
AVR 8-bit GNU Toolchain: Release
3.4.1.798
The AVR 8-bit GNU Toolchain supports all AVR 8-bit devices. The AVR 8-bit
Toolchain is based on the free and open-source GCC compiler. The toolchain
includes compiler, assembler, linker and binutils (GCC and Binutils) and Standard C
library (AVRLibC).

8/32-bits Atmel
Microcontrollers

Release 3.4.1.798

file:/home/tools/hudson/workspace/avr8-gnu-toolchain/tmp/readme//wiki/Documentation:AVR8_GNU_Toolchain/AVR8_GCC

2 AVR 8-bit GNU
Toolchain

Installation Instructions

System Requirements

AVR 8-bit GNU Toolchain is supported under the following configurations:

Hardware requirements

• Minimum processor Pentium 4, 1GHz
• Minimum 512 MB RAM
• Minimum 500 MB free disk space

AVR 8-bit GNU Toolchain has not been tested on computers with less resources, but may run satisfactorily
depending on the number and size of the projects and the user's patience.

Software requirements

• Windows 2000, Windows XP, Windows Vista or Windows 7 (x86 or x86-64).
• Fedora 13 or 12 (x86 or x86-64), RedHat Enterprise Linux 4 or 5, Ubuntu Linux 10.04 or 8.04 (x86 or x86-64), or

SUSE Linux 11.2 or 11.1 (x86 or x86-64). AVR 8-bit GNU Toolchain may as well work on the other distributions.
However those would be untested and unsupported.

AVR 8-bit GNU Toolchain is not supported on Windows 98, NT or ME.

Downloading and Installing

The package comes in two forms:

• As part of a standalone installer
• As Atmel Studio 6 Toolchain Extension

It may be downloaded from Atmel's website at http://www.atmel.com or from the Atmel Studio 6 Extension
Gallery.

Installing on Windows

In order to install using standalone installer, the AVR Toolchain installer can be downloaded from Atmel website.
After downloading the installer, double-click the executable file to install. You may use "Custom Installation" in
order to install in a specific location.

In order to install the Atmel AVR Toolchain as Atmel Studio 6 Toolchain Extension, please refer to the Atmel Studio
6 documentation.

Installing on Linux

On Linux AVR 8-bit GNU Toolchain is available as a TAR.GZ archive which can be extracted using the 'tar' utility.
In order to install, simply extract to the location where you want the toolchain to run from.

Upgrading from previous versions

If you have used the standalone installer on MS-Windows, you might do a clean upgrade by first un-installing the
old version or just upgrade using the latest installer.

http://www.atmel.com

AVR 8-bit GNU
Toolchain

3

Please refer to the Atmel Studio 6 documentation for learning how to upgrade the toolchain extension.

On Linux, if you have it unpacked to a local folder, you just delete the old folder and unpack the latest version in a
new folder.

Manifest

1. AVR 8-bit GNU Binutils 2.22
• Binary utilities for AVR 8-bit target (including assembler, linker, etc.).

2. AVR 8-bit GNU Compiler Collection (avr-gcc) 4.6.2
• C language and C++ language compiler for AVR 8-bit target.

3. AVRLibC 1.8.0
• C Standard Library for AVR 8-bit

Layout

Listed below are some directories you might want to know about.

`<install_dir>` = The directory where you installed AVR 8-bit GNU Toolchain.

• <install_dir>\bin
• The AVR software development programs. This directory should be in your `PATH` environment variable.

This includes:
• GNU Binutils
• GCC

• <install_dir>\avr\lib
• avr-libc libraries, startup files, linker scripts,and stuff.

• <install_dir>\avr\include
• avr-libc header files for AVR 8-bit.

• <install_dir>\avr\include\avr
• header files specific to the AVR 8-bit MCU. This is where, for example, #include <avr/io.h> comes from.

• <install_dir>\lib
• GCC libraries, other libraries, headers and stuff.

• <install_dir>\libexec
• GCC program components

• <install_dir>\doc
• Various documentation.

• <install_dir>\source
• Documentation on where to find the source code for the various projects and source code patches that were

used to build the tools.

Toolset Background

AVR 8-bit GNU Toolchain is a collection of executable, open source software development tools for the Atmel AVR
8-bit series of microcontrollers. It includes the GNU GCC compiler for C and C++.

Compiler

The compiler is the GNU Compiler Collection, or GCC. This compiler is incredibly flexible and can be hosted on
many platforms, it can target many different processors/operating systems (back-ends), and can be configured for
multiple different languages (front-ends).

http://gcc.gnu.org/

4 AVR 8-bit GNU
Toolchain

The GCC included in AVR 8-bit GNU Toolchain is targeted for the AVR 8-bit microcontroller and is configured to
compile C or C++.

CAUTION: There are caveats on using C++. See the avr-libc FAQ.

