
MBROLA

March 12th, 2000

"It would be a considerable invention indeed, that of a machine able
to mimic speech, with its sounds and articulations. I think it is not
impossible." Leonhard Euler (1761)

by Vincent Pagel and Thierry Dutoit

Contents

1 MBROLA Sources General condition of use 2

2 A brief description of MBROLA 2

3 Distribution 3

4 Installation and Tests 6
4.1 On Unix . 6
4.2 On PCs/Dos . 8
4.3 On PC/Windows . 8

4.3.1 Black magic . 9
4.4 Using the standalone binary . 9

4.4.1 Changing the pitch . 11
4.4.2 Using Pipes . 12
4.4.3 Renaming and Cloning phonemes 12

4.5 Machine dependant hints for best using Mbrola 13
4.5.1 On MSDOS . 13
4.5.2 On modern Unix systems such as Solaris or HPUX or Linux 13
4.5.3 On Sun4 (old audio interface) 13
4.5.4 On VAX or AXP workstations 14

4.6 Default Parser Manual . 14
4.6.1 Input �le format . 14
4.6.2 Changing the Frequency Ratio or Time Ratio 15
4.6.3 Flush the output stream 15
4.6.4 Limitations of MBROLA 16

1

5 Programmer's Manual 16
5.1 Philosophy and architecture . 16
5.2 Encapsulation of Object's attributes 16

5.2.1 Inheritance and Polymorphism 17
5.2.2 Inheritance and cross-reference graph 18

6 Application Programming Interface 18
6.1 One channel mode . 19

6.1.1 Multi channel mode . 20
6.1.2 Designing and plugging your own parser 21

6.2 Mbrola architecture . 23

1 MBROLA Sources General condition of use

The source code of MBROLA may only be used to produce the object code sold
by your company. It is con�dential and should remain safely locked, as well as
its documentation.

2 A brief description of MBROLA

MBROLA v3.01 is a speech synthesizer based on the concatenation of diphones.
One synthesis channel takes a list of phonemes as input, together with prosodic
information (duration of phonemes and a piecewise linear description of pitch),
and produces speech samples on 16 bits (linear), at the sampling frequency of
the diphone database. It is therefore not a Text-To-Speech synthesizer, since
it does not accept raw text as input.

It is distributed as a ZIP �le whose name respect the format "mbrXXXX.zip"
where XXXX represent the version number (e.g. "mbr3.01e.zip").

It may be compiled in 3 modes depending on which stream drives the process:

• Driven by the input phonetic �le: it is compiled as a standalone program
named "synth" which outputs audio in a �le or a pipe. This mode is a good
choice under Unix platforms for end-user applications. In the following we
call this mode "standalone mode".

• Driven by the audio output: compiled as a library, which outputs audio
data into bu�ers of the size, requested by the main program. This al-
lows you to easily include MBROLA inside your TTS application without
temporary �le mechanisms. In the following we call this mode "library
mode".

• Same as above, included in a DLL for Windows95-98/NT (which is of
course the preferred mode for Windows platforms). In the following we
call this mode "DLL mode".

While using library or DLL mode, we now di�erentiate one channel and multi
channel mbrola. In the �rst mode, one database is associated to one and only one
synthesis channel, which generally �ts for end-user applications. In the second

2

mode, one can run many synthesis channel instantiations with one or more
Database instances and many phonetic input streams. This second solution is
adapted to multi channel telecom TTS applications.

In all those compilation modes MBROLA requires a language/voice database
to run properly. For your internal use (i.e. non-commercial) you can test the
voices made available on the MBROLA project homepage:

http://tcts.fpms.ac.be/synthesis

Refer to your contract to check your rights for commercial exploitation of
the di�erent Diphone Databases.

3 Distribution

Since release 3.01, Mbrola has been transformed into pure ANSI/C code, and
object like programming with a strong encapsulation of data (strong because
we have respected the fences we put!). One �le in the distribution is gener-
ally equivalent to one object (pointer on struct). You can �nd an exhaustive
description in the programmer's section 6.

This distribution of MBROLA contains the following �les:

Make�le: Unix make�le for Gnu Make (gmake command)

DOCUMENTATION/Programmer/documentation302: this document

DOCUMENTATION/Programmer/HISTORY.txt: history of revisions

DOCUMENTATION/User/readme.txt: standalone version manual

Database: handling of di�erent database formats

Database/database.c: functions to read diphones in the speech database

Database/database.h

Database/database_bacon.c: functions to read compressed diphone databases

Database/database_bacon.h

Database/database_old.c: functions to read diphone databases older than
2.06

Database/database_old.h

Database/diphone_info.c: description of the diphone structures

Database/diphone_info.h

3

Database/hash_tab.c: hash table of DiphoneInfo (access to the diphone
database)

Database/hash_tab.h

Database/little_big.c: handles the little and big endian numeric conversions

Database/little_big.h

Database/rename_list.c: list of phoneme pairs (used for renaming and cloning)

