1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
|
.\" Man page generated from reStructuredText.
.
.
.nr rst2man-indent-level 0
.
.de1 rstReportMargin
\\$1 \\n[an-margin]
level \\n[rst2man-indent-level]
level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
-
\\n[rst2man-indent0]
\\n[rst2man-indent1]
\\n[rst2man-indent2]
..
.de1 INDENT
.\" .rstReportMargin pre:
. RS \\$1
. nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin]
. nr rst2man-indent-level +1
.\" .rstReportMargin post:
..
.de UNINDENT
. RE
.\" indent \\n[an-margin]
.\" old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1
.\" new: \\n[rst2man-indent\\n[rst2man-indent-level]]
.in \\n[rst2man-indent\\n[rst2man-indent-level]]u
..
.TH "OSSINTBAS" 7 "2025-03-25" "0.2.2" "Urchlay's Atari 8-bit Tools"
.SH NAME
ossintbas \- OSS Integer BASIC Notes
.SH DESCRIPTION
.sp
OSS Integer BASIC is a BASIC interpreter from OSS, similar to BASIC XL
and BASIC XE. It was never released as a commercial product, and was
eventually released into the Public Domain.
.sp
It appears to be complete and free of major bugs. There is no manual
for it, so I\(aqm documenting the differences between Integer BASIC and
BASIC XL/XE here, as I discover them.
.sp
For more info on the release:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
https://forums.atariage.com/topic/257029\-oss\-d\-day\-part\-3\-integer\-basic\-source\-code\-now\-in\-pd/
.ft P
.fi
.UNINDENT
.UNINDENT
.SH NUMERICS
.sp
All numbers are signed 16\-bit integers. There is no floating point support
at all.
.sp
Two\(aqs complement is used, so bit 15 is the sign bit, and \fI\-1\fP is
represented as \fI$FFFF\fP\&.
.sp
The range is \fI\-32768\fP to \fI32767\fP\&. Somewhat confusingly (but also
usefully), positive numbers in the range \fI32768\fP to \fI65535\fP can be
entered in program code, or as response to \fBINPUT\fP, etc... but when
they are \fBPRINT\fPed, they will appear as negative numbers. This
is unlike Apple\(aqs Integer BASIC, for instance. It was probably done
so that BASIC code could use the familiar memory locations. Example:
\fBPEEK(53279)\fP to read the console keys. It would be very annoying if
this had to be written as \fBPEEK(\-12257)\fP\&... although it does work
if written that way (Apple\-style).
.sp
Although floating point is not supported, it\(aqs possible to enter
numbers with a decimal point or even scientific notation. These will
silently be converted to integers, with rounding. If the result is
outside the range \fI\-32768\fP to \fI65535\fP, you\(aqll get an \fBERROR\- 3\fP\&.
This applies to numbers entered as part of the program as well as
those entered in response to \fBINPUT\fP, or \fBREAD\fP from \fBDATA\fP
lines.
.SH COMMANDS
.sp
\fBVBLANKWAIT\fP
.INDENT 0.0
.INDENT 3.5
Pause and wait for a vertical blank interrupt to occur.
.sp
Abbreviation: \fBV.\fP
.UNINDENT
.UNINDENT
.sp
\fBVINC\fP \fI<var>\fP
.INDENT 0.0
.INDENT 3.5
Increment (add 1 to) a variable. This is about 30% faster than
\fBA=A+1\fP\&. Abbreviate as \fBVD.\fP\&.
.sp
Abbreviation: \fBVI.\fP
.UNINDENT
.UNINDENT
.sp
\fBVDEC\fP \fI<var>\fP
.INDENT 0.0
.INDENT 3.5
Decrement (subtract 1 from) a variable. Abbreviate as \fBVD.\fP\&.
.sp
Abbreviation: \fBVD.\fP
.UNINDENT
.UNINDENT
.sp
\fBVCONST\fP \fI<num>\fP, \fI<var>\fP
.INDENT 0.0
.INDENT 3.5
Add a constant to \fIvar\fP\&. There are 8 constants, numbered 0 through
7. They are set with the \fBSET\fP command, using arguments 16 to 23
to set the constants. Example: \fBSET 16,10\fP sets constant 0 to 123,
and \fBVCONST 0,A\fP adds 10 to A.