Because this GCC is targeted for the AVR 8-bit MCUs, the main executable that is created is prefixed with the
target name: `avr-gcc` (with '.exe' extension on MS Windows). It is also referred to as AVR GCC.

`avr-gcc` is just a "driver" program only. The compiler itself is called `cc1.exe` for C, or `cc1plus.exe` for C++. Also,
the preprocessor `cpp.exe` will usually automatically be prepended with the target name: `avr-cpp`. The actual set
of component programs called is usually derived from the suffix of each source code file being processed.

GCC compiles a high-level computer language into assembly, and that is all. It cannot work alone. GCC is coupled
with another project, GNU Binutils, which provides the assembler, linker, librarian and more. Since GCC is just a
"driver" program, it can automatically call the assembler and linker directly to build the final program.

Assembler, Linker, Librarian and More

GNU Binutils is a collection of binary utilities. This also includes the assembler, as. Sometimes you will see it
referenced as GNU as or gas. Binutils includes the linker, ld; the librarian or archiver, ar. There are many other
programs included that provide various functionality.

Note that while the assembler uses the same mnemonics as proposed by Atmel, the "glue" (pseudo-ops, operators,
expression syntax) is derived from the common assembler syntax used in Unix assemblers, so it is not directly
compatible to Atmel assembler source files.

Binutils is configured for the AVR target and each of the programs is prefixed with the target name. So you have
programs such as:

• avr-as: The Assembler.
• avr-ld: The Linker.
• avr-ar: Create, modify, and extract from archives (libraries).
• avr-ranlib: Generate index to archive (library) contents.
• avr-objcopy: Copy and translate object files.
• avr-objdump: Display information from object files including disassembly.
• avr-size: List section sizes and total size.
• avr-nm: List symbols from object files.
• avr-strings: List printable strings from files.
• avr-strip: Discard symbols.
• avr-readelf: Display the contents of ELF format files.
• avr-addr2line: Convert addresses to file and line.
• avr-c++filt: Filter to demangle encoded C++ symbols.

See the binutils user manual for more information on what each program can do.

C Library

avr-libc is the Standard C Library for AVR 8-bit GCC. It contains many of the standard C routines, and many non-
standard routines that are specific and useful for the AVR 8-bit MCUs.

NOTE: The actual library is currently split into two main parts, libc.a and libm.a, where the latter contains
mathematical functions (everything mentioned in <math.h>, and a bit more). Thus it is a good idea to always
include the `-lm` linker option. Also, there are additional libraries which allow a customization of the printf and scanf
function families.

http://sources.redhat.com/binutils/
http://www.nongnu.org/avr-libc/

AVR 8-bit GNU
Toolchain

5

avr-libc also contains the most documentation on how to use (and build) the entire toolset, including code
examples. The avr-libc user manual also contains the FAQ on using the toolset.

Debugging

Atmel Studio 6 provides a debugger and also provides simulators for the parts that can be used for debugging as
well. Note that `Atmel Studio 6` is currently free to the public, but it is not Open Source.

Source Code

Atmel AVR 8-bit GNU Toolchain uses modified source code from GCC, Binutils and AVR-libc. The source code
used for building the packaged binaries are available at:

http://distribute.atmel.no/tools/opensource/Atmel-AVR-Toolchain-3.4.1/avr/

The modifications are also available as patches in the above link. Please refer to the README for the instructions
on how to use the supplied script to build the toolchain.

http://distribute.atmel.no/tools/opensource/Atmel-AVR-Toolchain-3.4.1/avr/

6 AVR 8-bit GNU
Toolchain

New and Noteworthy

This chapter lists new and noteworthy items for the AVR 8-bit GNU Toolchain release.

AVR 8-bit GNU Toolchain

Supported Devices

AVR 8-bit GNU Toolchain supports the following devices:

Note:- Devices which are newly supported in this release are marked with *

at90s2313 at90s2323 at90s2333 at90s2343 attiny22
at90s4414 at90s4433 at90s4434 at90s8515 at90c8534
ata5272 ata5505 ata5790 ata5795 ata6285
ata6286 ata6289 attiny13 attiny13a attiny2313
attiny2313a attiny24a attiny4313 attiny44 attiny44a
attiny828 attiny84 attiny25 attiny45 attiny85
attiny261 attiny261a attiny461a attiny861 attiny861a
attiny43u attiny87 attiny88 at86rf401 at43usb355
at76c711 atmega103 at90usb82 at90usb162 atmega8u2
atmega16u2 atmega32u2 attiny1634 atmega8 atmega8a
atmega48 atmega48a atmega48pa atmega88 atmega88a
atmega88p atmega88pa atmega8515 atmega8hva at90pwm1
at90pwm2 at90pwm2b at90pwm3 at90pwm81 at90pwm161
atmega16 atmega16a atmega161 atmega163 atmega164a
atmega164p atmega164pa atmega165 atmega165a atmega165pa
atmega168 atmega168a atmega168p atmega168pa atmega169
atmega169a atmega169pa atmega16hva atmega16hva2 atmega16hvb
atmega16hvbrevb atmega16u4 atmega32 atmega32a atmega323
atmega324a atmega324p atmega325 atmega325a atmega325p
atmega325pa atmega3250 atmega3250p atmega3250pa atmega328
atmega328p atmega329 atmega329p atmega329pa atmega3290
atmega3290a atmega3290p atmega3290pa atmega32c1 atmega32m1
atmega32u4 atmega32u6 atmega406 atmega640 atmega644
atmega644a atmega644p atmega644pa atmega645p atmega645
atmega6450 atmega6450a atmega6450p atmega649a atmega649p
atmega6490 atmega6490a atmega6490a atmega64a atmega64c1
atmega64m1 atmega64hve atmega32hvb atmega32hvbrevb at90can64
at90pwm216 at90pwm316 atmega16c1 atmega32c1 atmega16m1