Database/rename_list.h

Parser: functions to read phonemes in the input stream

Parser/�fo.c: First In First Out with chars

Parser/�fo.h

Parser/input.h: de�ne abstract input stream

Parser/input_�fo.c: instantiation of input.h with Fifo

Parser/input_�fo.h

Parser/input_�le.c: instantiation of input.h with File

Parser/input_�le.h

Parser/parser.h: de�ne abstract phoneme parser

Parser/parser_input.c: instantiation of parser.h with Input

Parser/parser_input.h

Parser/phonbu�.c: handle a phoneme bu�er for pitch interpolation

Parser/phonbu�.h

Parser/phone.c: phoneme type

Parser/phone.h

Engine: Mbrola synthesis engine

Engine/diphone.c: diphone with info for synthesis

Engine/diphone.h

Engine/mbrola.c: mbrola algorithm (Ola, Smoothing...)

4

Engine/mbrola.h

Misc: Miscellaneous functions basically unrelated to synthesis

Misc/audio.c: audio output and audio �le header (au, wav, ai�, raw)

Misc/audio.h

Misc/common.c: useful little functions (uppercase, swab...)

Misc/common.h

Misc/g711.c: G711 audio coding (ALAW and MULAW)

Misc/g711.h

Misc/incdll.h: external de�nitions used outside of the Mbrola package

Misc/mbralloc.c: memory allocators are here and ONLY here

Misc/mbralloc.h

Misc/vp_error.c: deals with fatal error and warnings

Misc/vp_error.h: macros for debugging purposes

Standalone: Standalone compilation front-end

Standalone/Posix

Standalone/Posix/getopt.c: provided for non-POSIX Unixes

Standalone/Posix/getopt.h

Standalone/synth.c: front-end for the compilation in the standalone mode.
Main()

Standalone/synth.h

LibOneChannel: library providing one MBROLA synthesis channel

LibOneChannel/demo1.c: small demonstration program running with the
library

LibOneChannel/demo1b.c: small demo showing error handling with the li-
brary

LibOneChannel/onechannel.c: library providing one mbrola channel at a
time

LibOneChannel/onechannel.h

LibOneChannel/lib1.c: wrapper �le to build the library lib1.c (mono chan-
nel)

5

LibMultiChannel: library for multi MBROLA synthesis channel for telecom

LibMultiChannel/multichannel.c: many synthesis channel from one dba

LibMultiChannel/multichannel.h

LibMultiChannel/demo2.c: demo using lib2

LibMultiChannel/lib2.c: wrapper �le to build the library lib2.c (multi chan-
nel)

VisualC++: compilation projects for Microsoft Visual C++

VisualC++/DLL: Visual C++ project to build the DLL

VisualC++/DLL_USE: sample program using the DLL

VisualC++/Standalone: Visual C++ project to build a standalone binary

Bin: directory containing the output of the compilation with Make under Unix
architectures.

4 Installation and Tests

4.1 On Unix

You must �rst unzip the distribution �le mbrXXXX.zip where XXXX stand for
the version number:

unzip mbrXXXX.zip

Mbrola can be compiled with the 'gmake' (gnu make) command on the follow-
ing platforms:

• SUN Sparc 5/S5R4 (Solaris2.4)

• HPUX9.0 and HPUX10.0

• VAX/VMS V6.2 (V5.5-2 won't work)

• DECALPHA(AXP)/VMS 6.2

• AlphaStation 200 4/233

• AlphaStation 200 4/166

• IBM RS6000 Aix 4.12

• PC/LINUX 1.2.11

• PCPentium120/Solaris2.4

6

• OS/2

• BeBox

• QNX OS

Though, as Mbrola is written in standard ANSI/C, we also support POSIX
compliant UNIX Platforms. Please send acknowledgment when Mbrola works
on a machine/system not listed here. Before you compile anything you must
de�ne some symbols depending on the architecture you're working with:

LITTLE_ENDIAN R© 80x86 based platforms

BIG_ENDIAN R© motorola or HP based platforms

VMS R© VAX/VMS stations

DOS R© PC80x86 with Dos or Windows

SUN4 R© old Sun4 stations (not Posix compliant)

DEBUG R© Huge debugging �ag

DEBUG_HASH R© Runs the database and print info about the hash table
management (used to tune the memory management of the database)

According to the compilation mode you wish, you can comment or uncomment
following lines of Make�le :

#CFLAGS += -DDEBUG

#CFLAGS += -DDEBUG_HASH

#CFLAGS += -DLITTLE_ENDIAN

CFLAGS += -DBIG_ENDIAN

You can add any de�nitions to the CFLAGS (compilation �ags) variable of the
Make�le, as in the following example:

optimized compilation on a Sun Station :

CFLAGS= -Wall -DBIG_ENDIAN -O6

debug mode on a VAX/VMS :

CFLAGS= -Wall -DLITTLE_ENDIAN -DVMS -g -DDEBUG

By default the compiler is set with CC = gcc ; though on many platforms cc may
also work. As the hardware manufacturer generally provides cc, it is preferred
when possible since the object code performance can be higher by an order of
magnitude. You can type :

"make" or "make all" to generate the 'synth' binary (standalone mode).