.sp
If \fI<num>\fP is greater than 7, the variable will be
unchanged. \fBSET\fP won\(aqt accept a number higher than 23 for its first
argument, so there\(aqd be no way to set any constants other than 0
to 7 anyway.
.sp
When Integer BASIC first starts up, the constants are initialized
to what amounts to garbage values. You can examine them with
\fBSYS(16)\fP through \fBSYS(23)\fP, but it\(aqs a bad idea to depend on
them because the values are different between the disk and cartridge
versions of Integer BASIC.
.sp
Using VCONST is about 15% faster than just adding a number to a
variable.
.sp
Abbreviation: \fBVC.\fP
.UNINDENT
.UNINDENT
.SH FUNCTIONS
.sp
\fBRUN(0)\fP
.INDENT 0.0
.INDENT 3.5
Returns the run (coldstart) address of the interpreter. \fB? USR(RUN(0))\fP
restarts Integer BASIC. The \fI0\fP is a \(aqdummy\(aq argument (ignored, like \fBFRE(0)\fP).
.UNINDENT
.UNINDENT
.SH OPERATORS
.sp
\fB!\fP
.INDENT 0.0
.INDENT 3.5
Binary OR. Infix operator.
.UNINDENT
.UNINDENT
.sp
\fB&\fP
.INDENT 0.0
.INDENT 3.5
Binary AND. Infix operator.
.UNINDENT
.UNINDENT
.sp
\fB%\fP
.INDENT 0.0
.INDENT 3.5
Binary exclusive OR (XOR). Infix operator.
.UNINDENT
.UNINDENT
.sp
\fB<<\fP
.INDENT 0.0
.INDENT 3.5
Left shift, like C. Infix operator. Result is the expression on the left,
shifted left by the number of bits on the right. Examples: \fB1<<4\fP
is 16, \fB255<<1\fP is 510.
.sp
Bits shifted off the left end of the number are lost. Zeroes are
shifted in, for the low\-order bit(s). Shifting anything left 16 times
results in zero. Since bit 15 is the sign bit, shifting a 1 into bit
15 will result in a negative number.
.UNINDENT
.UNINDENT
.sp
\fB>>\fP
.INDENT 0.0
.INDENT 3.5
Right shift, like C. Infix operator. Result is the expression
on the left, shifted to the right, by the number of bits on the
right. Examples: \fB16>>4\fP is 1, \fB255>>1\fP is 127.
.sp
Bits shifted off the right end of the number are lost. Zeroes are
shifted in, for the high\-order bit(s). Shifting any negative number
to the right will result in a positive numbers, since a zero will be
shifted into the sigh bit.
.UNINDENT
.UNINDENT
.sp
\fB^&\fP
.INDENT 0.0
.INDENT 3.5
Binary NAND. Like AND, but inverts the bits in the result. Infix operator.
.UNINDENT
.UNINDENT
.sp
\fB^!\fP
.INDENT 0.0
.INDENT 3.5
Binary NOR. Infix operator.
.UNINDENT
.UNINDENT
.sp
\fB^%\fP
.INDENT 0.0
.INDENT 3.5
Binary NXOR. Infix operator.
.UNINDENT
.UNINDENT
.sp
\fB\e\fP
.INDENT 0.0
.INDENT 3.5
Modulus. Infix operator. Result of \fBX&Y\fP is the remainder of \fBX/Y\fP\&.
.sp
\fINOTE\fP that this is \fBbroken\fP in the cartridge version of Integer BASIC,
though it works correctly in the disk version. See \fBBUGS\fP, below.
.UNINDENT
.UNINDENT
.SH COMPATIBILITY
.sp
Integer BASIC can\(aqt LOAD programs that were SAVEd by any other BASIC,
and programs SAVEd by Integer BASIC can\(aqt be LOADed in any other
BASIC. Use LIST and ENTER instead.
.sp
Actually, the disk and cartridge versions of Integer BASIC can\(aqt even
LOAD each others\(aq programs. They use a different set of token numbers.
This is because the cartridge version includes the \fBHITCLR\fP command,
but the disk version does not.
.sp
The \fBINT()\fP function exists in Integer BASIC, but it doesn\(aqt actually
do anything. Seems to be provided for compatibility with other BASICs.
