aboutsummaryrefslogtreecommitdiff
path: root/pokeytest/pokey.c
blob: 11a51af66617a11f70bcab500b377134793c86d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
/*****************************************************************************/
/*                                                                           */
/* Module:  POKEY Chip Simulator, V1.1                                       */
/* Purpose: To emulate the sound generation hardware of the Atari POKEY chip.*/
/* Author:  Ron Fries                                                        */
/* Date:    September 22, 1996                                               */
/*                                                                           */
/*****************************************************************************/
/*                                                                           */
/*                 License Information and Copyright Notice                  */
/*                 ========================================                  */
/*                                                                           */
/* PokeySound is Copyright(c) 1996 by Ron Fries                              */
/*                                                                           */
/* This library is free software; you can redistribute it and/or modify it   */
/* under the terms of version 2 of the GNU Library General Public License    */
/* as published by the Free Software Foundation.                             */
/*                                                                           */
/* This library is distributed in the hope that it will be useful, but       */
/* WITHOUT ANY WARRANTY; without even the implied warranty of                */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library */
/* General Public License for more details.                                  */
/* To obtain a copy of the GNU Library General Public License, write to the  */
/* Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.   */
/*                                                                           */
/* Any permitted reproduction of these routines, in whole or in part, must   */
/* bear this legend.                                                         */
/*                                                                           */
/*****************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include "pokey.h"

/* CONSTANT DEFINITIONS */

/* definitions for AUDCx (D201, D203, D205, D207) */
#define NOTPOLY5    0x80     /* selects POLY5 or direct CLOCK */
#define POLY4       0x40     /* selects POLY4 or POLY17 */
#define PURE        0x20     /* selects POLY4/17 or PURE tone */
#define VOL_ONLY    0x10     /* selects VOLUME OUTPUT ONLY */
#define VOLUME_MASK 0x0f     /* volume mask */

/* definitions for AUDCTL (D208) */
#define POLY9       0x80     /* selects POLY9 or POLY17 */
#define CH1_179     0x40     /* selects 1.78979 MHz for Ch 1 */
#define CH3_179     0x20     /* selects 1.78979 MHz for Ch 3 */
#define CH1_CH2     0x10     /* clocks channel 1 w/channel 2 */
#define CH3_CH4     0x08     /* clocks channel 3 w/channel 4 */
#define CH1_FILTER  0x04     /* selects channel 1 high pass filter */
#define CH2_FILTER  0x02     /* selects channel 2 high pass filter */
#define CLOCK_15    0x01     /* selects 15.6999kHz or 63.9210kHz */

#define AUDF1_C     0xd200   
#define AUDC1_C     0xd201
#define AUDF2_C     0xd202
#define AUDC2_C     0xd203
#define AUDF3_C     0xd204
#define AUDC3_C     0xd205
#define AUDF4_C     0xd206
#define AUDC4_C     0xd207
#define AUDCTL_C    0xd208

/* for accuracy, the 64kHz and 15kHz clocks are exact divisions of
   the 1.79MHz clock */
#define DIV_64      28       /* divisor for 1.79MHz clock to 64 kHz */
#define DIV_15      114      /* divisor for 1.79MHz clock to 15 kHz */

/* the size (in entries) of the 4 polynomial tables */
#define POLY4_SIZE  0x000f
#define POLY5_SIZE  0x001f
#define POLY9_SIZE  0x01ff

#ifdef COMP16						   /* if 16-bit compiler */
#define POLY17_SIZE 0x00007fffL    /* reduced to 15 bits for simplicity */
#else
#define POLY17_SIZE 0x0001ffffL    /* else use the full 17 bits */
#endif

/* channel definitions */
#define CHAN1       0
#define CHAN2       1
#define CHAN3       2
#define CHAN4       3
#define SAMPLE      4


