; Diffusion Limited Aggregation ; B. Watson's asm rewrite of ChrisTOS's Atari 8-bit version. ; Original lives here: https://github.com/ctzio/DLA/ ; This version uses ANTIC narrow playfield mode, since the original ; uses fewer than 256 columns of a GR.8 screen. This gives a slight ; speed boost for 2 reasons: less DMA from the ANTIC chip, and we get ; to use 1 byte for the X coordinate. .include "atari.inc" .include "xex.inc" loadaddr = $2000 screen = $4000 ; must be on a x000 (4K) boundary screen2 = screen + $1000 ; rest of screen RAM after 4K boundary linelen = $20 ; aka 32 bytes, antic F (GR.8) in narrow mode. maxlines = $C0 ; 192 lines of display screenbytes = maxlines * linelen dl_len = 202 ; remember to update this if you modify the display list! dlist = screen - dl_len DMA_ON = $21 DEFAULTPART = 1000 linebuf = $0580 textbuf = $0590 .bss .org $80 maxparticles: .res 2 ; user's response to "How many particles?" seedtype: .res 1 ; user's response to seed type prompt (minus one; 0-3) pixptr: .res 2 ; used by plotsetup and friends pixmask: .res 1 ; ditto. cursor_x: .res 1 ; cursor x/y are args to plot/unplot/locate cursor_y: .res 1 min_x: .res 1 ; limits: if the particle gets outside this box, max_x: .res 1 ; delete it and spawn a new one. min_y: .res 1 max_y: .res 1 circlesize: .res 1 ; 0 to 3 part_x: .res 1 ; x/y coords of current particle part_y: .res 1 particles: .res 2 spawn_x: .res 2 spawn_y: .res 2 cloksav: .res 3 ; hold RTCLOK here while we convert to MM:SS.CC old_dma: .res 1 ; these 3 are for restoring GR.0 mode old_dl: .res 2 old_savmsc: .res 2 tmp1: .res 1 fptmp: .res 6 .code xex_org loadaddr .include "io.s" ; printchrx and getchrx .include "printint.s" .include "mmss.s" ; init stuff gets done once, at startup init: lda #0 sta seedtype ; default seed type is the single pixel sta LMARGN lda SDMCTL sta old_dma lda SDLSTL sta old_dl lda SDLSTH sta old_dl+1 lda SAVMSC sta old_savmsc lda SAVMSC+1 sta old_savmsc+1 ; set default particles (if user just hits return) lda #DEFAULTPART sta maxparticles+1 ; "New" option jumps here, restore GR.0 screen getargs: jsr restore_gr0 ; print banner and prompt. printbanner: lda #banner jsr printmsg lda maxparticles ldx maxparticles+1 jsr printdecw lda #partprompt jsr printmsg ; use CIO to read input, so user can use backspace/etc. jsr readline lda linebuf cmp #$9b beq usedefault ; if user hit Return ; use floating point ROM to convert input to an integer. lda #0 sta CIX jsr AFP ; ASCII to floating point, result in FR0 bcs printbanner ; C set means error jsr FPI ; convert FR0 to integer (result in FR0) bcs printbanner lda FR0 tax ora FR0+1 ; we don't accept 0 for an answer! beq printbanner lda FR0+1 stx maxparticles sta maxparticles+1 usedefault: ; print seed type prompt lda #seedprompt jsr printmsg ldx seedtype inx txa jsr printdecb lda #seedprompt2 jsr printmsg readseed: jsr getchrx cmp #$9b beq dfltseed ; use default if user pressed return cmp #$31 bcc readseed cmp #$35 bcs readseed and #$0f tax dex stx seedtype dfltseed: lda #$9b jsr printchr generate: ;;; start of generate() jsr initscreen ; wait for shadow regs to get updated... lda RTCLOK+2 wl: cmp RTCLOK+2 beq wl lda #1 ; ...turn off shadow reg updates (tiny speed boost) sta CRITIC lda #0 sta particles sta particles+1 sta RTCLOK sta RTCLOK+1 sta RTCLOK+2 sta circlesize jsr set_limits lda #points_x sta spawn_x+1 lda #points_y sta spawn_y+1 jsr drawseed next_particle: ldy RANDOM ; spawn a new particle lda (spawn_x),y sta