"make clean" removes the entire object �les and binaries.

"make lib1" compiles lib1.c in the library mode (one channel synth)

7

"make demo1" builds a demo exemplifying the use of lib1

"make lib2" compiles lib1.c in the library mode (multi channel synth)

"make demo2" builds a demo exemplifying the use of lib2

"make tags" to build Emacs popular tags (helps �nding your way through the
code with ESC-.). SUN Workshop uses an internal btags program for
that purpose.

The intermediate object code goes into a Bin directory that is created on the
occasion.

4.2 On PCs/Dos

On PC/Dos platforms, use "pkunzip synthXXXX.zip" to restore the �les (don't
forget to restore the embedded paths in the archive). Mbrola can be compiled
with Microsoft Visual C++ (4 .0 or higher), or Borland C++ (4 .5 or higher),
on the following platforms:

• PC486/DOS6 (but other PC/DOS should do, too)

• PC486/Windows 3.1

• PC486/Windows 95

• PC-Pentium/Windows 98

• PC-Pentium/Windows NT

Always check that in your project the following preprocessor directives are de-
�ned: LITTLE_ENDIAN and DOS. A project to build such a release with
Visual C++ is provided under VisualC++/Standalone.

4.3 On PC/Windows

First proceed like for the PC/DOS platforms. Once synthXXXX is installed you
can start building a DLL in the VisualC++\DLL directory. MbrolaDll.dsw is a
Microsoft VisualC++ 5.0 project �le to build a DLL. In any project you make to
build a DLL with Mbrola don't forget to de�ne the DLL, LITTLE_ENDIAN,
DOS preprocessor de�nitions.

The Mbrola source �les and a wrapper DLL interface is included in the
project, it should compile smoothly. In case you have to build a new project from
scratch remember that you should include only �le from either LibOneChannel/
or LibMultiChannel/. Never include �les from Standalone/, as this directory is
only relevant for a standalone mode (see section above for an exe binary).

Several compilation modes are available, the "Win32 Bacon Static" is a good
one to start with (Bacon compression scheme is included, DLL are statically
linked).

In the directory VisualC++/DLL_USE , little sample programs are given
that use the Mbrola DLL.

8

4.3.1 Black magic

There is a strange bug in Visual C++ 5.0, when you compile the project you
sometime get:

Linking...

nafxcw.lib(dllmodul.cbj) : error LNK2005: _DllMain@12 already
de�ned in LIBCMT.lib(dllmain.cbj)

nafxcw.lib(afxmem.cbj) : error LNK2005: "void * __cdecl operator
new(unsigned int)" (??2@YAPAXI@Z) already de�ned in LIBCMT.lib(new.cbj)

nafxcw.lib(afxmem.cbj) : error LNK2005: "void __cdecl operator
delete(void *)" (??3@YAXPAX@Z) already de�ned in LIBCMT.lib(delete.cbj)

nafxcw.lib(dllmodul.cbj) : warning LNK4006: _DllMain@12 already
de�ned in LIBCMT.lib(dllmain.cbj); second de�nition ignored

nafxcw.lib(afxmem.cbj) : warning LNK4006: "void * __cdecl oper-
ator new(unsigned int)" (??2@YAPAXI@Z) already de�ned in LIBCMT.lib(new.cbj);
second de�nition ignored

nafxcw.lib(afxmem.cbj) : warning LNK4006: "void __cdecl opera-
tor delete(void *)" (??3@YAXPAX@Z) already de�ned in LIBCMT.lib(delete.cbj);
second de�nition ignored

Creating library MbrolaDl/Mbrola.lib and object MbrolaDl/Mbrola.exp

Output\Release_Static\Mbrola.dll : fatal error LNK1169: one or
more multiply de�ned symbols found

Error executing link.exe.

Mbrola.dll - 4 error(s), 7 warning(s)

Solution: remove one �le from the project and include it again in the list of
source �les, and build the project again. The problem vanishes.

4.4 Using the standalone binary

You are now ready to test the program. First try: "synth" to get an information
screen about the copyright. Then, for a help screen on how to use the standalone
version of the software, try :

synth -h

You get a help screen like the following:

> USAGE: ./synth [COMMAND LINE OPTIONS] database
pho_�le+ output_�le

>
>A - instead of pho_�le or output_�le means stdin or stdout
>Extension of output_�le (raw, au, wav, ai�) tells the wanted

audio format
>
> Options can be any of the following:
> -i = display the database information if any

9

> -e = IGNORE fatal errors on unknown diphone
> -c CC = set COMMENT char (escape sequence in pho �les)
> -F FC = set FLUSH command name
> -v VR = VOLUME ratio, �oat ratio applied to ouput samples
> -f FR = FREQ ratio, �oat ratio applied to pitch points
> -t TR = TIME ratio, �oat ratio applied to phone durations
> -l VF = VOICE freq, target freq for voice quality
> -R RL = Phoneme RENAME list of the form a A b B ...
> -C CL = Phoneme CLONE list of the form a A b B ...
>
> -I IF = Initialization �le containing one command per line
> CLONE, RENAME, VOICE, TIME, FREQ, VOLUME, FLUSH,
> COMMENT, and IGNORE are available