.SS Missing Commands
.sp
Integer BASIC has the full command set of the BASIC XL cartridge,
minus these commands:
.sp
\fBDEG\fP \fBRAD\fP \fBRGET\fP \fBRPUT\fP
.sp
The cartridge version of Integer BASIC has the \fBHITCLR\fP command
(from BASIC XE), but the disk version does not.
.sp
The BASIC XL extension disk commands (\fBLOCAL\fP, \fBEXIT\fP,
\fBPROCEDURE\fP, \fBCALL\fP, \fBSORTUP\fP, and \fBSORTDOWN\fP) don\(aqt exist in
Integer BASIC. If there was ever an extensions disk for Integer BASIC,
nobody\(aqs found it yet.
.sp
The extra commands in BASIC XE (\fBEXTEND\fP, \fBINVERSE\fP, \fBNORMAL\fP,
\fBBLOAD\fP, and \fBBSAVE\fP) are not supported.
.SS Missing Operators/Functions
.INDENT 0.0
.TP
.B \fB^\fP
There is no exponentiation operator; \fB2^2\fP is a syntax error.
.TP
.B \fBATN()\fP, \fBCLOG()\fP, \fBCOS()\fP, \fBEXP()\fP, \fBLOG()\fP, \fBSIN()\fP
There are no trigonometric functions in Integer BASIC. These can
be used as array variable names, if you wish.
.TP
.B \fBUSING\fP
BASIC XL and XE\(aqs "PRINT USING" doesn\(aqt exist in Integer BASIC.
.UNINDENT
.SH BUGS
.SS Modulo Arithmetic
.sp
The \fB\e\fP (modulus) operator returns incorrect results in the
cartridge version of Integer BASIC. This program demonstrates the
bug:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
10 For I=1 To 10
20 ? I,I\e3,I\-(I/3)*3
30 Next I
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
When run with the disk version, the results are correct:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
1 1 1
2 2 2
3 0 0
4 1 1
5 2 2
6 0 0
7 1 1
8 2 2
9 0 0
10 1 1
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The same program run with the cartridge version gives:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
1 254 1
2 255 2
3 0 0
4 1 1
5 2 2
6 253 0
7 254 1
8 255 2
9 0 0
10 1 1
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
This is obviously wrong.
.sp
If you\(aqre writing a real program in Integer BASIC, I recommend
avoiding the \fB\e\fP operator entirely. Write something like \fBX\-X/Y*Y\fP
instead.
.SH COPYRIGHT
.sp
WTFPL. See \fI\%http://www.wtfpl.net/txt/copying/\fP for details.
.SH AUTHOR
.INDENT 0.0
.IP B. 3
Watson <\fI\%urchlay@slackware.uk\fP>; Urchlay on irc.libera.chat \fI##atari\fP\&.
.UNINDENT
.SH SEE ALSO
.sp
\fBa8cat\fP(1),
\fBa8eol\fP(1),
\fBa8xd\fP(1),
\fBatr2xfd\fP(1),
\fBatrsize\fP(1),
\fBaxe\fP(1),
\fBbas2aplus\fP(1),
\fBblob2c\fP(1),
\fBblob2xex\fP(1),
\fBcart2xex\fP(1),
\fBcxrefbas\fP(1),
\fBdasm2atasm\fP(1),
\fBdiffbas\fP(1),
\fBdumpbas\fP(1),
\fBf2toxex\fP(1),
\fBfenders\fP(1),
\fBlistbas\fP(1),
\fBlistamsb\fP(1),
\fBprotbas\fP(1),
\fBrenumbas\fP(1),
\fBrom2cart\fP(1),
\fBunmac65\fP(1),
\fBunprotbas\fP(1),
\fBvxrefbas\fP(1),
\fBwhichbas\fP(1),
\fBxex1to2\fP(1),
\fBxexamine\fP(1),
\fBxexcat\fP(1),
\fBxexsplit\fP(1),
\fBxfd2atr\fP(1),
\fBxex\fP(5),
\fBatascii\fP(7),
\fBfauxtari\fP(7).
.sp
Any good Atari 8\-bit book: \fIDe Re Atari\fP, \fIThe Atari BASIC Reference
Manual\fP, the \fIOS Users\(aq Guide\fP, \fIMapping the Atari\fP, etc.
.\" Generated by docutils manpage writer.
.
|