part_x lda (spawn_y),y sta part_y jsr drunkwalk ; walk it around beq next_particle ; if it went out of bounds, try again ; particle stuck to an existing pixel, draw it lda part_x sta cursor_x lda part_y sta cursor_y jsr plot inc particles bne ph_ok inc particles+1 ph_ok: ; increase circlesize at appropriate particle counts ; if(particles == 100 || particles == 300 || particles == 600) goto next_size; lda particles ldx particles+1 bne not_100 cmp #100 beq next_size not_100: cpx #>300 bne not_300 cmp #<300 beq next_size not_300: cpx #>600 bne checkmaxparts cmp #<600 beq next_size bne checkmaxparts next_size: inc circlesize jsr set_limits inc spawn_x+1 inc spawn_y+1 checkmaxparts: ; if(particles != maxparticles) goto next_particle; lda particles cmp maxparticles bne next_particle lda particles+1 cmp maxparticles+1 bne next_particle main_done: lda #0 sta CRITIC sta COLOR2 sta ATRACT lda #DMA_ON sta SDMCTL lda RTCLOK sta cloksav lda RTCLOK+1 sta cloksav+1 lda RTCLOK+2 sta cloksav+2 ; print elapsed time. see mmss.s for gory details. jsr print_mmss ; print menu, wait for keystroke. lda #menumsg jsr printmsg ; user might have hit some random key during plotting; ignore it. ldx #$ff stx CH waitkey: jsr getchr ; see what key was hit and #$5f ; ignore case cmp #'R' ; Redo bne notredo jmp generate notredo: cmp #'S' ; Save beq saveimage cmp #'N' ; New bne waitkey ; ignore any other keystroke jmp getargs ;;; End of generate() ;;; Subroutine: saveimage ;;; Does exactly what it says on the tin: saves the image. ;;; User is prompted for a filename. In case of disk error, ;;; there's a "Retry [Y/n]?" prompt. saveimage: jsr restore_gr0 ; back to GR.0, so we can... lda #saveprompt jsr printmsg ; ...prompt for, and... jsr readline ; ...let the user type a filename. jsr close1 ; make sure the IOCB is closed before we open it! ; CIO is nice, but it's kind of a PITA to use... ; OPEN #1,8,0, ldx #$10 lda #3 ; OPEN sta ICCOM,x lda #linebuf sta ICBAH,x ldy ICBLL ; length returned by CIO when we called readline... dey ; ...but one byte too long. tya sta ICBLL,x lda #0 sta ICBLH,x sta ICAX2,x lda #8 sta ICAX1,x jsr CIOV cpy #1 ; CIO returns with Y=1 for success. bne save_error ; write data to the channel ldx #$10 lda #$0b ; write binary record sta ICCOM,x lda #screen sta ICBAH,x lda #screenbytes sta ICBLH,x jsr CIOV cpy #1 bne save_error ; close the channel jsr close1 cpy #1 bne save_error ; let the user know the save worked. lda #saveokmsg jsr printmsg jsr getchr ; any key jmp getargs ; print error message, prompt for retry. save_error: tya pha lda #diskerrmsg jsr printmsg pla jsr printdecb lda #retrymsg jsr printmsg get_retry_key: jsr getchr cmp #$9b ; return = yes beq jsaveimage and #$5f ; ignore case cmp #'Y' beq jsaveimage cmp #'N' bne get_retry_key jmp getargs jsaveimage: lda #$9b jsr printchr jmp saveimage ;;; Subroutine: set_limits ;;; Sets the X/Y min/max limits based on circlesize set_limits: ldx circlesize lda xmin,x sta min_x lda ymin,x sta min_y lda xmax,x sta max_x lda ymax,x sta max_y rts ;;; Subroutine: initscreen ;;; clear screen memory and point ANTIC to our display list. ;;; no arguments. trashes all registers. initscreen: lda #screen sta pixptr+1 ; first, clear linebuf and textbuf lda #0 tay isloop0: sta linebuf,y iny cpy #$40 bne isloop0 ; next, clear screen memory ldx #>screenbytes ; clear this many pages tay ; 0 again isloop: sta (pixptr),y iny bne isloop inc pixptr+1 dex bne isloop lda #DMA_ON ; set ANTIC narrow playfield