#define FALSE       0
#define TRUE        1


/* GLOBAL VARIABLE DEFINITIONS */
 
/* structures to hold the 9 pokey control bytes */ 
static uint8 AUDF[4];    /* AUDFx (D200, D202, D204, D206) */
static uint8 AUDC[4];    /* AUDCx (D201, D203, D205, D207) */
static uint8 AUDCTL;     /* AUDCTL (D208) */      

static uint8 Outbit[4];  /* current state of the output (high or low) */

static uint8 Outvol[4];  /* last output volume for each channel */


/* Initialze the bit patterns for the polynomials. */

/* The 4bit and 5bit patterns are the identical ones used in the pokey chip. */
/* Though the patterns could be packed with 8 bits per byte, using only a */
/* single bit per byte keeps the math simple, which is important for */
/* efficient processing. */

static uint8 bit4[POLY4_SIZE] = 
      { 1,1,0,1,1,1,0,0,0,0,1,0,1,0,0 };

static uint8 bit5[POLY5_SIZE] = 
      { 0,0,1,1,0,0,0,1,1,1,1,0,0,1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0,0,1 };

static uint8 bit17[POLY17_SIZE];  /* Rather than have a table with 131071 */
                            /* entries, I use a random number generator. */
                            /* It shouldn't make much difference since */
                            /* the pattern rarely repeats anyway. */

static uint32 Poly17_size; /* global for the poly 17 size, since it can */
                           /* be changed from 17 bit to 9 bit */

static uint32 Poly_adjust; /* the amount that the polynomial will need */
                           /* to be adjusted to process the next bit */

static uint32 P4=0,   /* Global position pointer for the 4-bit  POLY array */
              P5=0,   /* Global position pointer for the 5-bit  POLY array */
              P17=0;  /* Global position pointer for the 17-bit POLY array */

static uint32 Div_n_cnt[4],   /* Divide by n counter. one for each channel */
              Div_n_max[4];   /* Divide by n maximum, one for each channel */

static uint32 Samp_n_max,     /* Sample max.  For accuracy, it is *256 */
              Samp_n_cnt[2];  /* Sample cnt. */

static uint32 Base_mult;      /* selects either 64Khz or 15Khz clock mult */
       
/*****************************************************************************/
/* In my routines, I treat the sample output as another divide by N counter  */
/* For better accuracy, the Samp_n_cnt has a fixed binary decimal point      */
/* which has 8 binary digits to the right of the decimal point.  I use a two */
/* byte array to give me a minimum of 40 bits, and then use pointer math to  */
/* reference either the 24.8 whole/fraction combination or the 32-bit whole  */
/* only number.  This is mainly used to keep the math simple for             */
/* optimization. See below:                                                  */
/*                                                                           */
/* xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx | xxxxxxxx xxxxxxxx xxxxxxxx.xxxxxxxx */
/*  unused   unused   unused    whole      whole    whole    whole  fraction */
/*                                                                           */
/* Samp_n_cnt[0] gives me a 32-bit int 24 whole bits with 8 fractional bits, */
/* while (uint32 *)((uint8 *)(&Samp_n_cnt[0])+1) gives me the 32-bit whole   */
/* number only.                                                              */
/*****************************************************************************/


/*****************************************************************************/
/* Module:  Pokey_sound_init()                                               */
/* Purpose: to handle the power-up initialization functions                  */
/*          these functions should only be executed on a cold-restart        */
/*                                                                           */
/* Author:  Ron Fries                                                        */
/* Date:    September 22, 1996                                               */
/*                                                                           */
/* Inputs:  freq17 - the value for the '1.79MHz' Pokey audio clock           */
/*          playback_freq - the playback frequency in samples per second     */
/*                                                                           */
/* Outputs: Adjusts local globals - no return value                          */
/*                                                                           */
/*****************************************************************************/

void Pokey_sound_init (uint32 freq17, uint16 playback_freq)
{
   uint8 chan;
   int32 n;

   /* fill the 17bit polynomial with random bits */
   for (n=0; n<POLY17_SIZE; n++)
   {
      bit17[n] = rand() & 0x01;       /* fill poly 17 with random bits */
   }

   /* start all of the polynomial counters at zero */
   Poly_adjust = 0;
   P4 = 0;
   P5 = 0;
   P17 = 0;

   /* calculate the sample 'divide by N' value based on the playback freq. */
   Samp_n_max = ((uint32)freq17 << 8) / playback_freq;

   Samp_n_cnt[0] = 0;  /* initialize all bits of the sample */
   Samp_n_cnt[1] = 0;  /* 'divide by N' counter */

   Poly17_size = POLY17_SIZE;

   for (chan = CHAN1; chan <= CHAN4; chan++)
   {
      Outvol[chan] = 0;
      Outbit[chan] = 0;
      Div_n_cnt[chan] = 0;
      Div_n_max[chan] = 0x7fffffffL;
      AUDC[chan] = 0;
      AUDF[chan] = 0;
   }