Now in order to go further, you need to get a version of an MBROLA lan-
guage/voice database from the MBROLA project homepage. Let us assume
you have copied the FR1 database and referred to the accompanying fr1.txt �le
for its installation. Then try:

synth fr1/fr1 fr1/TEST/bonjour.pho bonjour.wav

it uses the format:

synth diphone_database command_�le1 command_�le2 ... out-
put_�le

and creates a sound �le for the word 'bonjour' (Hello! in French)

Basically the output �le is composed of signed integer numbers on 16 bits,
corresponding to samples at the sampling frequency of the MBROLA voice/language
database (16 kHz for the diphone database supplied by the authors of MBROLA
: Fr1). MBROLA can produce di�erent audio �le formats: .au, .wav, .ai�, .aif,
and .raw �les depending on the ouput_�le extension. If the extension is not
recognized, the format is RAW (no header). We recommend .wav for Windows,
and .au for Unix platforms. To display information about the phoneme set used
by the database, type:

synth -i fr1/fr1

It displays the phonetic alphabet as well as copyright information about the
database.

Option -e makes Mbrola ignore wrong or missing diphone sequences (replaced
by silence) which can be quite useful when debugging your TTS. Equivalent to
"IGNORE" directive in the initialization �le (N.B replace the obsolete ;;E=OFF
, unsupported in .pho �le).

10

4.4.1 Changing the pitch

Optional parameters let you shorten or lengthen synthetic speech and transpose
it by providing optional time and frequency ratios:

synth -t 1.2 -f 0.8 -v 0.7 fr1/fr1 TEST/bonjour.pho bonjour.wav

or its equivalent in the initialization �le:

TIME 1.2
FREQ 0.8

for instance, will result in a RIFF Wav �le bonjour.wav 1.2 times longer than
the previous one (slower rate), and containing speech in which all fundamental
frequency values have been multiplied by 0.8 (sounds lower). You can also set
the values of these coe�cients directly in a .pho �le by adding special escape
sequence like :

;; F=0.8
;; T=1.2

You can change the voice characteristics with the -l parameter. If the sampling
rate of your database is 16000, indicating -l 18000 allows you to shorten the
vocal tract by a ratio 16/18 (children voice, or women voice depending on the
voice you're working on). With -l 10000,you can lengthen the vocal tract by a
ratio 18/10 (namely the voice of a Troll). The same command in an initialization
�le becomes "VOICE 10000".

Option -v gives a VolumeRatio that multiplies each output sample. In the
example below, each sample is multiplied by 0.7 (the loudness goes down).
Warning: setting VolumeRatio too high generates saturation.

synth -v 0.7 fr1/fr1 TEST/bonjour.pho bonjour.wav

or add the line "VOLUME 0.7" in an initialization �le

The -c option lets you specify which symbol will be used as an escape se-
quence for comments and commands in .pho �les. The default value is the
semi-colon ';', but you may want to change this if your phonetic alphabet use
this symbol, like in:

synth -c ! fr1/fr1 TEST/test1.pho test2.pho test.wav

equivalent to "COMMENT !" in an initialization �le

The -F option lets you specify which symbol will be used to Flush the audio
output. The default value is #, you may want to change the symbol like in:

mbrola -F FLUSH_COMMAND fr1/fr1 test.pho test.wav

equivalent to "FLUSH FLUSH_COMMAND" in the initialization �le.

11

4.4.2 Using Pipes

A - instead of command_�le or output_�le means stdin or stdout. On multi-
tasking machines, it is easy to run the synthesizer in real time to obtain audio
output from the audio device, by using pipes.

4.4.3 Renaming and Cloning phonemes

It may happen that the language-processing module connected to MBROLA
doesn't use the same phonemic alphabet as the voice used. The Renaming and
Cloning mechanisms help you to quickly solve such problems (without adding
extra CPU load). The only limitation about phoneme names is that they can't
contain blank characters.

If, for instance, phoneme a in the mbrola voice you use is called my_a in
your alphabet, and phoneme b is called my_b, then the following command
solves the problem:

synth -R "a my_a b my_b" fr1/fr1 test.pho test.wav

You can give as many renaming pairs as you want. Circular de�nition is not a
problem. E.g. "a b b c" will rename original [a] into [b] and original [b] into
[c] independently ([a] won't be renamed to [c]).

LIMITATION: you can't rename a phoneme into another that already exists.

The cloning mechanism does exactly the same thing, though the old phoneme
still exists after renaming. This is useful if you have 2 allophones in your alpha-
bet, but the Mbrola voice only provides one.