mode sta SDMCTL lda #dlist sta SDLSTH lda #textbuf sta SAVMSC+1 lda #0 sta ROWCRS sta COLCRS sta COLCRS+1 rts ;;; Subroutine: plotsetup ;;; - set pixptr to point to screen memory at cursor_y. ;;; - set pixmask to the mask for cursor_x. ;;; - set Y reg to the byte offset for cursor_x. ;;; - returns with cursor_x in X reg, pixmask in A reg too. ;;; Called by plot, unplot, and drunkwalk (a lot!) plotsetup: ldx cursor_y lda lineaddrs_l,x sta pixptr lda lineaddrs_h,x sta pixptr+1 ldx cursor_x ldy xoffsets,x lda xmasks,x sta pixmask rts ;;; Subroutine: plot ;;; plots a pixel at (cursor_x, cursor_y) plot: jsr plotsetup lda (pixptr),y ora pixmask sta (pixptr),y rts ;;; Subroutine: unplot ;;; erases a pixel at (cursor_x, cursor_y) unplot: jsr plotsetup lda pixmask eor #$ff sta pixmask lda (pixptr),y and pixmask sta (pixptr),y rts ;;; Subroutine: locate ;;; check the pixel at (cursor_x, cursor_y) ;;; if set, return with Z=0 ;;; otherwise, return with Z=1 ;;;; Inlined (keep for reference) ;locate: ; jsr plotsetup ; and (pixptr),y ; rts ;;; Subroutine: spawn ;;; Pick a random point on the edge of a circle ;;;; Inlined (keep for reference) ; spawn: ; ldy RANDOM ; lda (spawn_x),y ; sta part_x ; lda (spawn_y),y ; sta part_y ; rts oob: rts ;;; Subroutine: drunkwalk ;;; Walk the point around randomly until it either is ;;; adjacent to a set pixel or goes out of bounds. ;;; Return with Z=0 if out of bounds, Z=1 if it hit a pixel. ;;; This is the innermost loop, so it should be as optimized as ;;; possible (we're not there yet). drunkwalk: ; using bit/bmi/bvc saves 6.25 cycles on average, compared to ; immediate cmp and bne. ; 4 code paths: up=14, down=15, left=15, right=13, avg=14.25 bit RANDOM ;4 ; use top 2 bits (probably more random, definitely faster) bmi lr ;2/3 bvc down ;2/3 dec part_y ;3 ; N=1 V=1 up bne checkbounds ;3 down: inc part_y ;3 ; N=1 V=0 down bne checkbounds ;3 lr: bvc right ;2/3 dec part_x ;3 ; N=0 V=1 left bne checkbounds ;3 right: inc part_x ;3 checkbounds: lda part_x cmp min_x beq oob cmp max_x beq oob sta cursor_x lda part_y cmp min_y beq oob cmp max_y beq oob sta cursor_y ldx #0 lda CONSOL cmp #6 bne dontplot jsr plot jsr unplot ldx #DMA_ON dontplot: ;stx SDMCTL ; nope, shadow updates are off... stx DMACTL ; check neighbors. used to be a subroutine, inlined it. ; also inlined plotsetup here. ldx cursor_y lda lineaddrs_l,x sta pixptr lda lineaddrs_h,x sta pixptr+1 ; 3/4 of the time, we can use a faster code path, check ; (-1,0) and (1,0) at the same time. this happens only when ; both pixels lie within the same byte. ldx cursor_x lda fastmasks,x beq slow_x ldy xoffsets,x and (pixptr),y bne stick beq check_y slow_x: ; (-1,0) ldx cursor_x ldy xoffsets-1,x lda xmasks-1,x and (pixptr),y bne stick ; (1,0) ldy xoffsets+1,x lda xmasks+1,x and (pixptr),y bne stick check_y: ; (0,-1) ldx cursor_y ;3 lda lineaddrs_l-1,x ;5 sta pixptr ;3 lda lineaddrs_h-1,x ;5 sta pixptr+1 ;3 ;=19 ldx cursor_x ldy xoffsets,x lda xmasks,x sta pixmask and (pixptr),y bne stick ; (0,1) tya ora #$40 ; add 64, AKA 2 screen lines tay lda (pixptr),y and pixmask bne stick jmp drunkwalk ; too far for a branch stick: rts ;;; Subroutine: drawseed ;;; dispatch to appropriate seed subroutine drawseed: ldx seedtype lda seeds_h,x pha lda seeds_l,x pha rts ;;; Subroutine: seed_point ;;; draw initial point in center seed_point: lda #$7f sta cursor_x lda #$5f sta cursor_y jmp plot ;;; Subroutine: seed_long ;;; horizontal line, the width of the screen seed_long: lda #$1 sta cursor_x lda #$5f sta cursor_y slnoop: jsr plot inc cursor_x lda cursor_x cmp #$ff bne slnoop rts ;;; Subroutine: seed_plus ;;; plus share, made of two 20px lines intersecting in the center seed_plus: lda #$7f sta cursor_x lda #$55 sta cursor_y sploop: jsr plot inc cursor_y lda cursor_y cmp #$69 bne sploop lda #$75 sta cursor_x lda #$5f sta cursor_y slloop: jsr plot inc cursor_x lda cursor_x cmp #$89 bne slloop rts ;;; Subroutine: seed_4pt ;;; four points, the corners of a 20px square seed_4pt: lda #$75 sta cursor_x lda #$55 sta cursor_y jsr plot lda #$68 sta cursor_y jsr plot lda #$88 sta cursor_x jsr plot lda #$55 sta cursor_y jmp plot ;;; Subroutine: readline ;;; Read a line from E:, store result in linebuf. ;;; The terminating EOL ($9b) gets stored at the end. ;;; linebuf happens to be right where the FP ROM needs it for AFP. readline: lda #linebuf sta INBUFF+1 sta ICBAH lda #0 sta ICBLH lda #32 ; buffer length; longer than we need sta ICBLL lda #5 sta ICCOM ldx #0 jmp CIOV ;;; Subroutine: restore_gr0 ;;; Restore the OS's GRAPHICS 0 display, so we can use E: restore_gr0: lda #$90 sta COLOR2 lda #$0e sta COLOR1 lda #$ff sta CH lda old_dl sta SDLSTL lda old_dl+1 sta SDLSTH lda old_dma sta SDMCTL lda old_savmsc sta SAVMSC lda old_savmsc+1 sta SAVMSC+1 rts ;;; Subroutine: close1 ;;; Closes IOCB 1, same as CLOSE #1 in BASIC. close1: ldx #$10 lda #$0c ; close sta ICCOM,x jmp CIOV ;;;;; end of executable code, data tables from here on out. ; prompts. ; banner and saveprompt must start with a clear-screen code. banner: .byte $7d, "Diffusion Limited Aggregate",$9b .byte "Urchlay's ASM version 0.0.99",$9b,$9b .byte "Particle count range: 1 to 65535",$9b .byte "How many particles [",$0 partprompt: .byte "]? ",$0 seedprompt: .byte $9b,"Seed Type: ",$9b,"1=Dot 2=Plus 3=4Dots 4=Line [",$0 seedprompt2: .byte "]? ",$0 saveprompt: .byte $7d, "Save: Enter filename, including Dn:",$9b,"> ",$0 saveokmsg: .byte "Saved OK, press any key...",$0 diskerrmsg: .byte "I/O Error ",$0 retrymsg: .byte " Retry [Y/n]? ",$0 ; this prompt has to be <22 bytes long, and can NOT contain any ; screen control codes, because when it's printed we're only ; printing to a 32-byte buffer (which we told the OS was the ; start of a GR.0 screen, but that was designated "a lie"). menumsg: .byte " " .byte ' ','S'|$80,"ave" .byte ' ','R'|$80,"edo" .byte ' ','N'|$80,"ew? " .byte 0 ; jump table for seed functions seeds_l: .byte <(seed_point-1),<(seed_plus-1),<(seed_4pt-1),<(seed_long-1) seeds_h: .byte >(seed_point-1),>(seed_plus-1),>(seed_4pt-1),>(seed_long-1) ; dlatbl.s is generated by perl script, mkdlatbl.pl .include "dlatbl.s" ; table of addresses, for each line on the screen. bloats the ; code by 384 bytes, but compared to calculating the address, is ; twice as fast! lineaddrs_l: laddr .set screen .repeat 192 .byte laddr laddr .set laddr + $20 .endrep ; tables to replace X coord => mask-and-offset calculations. xoffsets: xoffs .set 0 .repeat 32 .repeat 8 .byte xoffs .endrep xoffs .set xoffs + 1 .endrep xmasks: .repeat 32 .byte $80,$40,$20,$10,$08,$04,$02,$01 .endrep fastmasks: .repeat 32 .byte $00,$a0,$50,$28,$14,$0a,$05,$00 .endrep ;;; display list ; ANTIC opcodes blank8 = $70 gr8 = $0f gr0 = $02 lms = $40 jvb = $41 xex_org dlist .byte blank8, blank8, blank8 .byte gr8 | lms .word screen .repeat 127 .byte gr8 .endrep .byte gr8 | lms .word screen2 .repeat maxlines - 132 .byte gr8 .endrep .byte gr0 | lms .word textbuf .byte jvb .word dlist xex_run init