   AUDCTL = 0;

   Base_mult = DIV_64;
}


/*****************************************************************************/
/* Module:  Update_pokey_sound()                                             */
/* Purpose: To process the latest control values stored in the AUDF, AUDC,   */
/*          and AUDCTL registers.  It pre-calculates as much information as  */
/*          possible for better performance.  This routine has not been      */
/*          optimized.                                                       */
/*                                                                           */
/* Author:  Ron Fries                                                        */
/* Date:    September 22, 1996                                               */
/*                                                                           */
/* Inputs:  addr - the address of the parameter to be changed                */
/*          val - the new value to be placed in the specified address        */
/*                                                                           */
/* Outputs: Adjusts local globals - no return value                          */
/*                                                                           */
/*****************************************************************************/

void Update_pokey_sound (uint16 addr, uint8 val)
{
    uint32 new_val = 0;
    uint8 chan;
	uint8 chan_mask;

    /* determine which address was changed */
    switch (addr)
    {
       case AUDF1_C:
          AUDF[CHAN1] = val;
          chan_mask = 1 << CHAN1;

          if (AUDCTL & CH1_CH2)    /* if ch 1&2 tied together */
            chan_mask |= 1 << CHAN2;   /* then also change on ch2 */
          break;

       case AUDC1_C:
          AUDC[CHAN1] = val;
          chan_mask = 1 << CHAN1;
          break;

       case AUDF2_C:
          AUDF[CHAN2] = val;
          chan_mask = 1 << CHAN2;
          break;

       case AUDC2_C:
          AUDC[CHAN2] = val;
          chan_mask = 1 << CHAN2;
          break;

       case AUDF3_C:
          AUDF[CHAN3] = val;
          chan_mask = 1 << CHAN3;

          if (AUDCTL & CH3_CH4)   /* if ch 3&4 tied together */
             chan_mask |= 1 << CHAN4;  /* then also change on ch4 */
          break;

       case AUDC3_C:
          AUDC[CHAN3] = val;
          chan_mask = 1 << CHAN3;
          break;

       case AUDF4_C:
          AUDF[CHAN4] = val;
          chan_mask = 1 << CHAN4;
          break;

       case AUDC4_C:
          AUDC[CHAN4] = val;
          chan_mask = 1 << CHAN4;
          break;

       case AUDCTL_C:
          AUDCTL = val;
          chan_mask = 15;		/* all channels */

          /* set poly17 counter to 9- or 17-bit */
          if (AUDCTL & POLY9)
             Poly17_size = POLY9_SIZE;
          else
             Poly17_size = POLY17_SIZE;

          /* determine the base multiplier for the 'div by n' calculations */
          if (AUDCTL & CLOCK_15)
             Base_mult = DIV_15;
          else
             Base_mult = DIV_64;

          break;

       default:
          chan_mask = 0;
          break;
    }

    /************************************************************/
    /* As defined in the manual, the exact Div_n_cnt values are */
    /* different depending on the frequency and resolution:     */
    /*    64 kHz or 15 kHz - AUDF + 1                           */
    /*    1 MHz, 8-bit -     AUDF + 4                           */
    /*    1 MHz, 16-bit -    AUDF[CHAN1]+256*AUDF[CHAN2] + 7    */
    /************************************************************/

    /* only reset the channels that have changed */

    if (chan_mask & (1 << CHAN1))
    {
       /* process channel 1 frequency */
       if (AUDCTL & CH1_179)
          new_val = AUDF[CHAN1] + 4;
       else
          new_val = (AUDF[CHAN1] + 1) * Base_mult;

       if (new_val != Div_n_max[CHAN1])
       {
          Div_n_max[CHAN1] = new_val;
          Div_n_cnt[CHAN1] = 0;
       }
    }

    if (chan_mask & (1 << CHAN2))
    {
       /* process channel 2 frequency */
       if (AUDCTL & CH1_CH2)
          if (AUDCTL & CH1_179)
             new_val = AUDF[CHAN2] * 256 + AUDF[CHAN1] + 7;
          else
             new_val = (AUDF[CHAN2] * 256 + AUDF[CHAN1] + 1) * Base_mult;
       else
          new_val = (AUDF[CHAN2] + 1) * Base_mult;

       if (new_val != Div_n_max[CHAN2])
       {
          Div_n_max[CHAN2] = new_val;
          Div_n_cnt[CHAN2] = 0;
       }
    }