Imagine for instance, that you make the distinction between the voiced [r]
and its unvoiced counterpart [r0] and that you are using a syllabic version [r=].
If as a �rst approximation using [r] for both is OK, then you may use an Mbrola
voice that only provides one version of [r] by running:

synth -C "r r0 r r=" fr1/fr1 test.pho test.wav

which tells the synthesizer that [r0] and [r=] should be both synthesized as [r].
You can write a long cloning list of phoneme pairs to �t your needs.

Renaming and cloning eats CPU since the complete diphone hash table has
to be rebuilt, but once the renaming or cloning has occurred there is absolutely
NO RELATED PERFORMANCE DROP. So using this feature is more e�cient
than a pre-processor is, though a simple phoneme mapping cannot always solve
incompatibilities.

Before renaming anything as #, check section 5.1.2

When one has long cloning and renaming lists, you can conveniently write
them into an initialization �le according to the following format:

12

RENAME a my_a
RENAME b my_b
CLONE r r0
CLONE r r=

The obsolete ";; RENAME a my_a" can't be used in .pho �le anymore,
but is correctly parsed in initialization �les. Note to EN1 and MRPA users:
the consequence of the change above is that you must change the previous call
format "mbrola en1 en1mrpa..." into "mbrola -I en1mrpa en1 ...".

4.5 Machine dependant hints for best using Mbrola

4.5.1 On MSDOS

With the standalone version, generating wav �les is easier:

synth fr1/fr1 TEST/bonjour.pho bonjour.wav

Then you can play the RIFF Wav �le with your favorite DOS or Windows
sound utility. On OS/2 pipes may be used just like below.

4.5.2 On modern Unix systems such as Solaris or HPUX or Linux

Type:

synth fr1 bonjour.pho -.au | audioplay

where audioplay is your audio �le player (* the name vary with the platform,
e.g. splayer for HPUX *).

If your audioplayer has problems with sun .AU �les, try with .wav or .raw.
Never use .wav format when you pipe the output (mbrola can't rewind the �le
to write the audio size in the header). Wav format was not developed for Unix
(on the contrary Au format let you specify in the header "we're on a pipe, read
until end of �le").

NOTE FOR LINUX: you can use the GPL rawplay program provided at

ftp://tcts.fpms.ac.be/pub/mbrola/pclinux/

4.5.3 On Sun4 (old audio interface)

Those machines are now quite old and only provide a mulaw 8Khz output. A
hack is:

synth fr1 input.pho - | sox -t raw -sw -r 16000 - -t raw -Ub -r
8000 - > /dev/audio

Provided you have the public domain sox utility developed by Ircam, you should
hear 'bonjour' without the need to create intermediate �les. Note that we
strongly recommend that you DON'T use SOX, since its resampling method
(linear interpolation) will permanently damage the sound.

Other solution: The UTILITY.ZIP �le available from the MBROLA home-
page provides RAW2SUN that does this conversion.

13

4.5.4 On VAX or AXP workstations

To make it easier for users to �nd MBROLA, you should add the following
command to your system startup procedure:

$ DEFINE/SYSTEM/EXEC MBROLA_DIR disk:[dir]

where "disk:[dir]" is the name of the directory you created for the MBROLA_DIR
�les. You could also add the following command to your system login command
procedure:

$ MBROLA :== $MBROLA_DIR:MBROLA.EXE
$ RAW2SUN :== $MBROLA_DIR:RAW2SUN.EXE

to use the decsound device:

$ MCR DECSOUND - volume 40 -play sound.au

See also the MBR_OLA.COM batch �le in the UTILITY.ZIP �le available from
the MBROLA Homepage if you cannot play 16 bits sound �les on your machine.

4.6 Default Parser Manual

The default parser is the parser that was provided before release 3.01. Implic-
itly it means that you can replace it with your own one, thanks to the set-
Parser_MBR function. Basically the work of the parser is to return to Mbrola
a phoneme with a length, and its pitch points.

We provide a default parser that allows you to give optional pitch points,
the intonation curve being linearly interpolated between those points.

4.6.1 Input �le format

Example of a command line :

synth fr1/fr1 bonjour.pho bonjour.wav

For example the phonetic input �le bonjour.pho simply contains :

; Bonjour
_ 51 25 114
b 62
o� 127 48 170.42
Z 110 53.5 116
u 211
R 150 50 91
_ 91

This shows the format of the input data required by MBROLA. Each line con-
tains a phoneme name, a duration (in ms), and a series (possibly none) of pitch
pattern points composed of two �oat numbers each: the position of the pitch
pattern point within the phoneme (in % of its total duration), and the pitch
value (in Hz) at this position.

Hence, the second line of bonjour.pho :

14

_ 51 25 114

tells the synthesizer to produce a silence of 51 ms, and to put a pitch pattern
point of 114 Hz at 25% of 51 ms. Pitch pattern points de�ne a piecewise
linear pitch curve. Notice that the pitch pattern they de�ne is continuous, since
the program automatically drops pitch information when synthesizing unvoiced
phones.

Blank characters or tabs separate the data on each line. Comments can
optionally be introduced in command �les, starting with a semi-colon ';'. This
default can be overrun with the -c option of the command line.