AVR 8-bit GNU
Toolchain

7

atmega32m1 atmega16u4 atmega32u4 at90scr100 at90usb646
at90usb647 at94k m3000 atmega128a atmega1280
atmega1281 atmega1284 atmega1284p atmega128rfa1 at90can128
at90usb1287 atmega2560 atmega2561 atxmega16a4 atxmega16a4u
atxmega16c4 atxmega16d4 atxmega32a4 atxmega32a4u atxmega32c4
atxmega32d4 atxmega32x1 atxmega64a3 atxmega64a3u atxmega64d3
atxmega64a1u atxmega64a4u atxmega64b1 atxmega64b3 atxmega64c3
atxmega128a1 atxmega128a3 atxmega128a3u atxmega128a4u atxmega128b1
atxmega128b3 atxmega128c3 atxmega128d3 atxmega128d4 atxmega192a3
atxmega192a3u atxmega192c3 atxmega256a3 atxmega256a3b atxmega256a3bu
atxmega256a3u atxmega256c3 atxmega256d3 atxmega384c3 atxmega384d3
attiny4 attiny5 attiny9 attiny10 attiny11
attiny12 attiny15 attiny20 attiny40 at90s1200

Known Issues

• AVR Tiny Architecture (ATTiny 4/5/9/10/20/40) support has some known limitations:
• libgcc implementation has some known limitations
• Standard C / Math library implementation are very limited or not present

• For Mega and Xmega devices, program memory images beyond 128KBytes have limitations and may not work
for few cases

Issues Fixed

• Several bugs have been fixed for AVR Tiny Architecture (ATTiny 4/5/9/10/20/40)
• AVR Tiny Register usage updated

• Callee saved registers r18-21, r28-29(FP)
• Static chain register r18
• Scratch registers r22-r27, r30-31
• Temporary register r16 (no change)
• Zero register r17 (no change)
• Arguments r20-r25
• Return r22-25

• An issue in attribute 'signal' has been fixed
• Issues in instruction length calculation has been fixed which influences selection of 'rjmp' instructions
• Fixed bugs related to do_copy_data, setjmp/logjmp
• prologue_saves/ epilogue_restores unsupported
• Corrected registers used in prologue & epilogue code generation
• Fixed bugs in frame pointer usage
• Fixed issues in byte loads/stores (with same register as base and destination/source)
• Overflow error updated as warning for lds/sts 16 bit variations in gas/ld

• clock_prescaler_set() and wdt_enable() macros now supported for ATtiny1634, ATxmega32x1, ATxmega64a1,
ATtiny80

• Some fixes from the GCC latest releases/trunk has been backported

8 AVR 8-bit GNU
Toolchain

AVR 8-bit GNU
Toolchain

9

Contact Information

For support on AVR 8-bit GNU Toolchain please contact avr@atmel.com.

Users of AVR 8-bit GNU Toolchain are also welcome to discuss on the AVRFreaks website forum for AVR
Software Tools.

Disclaimer and Credits

AVR 8-bit GNU Toolchain is distributed free of charge for the purpose of developing applications for Atmel AVR
processors. Use for other purposes are not permitted; see the software license agreement for details. AVR 8-bit
GNU Toolchain comes without any warranty.

Copyright 2006-2012 Atmel Corporation. All rights reserved. ATMEL, logo and combinations thereof, Everywhere
You Are, AVR, AVR32, and others, are the registered trademarks or trademarks of Atmel Corporation or its
subsidiaries. Windows, Internet Explorer and Windows Vista are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries. Linux is the registered trademark of Linus
Torvalds in the United States and other countries. Built on Eclipse is a trademark of Eclipse Foundation, Inc. Sun
and Java are registered trademarks of Sun Microsystems, Inc. in the United States and other countries. Mozilla
and Firefox are registered trademarks of the Mozilla Foundation. Fedora is a trademark of Red Hat, Inc. SUSE is a
trademark of Novell, Inc. Other terms and product names may be the trademarks of others.

http://www.avrfreaks.net/