    if (chan_mask & (1 << CHAN3))
    {
       /* process channel 3 frequency */
       if (AUDCTL & CH3_179)
          new_val = AUDF[CHAN3] + 4;
       else
          new_val= (AUDF[CHAN3] + 1) * Base_mult;

       if (new_val!= Div_n_max[CHAN3])
       {
          Div_n_max[CHAN3] = new_val;
          Div_n_cnt[CHAN3] = 0;
       }
    }

    if (chan_mask & (1 << CHAN4))
    {
       /* process channel 4 frequency */
       if (AUDCTL & CH3_CH4)
          if (AUDCTL & CH3_179)
             new_val = AUDF[CHAN4] * 256 + AUDF[CHAN3] + 7;
          else
             new_val = (AUDF[CHAN4] * 256 + AUDF[CHAN3] + 1) * Base_mult;
       else
          new_val = (AUDF[CHAN4] + 1) * Base_mult;

       if (new_val != Div_n_max[CHAN4])
       {
          Div_n_max[CHAN4] = new_val;
          Div_n_cnt[CHAN4] = 0;
       }
    }

    /* if channel is volume only, set current output */
    for (chan = CHAN1; chan <= CHAN4; chan++)
    {
       if (chan_mask & (1 << chan))
       {
          /* I've disabled any frequencies that exceed the sampling
             frequency.  There isn't much point in processing frequencies
             that the hardware can't reproduce.  I've also disabled 
             processing if the volume is zero. */

          /* if the channel is volume only */
          /* or the channel is off (volume == 0) */
          /* or the channel freq is greater than the playback freq */
          if ((AUDC[chan] & VOL_ONLY) ||
             ((AUDC[chan] & VOLUME_MASK) == 0) ||
              (Div_n_max[chan] < (Samp_n_max >> 8)))
          {
             /* then set the channel to the selected volume */
             Outvol[chan] = AUDC[chan] & VOLUME_MASK;
             /* and set channel freq to max to reduce processing */
             Div_n_max[chan] = 0x7fffffffL;
          }
       }
    } 
}


/*****************************************************************************/
/* Module:  Pokey_process_2()                                                */
/* Purpose: To fill the output buffer with the sound output based on the     */
/*          pokey chip parameters.  This routine has not been optimized.     */
/*          Though it is not used by the program, I've left it for reference.*/
/*                                                                           */
/* Author:  Ron Fries                                                        */
/* Date:    September 22, 1996                                               */
/*                                                                           */
/* Inputs:  *buffer - pointer to the buffer where the audio output will      */
/*                    be placed                                              */
/*          n - size of the playback buffer                                  */
/*                                                                           */
/* Outputs: the buffer will be filled with n bytes of audio - no return val  */
/*                                                                           */
/*****************************************************************************/

void Pokey_process_2 (register unsigned char *buffer, register uint16 n)
{
    register uint32 *samp_cnt_w_ptr;
    register uint32 event_min;
    register uint8 next_event;
    register uint8 cur_val;
    register uint8 chan;

    /* set a pointer to the whole portion of the samp_n_cnt */
    samp_cnt_w_ptr = (uint32 *)((uint8 *)(&Samp_n_cnt[0])+1);

    /* loop until the buffer is filled */
    while (n)
    {
       /* Normally the routine would simply decrement the 'div by N' */
       /* counters and react when they reach zero.  Since we normally */
       /* won't be processing except once every 80 or so counts, */
       /* I've optimized by finding the smallest count and then */
       /* 'accelerated' time by adjusting all pointers by that amount. */

       /* find next smallest event (either sample or chan 1-4) */
       next_event = SAMPLE;
       event_min = *samp_cnt_w_ptr;

       for (chan = CHAN1; chan <= CHAN4; chan++)
       {
          if (Div_n_cnt[chan] <= event_min)
          {
             event_min = Div_n_cnt[chan];
             next_event = chan;
          }
       }


       /* decrement all counters by the smallest count found */
       for (chan = CHAN1; chan <= CHAN4; chan++)
       {
          Div_n_cnt[chan] -= event_min;
       }

       *samp_cnt_w_ptr -= event_min;

       /* since the polynomials require a mod (%) function which is 
          division, I don't adjust the polynomials on the SAMPLE events,
          only the CHAN events.  I have to keep track of the change,
          though. */
       Poly_adjust += event_min;