Another special escape sequence ';;' allow the user to introduce commands
in the middle of .pho �les as described below. This escape sequence is also
a�ected by the -c option.

4.6.2 Changing the Frequency Ratio or Time Ratio

A command escape sequence containing a line like "T=x.x" modi�es the time
ratio to x.x, the same result is obtained on the fundamental frequency by re-
placing T with F, like in:

;; T = 1.2
;;F=0.8

4.6.3 Flush the output stream

Note, �nally, that the synthesizer outputs chunks of synthetic speech determined
as sections of the piecewise linear pitch curve. Phones inside a section of this
curve are synthesized in one go. The last one of each chunk, however, cannot
be properly synthesized while the next phone is not known (since the program
uses diphones as base speech units). When using mbrola with pipes, this may
be a problem. Imagine, for instance, that mbrola is used to create a pipe-based
speaking clock on a HP:

speaking_clock | mbrola fr1 - -.au | splayer

which tells the time, say, every 30 seconds. The last phone of each time an-
nouncement will only be synthesized when the next announcement starts. To
bypass this problem, mbrola accepts a special command phone, which �ushes
the synthesis bu�er : "#"

This default character can be replaced by another symbol thanks to the
command:

;; FLUSH new_�ush_symbol

Another important issue with piping under UNIX, is the possibility to prema-
turely end the audio output, if for example the user presses the stop button of
your application. Since release 3.01, Mbrola handles signals.

If in the previous example the user wants to interrupt the speaking clock
message, the application just needs to send the USR1 signal. You can send such
a signal from the console with:

15

kill -16 mbrola_process_number

Once mbrola catches the signal, it reads its input stream until it gets EOF or a
FLUSH command (hence, surrounding sections with �ush is a good habit).

4.6.4 Limitations of MBROLA

There is no more limitation on the number of pitch points one can assign to
a phoneme, or on the number of phonemes without pitch points. There is no
more limitation on extra low pitch (sometime used to produce vocal fry).

Phonemes can be synthesized with a maximum duration that depends on the
fundamental frequency with which they are produced. The higher the frequency,
the lower the duration. For a frequency of 133 Hz, the maximum duration is
7.5 sec. For a frequency of 66.5 Hz, is 5 sec. For a frequency of 266 Hz, is 3.75
sec.

5 Programmer's Manual

First, we describe in this section the object oriented philosophy used since release
3.01.

5.1 Philosophy and architecture

Actually nothing (or nearly nothing) prevents us to program in standard C/ANSI
with an object like convention which authorize:

1. "weak" encapsulation

2. Inheritance

3. Polymorphism

5.2 Encapsulation of Object's attributes

Let's exemplify the programming conventions with the char Fifo found in Parser/�fo.h.
First we de�ne a structure describing a Fifo.

typedef struct
{
char* charbu�; /* circular bu�er for phonetic input */
int bu�er_pos; /* Current position */
int bu�er_end; /* Last available phoneme */
int bu�er_size; /* number of chars in Phobu�er */
} Fifo;

To make distinction between public and private data, the convention is to never
directly access the features of a Fifo out of its �fo.c implementation �le. To
reach this goal we exclusively access members through function-like macros.

#de�ne charbu�(�) �->charbu�
#de�ne bu�er_pos(�) �->bu�er_pos
#de�ne bu�er_end(�) �->bu�er_end
#de�ne bu�er_size(�) �->bu�er_size

16

It allows the following:

Fifo* my_�fo;
..
int length= bu�er_size(my_�fo);

The programmer should not cheat to discover whether bu�er_size is a func-
tion or a macro, thus encapsulating the data and making them independent
of the Fifo's real implementation (modulo a complete recompiling). C is not
C++ and your compiler won't be able to carry out strong type checking just
as with inline functions, that's the reason why attributes don't respect the full
convention below (according to our conventions we should have use the name
bu�er_size_Fifo()).

The methods always respect the format: functionname_ObjectName just
like below and take a pointer on the object as a �rst argument. Methods be-
ginning with init are always constructor, and those beginning with close are
destructors:

Fifo* init_Fifo(int size);
/*
* Constructor with size of the bu�er
*/

void close_Fifo(Fifo* �);
/*
* Release the memory
*/

void reset_Fifo(Fifo* �);
/*
* Forget previously entered data in the circular bu�er
*/

int write_Fifo(Fifo* �, char *bu�er_in);
/*
* Write a string of phoneme in the input bu�er
* Return the number of chars actually written
*/

int readline_Fifo(Fifo* �, char *line, int size);
/*
* Read a line from the input stream in a circular bu�er
* Return 0 if there's nothing to read
*/

5.2.1 Inheritance and Polymorphism

Inheritance alone can always be simulated through the is_a_client_of relation,
the most interesting case being polymorphism. Polymorphism is interesting for
multiple format database handling, and live input parser de�nition inside of the
synthesizer.

The abstract type below speci�es an Input object providing the methods
close, reset and readline .

