used to add a 6-digit number to the filename before saving.
const CImg <T>& save_tiff
(
const char *const
filename ,
const unsigned int
compression = 0
)
const
Save a file in TIFF format.
libtiff support is enabled by defining the precompilation directive cimg_use_tif.
When libtiff is enabled, 2D and 3D (multipage) several channel per pixel are supported for char,uchar,short,ushort,float and double pixel type.
If cimg_use_tif is not defined at compilation time the function uses CImg<T>&save_other(const char*).
Parameters:
compression 1:None, 2:CCITTRLE, 3:CCITTFAX3, 4:CCITTFAX4, 5:LZW, 6:JPEG
See also: CImg<T> & save_other(const char*)
CImg<T> & load_tiff(const char*)
const CImg <T>& save_graphicsmagick_external
(
const char *const
filename ,
const unsigned int
quality = 100
)
const
Save the image using GraphicsMagick's gm.
Function that saves the image for other file formats that are not natively handled by CImg , using the tool 'gm' from the GraphicsMagick package.
This is the case for all compressed image formats (GIF,PNG,JPG,TIF, ...). You need to install the GraphicsMagick package in order to get this function working properly (see http://www.graphicsmagick.org ).
const CImg <T>& save_imagemagick_external
(
const char *const
filename ,
const unsigned int
quality = 100
)
const
Save the image using ImageMagick's convert.
Function that saves the image for other file formats that are not natively handled by CImg , using the tool 'convert' from the ImageMagick package.
This is the case for all compressed image formats (GIF,PNG,JPG,TIF, ...). You need to install the ImageMagick package in order to get this function working properly (see http://www.imagemagick.org ).