       /* if the next event is a channel change */
       if (next_event != SAMPLE)
       {
          /* shift the polynomial counters */
          P4  = (P4  + Poly_adjust) % POLY4_SIZE;
          P5  = (P5  + Poly_adjust) % POLY5_SIZE;
          P17 = (P17 + Poly_adjust) % Poly17_size;
         
          /* reset the polynomial adjust counter to zero */
          Poly_adjust = 0;

          /* adjust channel counter */
          Div_n_cnt[next_event] += Div_n_max[next_event];

          /* From here, a good understanding of the hardware is required */
          /* to understand what is happening.  I won't be able to provide */
          /* much description to explain it here. */

          /* if the output is pure or the output is poly5 and the poly5 bit */
          /* is set */
          if ((AUDC[next_event] & NOTPOLY5) || bit5[P5])
          {
             /* if the PURE bit is set */
             if (AUDC[next_event] & PURE)
             {
                /* then simply toggle the output */
                Outbit[next_event] = !Outbit[next_event];
             }
             /* otherwise if POLY4 is selected */
             else if (AUDC[next_event] & POLY4)
             {
                /* then use the poly4 bit */
                Outbit[next_event] = bit4[P4];
             }
             else
             {
                /* otherwise use the poly17 bit */
                Outbit[next_event] = bit17[P17];
             }
          }

          /* At this point I haven't emulated the filters.  Though I don't
             expect it to be complicated, I don't believe this feature is
             used much anyway.  I'll work on it later. */
          if ((next_event == CHAN1) || (next_event == CHAN3))
          {
             /* INSERT FILTER HERE */
          }

          /* if the current output bit is set */
          if (Outbit[next_event])
          {
             /* then set to the current volume */
             Outvol[next_event] = AUDC[next_event] & VOLUME_MASK;
          }
          else
          {
             /* set the volume to zero */
             Outvol[next_event] = 0;
          }
       }
       else /* otherwise we're processing a sample */
       {
          /* adjust the sample counter - note we're using the 24.8 integer
             which includes an 8 bit fraction for accuracy */
          *Samp_n_cnt += Samp_n_max;

          cur_val = 0;

          /* add the output values of all 4 channels */
          for (chan = CHAN1; chan <= CHAN4; chan++)
          {
             cur_val += Outvol[chan];
          }

          /* multiply the volume by 4 and add 8 to center around 128 */
          /* NOTE: this statement could be eliminated for efficiency, */
          /* though the volume would be lower. */
          cur_val = (cur_val << 2) + 8;
          
          /* add the current value to the output buffer */
          *buffer++ = cur_val;
          
          /* and indicate one less byte in the buffer */
          n--;          
       }
    }
}      

                              
/*****************************************************************************/
/* Module:  Pokey_process()                                                  */
/* Purpose: To fill the output buffer with the sound output based on the     */
/*          pokey chip parameters.  This routine has not been optimized.     */
/*          Though it is not used by the program, I've left it for reference.*/
/*                                                                           */
/* Author:  Ron Fries                                                        */
/* Date:    September 22, 1996                                               */
/*                                                                           */
/* Inputs:  *buffer - pointer to the buffer where the audio output will      */
/*                    be placed                                              */
/*          n - size of the playback buffer                                  */
/*                                                                           */
/* Outputs: the buffer will be filled with n bytes of audio - no return val  */
/*                                                                           */
/*****************************************************************************/

void Pokey_process (register unsigned char *buffer, register uint16 n)
{
    register uint32 *div_n_ptr;
    register uint32 *samp_cnt_w_ptr;
    register uint32 event_min;
    register uint8 next_event;
    register uint8 cur_val;
    register uint8 *out_ptr;
    register uint8 audc;
    register uint8 toggle;


    /* set a pointer to the whole portion of the samp_n_cnt */
    samp_cnt_w_ptr = (uint32 *)((uint8 *)(&Samp_n_cnt[0])+1);
   
    /* set a pointer for optimization */
    out_ptr = Outvol;

    /* The current output is pre-determined and then adjusted based on each */
    /* output change for increased performance (less over-all math). */
    /* add the output values of all 4 channels */
    cur_val  = 2;                 /* start with a small offset */
    cur_val += *out_ptr++;
    cur_val += *out_ptr++;
    cur_val += *out_ptr++;
    cur_val += *out_ptr++;