17

typedef struct Input Input;
typedef int (*readline_InputFunction)(Input* in, char *line, int

size);
typedef void (*close_InputFunction)(Input* in);
typedef void (*reset_InputFunction)(Input* in);
struct Input
{
void* self;
readline_InputFunction readline_Input;
close_InputFunction close_Input;
close_InputFunction reset_Input;
};

This type can be derived into Input_File (the input stream is a �le) or In-
put_Fifo (the input stream comes from a Fifo as described above). The part
of the object corresponding to the features overloaded on the basic Input type
is stored in the self part.

#include "input.h"
#include "�fo.h"
static int readline_InputFifo(Input* in, char *line, int size)
{ return(readline_Fifo((Fifo*) in->self,line,size)); }
static void reset_InputFifo(Input* in)
{ reset_Fifo((Fifo*) in->self); }
static void close_InputFifo(Input* in)
{ MBR_free(in); }
Input* init_InputFifo(Fifo* my_�fo)
{
Input* self= (Input*) MBR_malloc(sizeof(Input));
self->self= (void*) my_�fo;
self->readline_Input= readline_InputFifo;
self->close_Input= close_InputFifo;
self->reset_Input= reset_InputFifo;
return self;
}

5.2.2 Inheritance and cross-reference graph

The Database, Input and Parser objects contain deferred (=virtual) methods
and thus allow polymorphism.

6 Application Programming Interface

The explanations given in the previous section are particularly useful to the user
who wants to design ad-hoc parsers. Though one can keep on working with the
default parser.

18

6.1 One channel mode

You can build a demo by running "make demo1" under Unix, or simply
build the library with "make lib1". With Windows and Visual C++ the DLL
project builds an equivalent of lib1, and numerous examples are provided in the
DLL_USE directory. The complete one channel mode interface is given section
7.24. Let's exemplify the use below:

First, initialize the engine with a diphone database. All the functions in
the API return an error code. A negative value means there was a �aw during
the process, in case of error, an explicit error message can be obtained from
lastErrorStr_MBR().

err_code= init_MBR("h:/mbrola/database/fr1");
if (err_code<0)

handle_error();

If the default parser is plugged, one can use the regular syntax in write_MBR
to send phonemes to the engine:

if ((write_MBR("_ 51 \n b 62 \n") < 0) ||
(write_MBR("o� 127 50 170 \n Z 110\n") <0) ||
(WriteSpeechFile(output)<0) ||
(write_MBR("u 211 100 200\n R 150 \n_ 9\n#\n") < 0) ||
(WriteSpeechFile(output)<0))

handle_error();
close_MBR();

Each time one calls init_MBR(), one should call a pending close_MBR() to
release allocated memory. Once close_MBR() is called, one can call init_MBR()
for a brand new database. If one wish to work with the same database but forget
previously entered phonemes, then use reset_MBR().

Let's describe how WriteSpeechFile works:

int WriteSpeechFile(FILE *output)
{
int i;
while ((i=readtype_MBR(bu�er, 16000, LIN16)) == 16000)
fwrite(bu�er, 2, i, output);

if (i>0)
{ /* write last chunk */
fwrite(bu�er,size,i,output);
return 0;

}
else
return i; /* return an error code */

}

It reads sample bu�ers from the engine until it can't get any more (read-
type_MBR returns 0), or an error occurs. Readtype can return 0 for two

19

reasons: either a �ush has been encountered, either we don't have enough data
in the default parser, as it needs a look ahead to interpolate pitch values. This
is the case after write_MBR("o� 127 50 170 \n Z 110\n"), synthesis on the
/Z/ can't be carried out until we get the pitch point on "u 211 100 200". This
way asynchronous read/write operations are allowed.

The small error handling function simply does:

void handle_error()
{
char err[255];
lastErrorStr_MBR(err,sizeof(err));
printf("Code %i\n%s\n", lastError_MBR(), err);
exit(-1);

}

At any time, one can use the get_* and set_* functions to modify internal
parameters of the synthesizer.

Important note about the vocal tract length capabilities: one can modify
the size of the speaker's throat with setFreq_MBR. The lower this frequency,
the deeper the voice. This very simple method takes advantage of the playback
sampling rate to shift the formants up and down, just like when changing the
speed of a tape player. Thus, to be e�ective, any call to setFreq_MBR must
be accompanied with a call to the audio hardware setting the requested playback
sample rate. Otherwise the speed and pitch will sound odd.

6.1.1 Multi channel mode

One can build a demo by running "make demo2" under Unix, or simply build
the library with "make lib2". The complete multi channel mode interface is
given section 7.25.

It looks strangely close to the one channel mode, except that one passes a
pointer to a synthesizer structure for every function. Another point is that it
doesn't hide any more the parser's details to the user. Thus if one wants to use
the default parser, one has to e�ectively build it.

