aboutsummaryrefslogtreecommitdiff
path: root/src/crunch.c
blob: 2bef18d2d8c2857b75663aeec35c17ecb2002a3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*
 * See the bottom of this file for an explanation of the data
 * structure, complete with high-tech ASCII art.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "u816.h"
#include "crunch.h"
#include "self.h"

#define INITIAL_BITS 9
#define MAX_BITS 12
#define MAX_TOKENS (1 << MAX_BITS)
#define TOK_RESET 256
#define TOK_END 257
#define INIT_TOKEN 258

u8 input_buf[MAX_INPUT_SIZE];
u8 output_buf[MAX_INPUT_SIZE];
unsigned int input_len, output_len, out_bitpos;

typedef struct s_token {
	u8 chr;
	u16 number;
	struct s_token *sibling;
	struct s_token *kids;
} token_t;

token_t root_tokens[256];

/* not used for lookups, just a fast way to free() everything */
token_t *tokentab[MAX_TOKENS];

int token_bits;
int max_token;
int curr_token = INIT_TOKEN;
int in_pos;
int new_pos;

void init_table(void) {
	int i;

	for(i = INIT_TOKEN; i < curr_token; i++)
		free(tokentab[i]);

	for(i = 0; i < 256; i++) {
		root_tokens[i].chr = root_tokens[i].number = i;
		root_tokens[i].kids = root_tokens[i].sibling = 0;
	}

	token_bits = INITIAL_BITS;
	max_token = 1 << INITIAL_BITS;
	curr_token = INIT_TOKEN;
}

void inc_output_len(void) {
	if(++output_len == MAX_INPUT_SIZE) {
		fprintf(stderr, "%s: fatal: compressed file would be >16MB.\n", self);
		exit(1);
	}
}

void append_bit(int bit) {
	output_buf[output_len] |= (bit << (7 - out_bitpos));
	out_bitpos++;
	if(out_bitpos == 8) {
		out_bitpos = 0;
		inc_output_len();
	}
}

void store_token(int tok) {
	int mask;

	for(mask = 1 << (token_bits - 1); mask; mask >>= 1) {
		append_bit(tok & mask ? 1 : 0);
	}
}

token_t *get_kid(token_t *t, u8 chr) {
	token_t *kid;

	if(!t->kids) return 0;

	kid = t->kids;
	while(kid) {
		if(kid->chr == chr)
			return kid;
		kid = kid->sibling;
	}
	return 0;
}

token_t *match_token(int pos) {
	token_t *t, *p;

	t = &root_tokens[input_buf[pos]];
	new_pos = pos + 1;
	p = t;
	while((p = get_kid(t, input_buf[new_pos]))) {
		t = p;
		new_pos++;
		if(new_pos == input_len) break;
	}
	return t;
}

token_t *new_token(u8 chr) {
	token_t *newtok;

	newtok = malloc(sizeof(token_t));
	if(!newtok) {
		fprintf(stderr, "%s: fatal: out of memory!\n", self);
		exit(1);
	}

	newtok->chr = chr;
	newtok->kids = newtok->sibling = 0;
	newtok->number = curr_token;

	tokentab[curr_token] = newtok;

	return newtok;
}

void add_kid(token_t *oldtok, token_t *newtok) {
	token_t *kid;

	if(!oldtok->kids) {
		oldtok->kids = newtok;
		return;
	}

	kid = oldtok->kids;
	while(kid->sibling)
		kid = kid->sibling;

	kid->sibling = newtok;
}

void make_token(token_t *oldtok, u8 newchr) {
	token_t *newtok;

	/* if the token table is full, reset it. basically start over like
	   we would with a new file. */
	if(curr_token == max_token) {
		if(token_bits == MAX_BITS) {
			store_token(TOK_RESET); /* stored at the *old* token size! */
			token_bits = INITIAL_BITS;
			init_table();
			return; /* since we're starting over, *don't* make a token */
		} else {
			token_bits++;
		}
		max_token = 1 << token_bits;
	}

	newtok = new_token(newchr);
	add_kid(oldtok, newtok);
	curr_token++;
}

void crunch(void) {
	token_t *tok;

	init_table();
	out_bitpos = 0;
	in_pos = new_pos = 0;

	/* 0-byte input files don't get a TOK_RESET */
	if(!input_len) {
		store_token(TOK_END);
		return;
	}

	store_token(TOK_RESET);

	while(in_pos < input_len) {
		tok = match_token(in_pos);
		store_token(tok->number);
		if(new_pos < input_len)
			make_token(tok, input_buf[new_pos]);
		in_pos = new_pos;
	}

	store_token(TOK_END);
	if(out_bitpos) inc_output_len();

	init_table();
}

/* ********************************************************************

The tokens are stored in a tree with 256 roots (root_tokens[256]).
There's one root per character code (0-255). This serves as the
hard-coded initial dictionary (each token number at this level maps to
its character code).

Each node's siblings pointer points to the next node at that level.
This makes each level of a tree a linked list.

Each node that has children, its kids pointer points to the head of
the siblings list (the first of its child nodes).

When creating a token, you pass make_token() a pointer to an existing
token. For example if your new token is for the string "ab", you pass
make_token() the address of root_tokens['a']. The new token will be
added to the 'a' token's kids as the sibling of the last kid in the
list (if there are already kids) or the first kid if there are none.

The number in the token_t increases sequentially as tokens are
created, and is the compressed token that actually get written to the
ALF file. The chr is the last character of the token (the previous
ones are at higher levels of the tree).

What match_token() does is walk the tree, starting from the current
input position and from the root node for the byte at the current
position, and search each level for a token whose chr matches the
next byte in the input. It keeps searching until there's no match, and
returns the last token it matched. It can return the root, which means
no other tokens start with that character.

An example: the input begins with "abcdaZ".


Partial token structure:

root_token[['a'] = token #97, no siblings
 \- kids: token #130, b; token #<whatever>, Z
    \- kids: token #131, c

Later on in the file, if we run into the string "abcX", match_token()
will start with the root token for 'a', walk through its kids looking
for 'b' (which it finds), then walk through the 'b' token's kids
looking for a 'c' (which it finds). Suppose the letter 'X' has never
occured yet in the input. match_token() will return token #131 (follow
the tree, that's the token for "abc").

A new token is created for every character in the file that doesn't
match one of the existing tokens.

Walking the tree is fast, but it could be made even faster by sorting
the kids at each level, and doing a binary search instead of linear.

********************************************************************* */