The following code build 3 independent default phoneme parsers:

/* Input Fifo with a bu�er of 100 chars */
�fo1= init_Fifo(100);
�fo2= init_Fifo(100);
�fo3= init_Fifo(100);

/* Input stream of the synthesizer */
input1= init_InputFifo(�fo1);
input2= init_InputFifo(�fo2);
input3= init_InputFifo(�fo3);
/* Plug the �fos on the default parsers */
parser1= init_ParserInput(input1,"_",120.0,";",1.0,1.0);

20

parser2= init_ParserInput(input2,"_",120.0,";",1.0,1.0);
parser3= init_ParserInput(input3,"_",120.0,";",1.0,1.0);

To use one's own parser, see the next section. Once this is done, as many
databases as synthesis channels must be opened (let's say 3 channels in this
example).

Database* main_dba= init_DatabaseMBR2(argv[1],NULL,NULL);
if (!main_dba)
handle_error(True);

Of course opening 3 or more times the same database would spoil a lot of memory
since many internal structures could be shared. Instead of using init_DatabaseMBR2
one can clone an already opened database:

Database* clone_dba1= copyconstructor_DatabaseMBR2(main_dba);
Database* clone_dba2= copyconstructor_DatabaseMBR2(main_dba);
Database* clone_dba3= copyconstructor_DatabaseMBR2(main_dba);

Cloned database just behave like regular Database, i.e. their destructor must
be called before leaving. Once we have a Parser input and a Database, we can
open a synthesis channel:

Mbrola* channel1= init_MBR2(clone_dba1,parser1);
Mbrola* channel2= init_MBR2(clone_dba2,parser2);
Mbrola* channel3= init_MBR2(clone_dba3,parser3);

In this particular example, one can write phonemes in the parser, and read
samples from the synthesis engine with instructions such as:

write_Fifo(�fo1,"_ 51 \n b 62 \n o� 100\n Z 120")
while ((i=readtype_MBR2(channel1, bu�er, 16000, LIN16))==16000)
fwrite(bu�er,size,i,output);

Of course the call to write_Fifo is completely dependent of the fact that this
example uses the default phoneme parser. In this particular case, the polymor-
phic object Parser, which was passed to the constructor of channel, reads its
input data from Fifo1.

6.1.2 Designing and plugging your own parser

The user can write his own implementation of a Parser, as long as it follows the
de�nition of Parser/parser.h. The �le parser_simple.c below gives an example
of a parser that reads phonetic inputs with the format: Phoneme Duration
Pitch_At_0% Pitch_At_100%.

In practice this example does not take into account that the Engine synthe-
size diphones. As the word states, a diphone is made of two phonemes, thus one
must know both parts of the diphones to utter it. Thus each phoneme �le being
used with parser_simple must end with two silences: the �rst one reveal 1st half
of the last phoneme, and the second one reveal the second half (a complete exam-
ple is provided in VisualC++/DLL_USE/mbrola/parser_simple.cpp). Many

21

people forget to include the second silence as the result sounds correct with-
out. Though, the total length of the synthetic message won't agree with the
requested one.

/*
* FPMs-TCTS SOFTWARE LIBRARY
*
* File: parser_simple.c
* Purpose: parse a simple "pho �le" (demonstration of the mbrola

DLL)
* Instanciation of parser.h
*
* Author: Vincent Pagel
* Email : mbrola@tcts.fpms.ac.be
*
* Copyright (c) 1995-2018 Faculte Polytechnique de Mons (TCTS

lab)
*
* 18/09/98 : Created
*/

#include <stdio.h>
#include "mbrola.h"
#include "parser_simple.h"

static void reset_ParserSimple(Parser* parse)
{
/* nothing to do */
fseek((File*) parse->self,0,SEEK_SET);
}

static StatePhone nextphone_ParserSimple(Parser* parse, LP-
PHONE* ph)

{
char phoneme[255]; /* phoneme name */
�oat length; /* length in milliseconds */
�oat pitch0; /* pitch at 0% */
�oat pitch100; /* pitch at 100% */

if (fscanf((FILE*)parse->self," %s %f %f %f ",phoneme,&length,&pitch0,&pitch100
) ==4)

{
*ph= init_Phone(phoneme,length);
appendf0_Phone(*ph, 0.0 , pitch0);
appendf0_Phone(*ph, 100.0, pitch100);
return PHO_OK;

}
else
{

return PHO_EOF;

22

}
}

static void close_ParserSimple(Parser* parse)
/* Destructor */

{
fclose((FILE*) parse->self);
free(parse);

}

Parser* init_ParserSimple(char* input_name)
/*
* Constructor of the parser. Parse a text �le of the form
* PHONEME LENGTH PITCH_AT_BEGINNING PITCH_AT_END
*/

{
FILE* input;
Parser* parse;

/* open the text �le */
input=fopen(input_name,"rt");

if (!input)
return NULL;

parse= (Parser*) MBR_alloc(sizeof(struct Parser));
parse->reset_Parser= reset_ParserSimple;
parse->close_Parser= close_ParserSimple;
parse->nextphone_Parser= nextphone_ParserSimple;
parse->self= (void*) input;
return(parse);

}

6.2 Mbrola architecture

In following chapters the exported functions and variables of all the source �les in
the project are described. After the �le descriptions, a symbol index is provided
to allow fast localization of any function, variable or de�ne.

23