    /* loop until the buffer is filled */
    while (n)
    {
       /* Normally the routine would simply decrement the 'div by N' */
       /* counters and react when they reach zero.  Since we normally */
       /* won't be processing except once every 80 or so counts, */
       /* I've optimized by finding the smallest count and then */
       /* 'accelerated' time by adjusting all pointers by that amount. */

       /* find next smallest event (either sample or chan 1-4) */
       next_event = SAMPLE;
       event_min = *samp_cnt_w_ptr;

       /* Though I could have used a loop here, this is faster */
       div_n_ptr = Div_n_cnt;
       if (*div_n_ptr <= event_min)
       {
          event_min = *div_n_ptr;
          next_event = CHAN1;
       }
       div_n_ptr++;
       if (*div_n_ptr <= event_min)
       {
          event_min = *div_n_ptr;
          next_event = CHAN2;
       }
       div_n_ptr++;
       if (*div_n_ptr <= event_min)
       {
          event_min = *div_n_ptr;
          next_event = CHAN3;
       }
       div_n_ptr++;
       if (*div_n_ptr <= event_min)
       {
          event_min = *div_n_ptr;
          next_event = CHAN4;
       }

       /* decrement all counters by the smallest count found */
       /* again, no loop for efficiency */
       *div_n_ptr -= event_min;
       div_n_ptr--;
       *div_n_ptr -= event_min;
       div_n_ptr--;
       *div_n_ptr -= event_min;
       div_n_ptr--;
       *div_n_ptr -= event_min;

       *samp_cnt_w_ptr -= event_min;

       /* since the polynomials require a mod (%) function which is 
          division, I don't adjust the polynomials on the SAMPLE events,
          only the CHAN events.  I have to keep track of the change,
          though. */
       Poly_adjust += event_min;

       /* if the next event is a channel change */
       if (next_event != SAMPLE)
       {
          /* shift the polynomial counters */
          P4  = (P4  + Poly_adjust) % POLY4_SIZE;
          P5  = (P5  + Poly_adjust) % POLY5_SIZE;
          P17 = (P17 + Poly_adjust) % Poly17_size;
         
          /* reset the polynomial adjust counter to zero */
          Poly_adjust = 0;

          /* adjust channel counter */
          Div_n_cnt[next_event] += Div_n_max[next_event];

          /* get the current AUDC into a register (for optimization) */
          audc = AUDC[next_event];

          /* set a pointer to the current output (for opt...) */
          out_ptr = &Outvol[next_event];

          /* assume no changes to the output */
          toggle = FALSE;

          /* From here, a good understanding of the hardware is required */
          /* to understand what is happening.  I won't be able to provide */
          /* much description to explain it here. */

          /* if the output is pure or the output is poly5 and the poly5 bit */
          /* is set */
          if ((audc & NOTPOLY5) || bit5[P5])
          {
             /* if the PURE bit is set */
             if (audc & PURE)
             {               
                /* then simply toggle the output */
                toggle = TRUE;
             }
             /* otherwise if POLY4 is selected */
             else if (audc & POLY4)
             {
                /* then compare to the poly4 bit */
                toggle = (bit4[P4] == !(*out_ptr));
             }
             else
             {
                /* otherwise compare to the poly17 bit */
                toggle = (bit17[P17] == !(*out_ptr));
             }
          }

          /* At this point I haven't emulated the filters.  Though I don't
             expect it to be complicated, I don't believe this feature is
             used much anyway.  I'll work on it later. */
          if ((next_event == CHAN1) || (next_event == CHAN3))
          {
             /* INSERT FILTER HERE */
          }

          /* if the current output bit has changed */
          if (toggle)
          {
             if (*out_ptr)
             {
                /* remove this channel from the signal */
                cur_val -= *out_ptr;
                
                /* and turn the output off */
                *out_ptr = 0;
             }
             else
             {
                /* turn the output on */
                *out_ptr = audc & VOLUME_MASK;

                /* and add it to the output signal */
                cur_val += *out_ptr;
             }
          }
       }
       else /* otherwise we're processing a sample */
       {
          /* adjust the sample counter - note we're using the 24.8 integer
             which includes an 8 bit fraction for accuracy */
          *Samp_n_cnt += Samp_n_max;

          /* add the current value to the output buffer */
          *buffer++ = cur_val << 2;
          
          /* and indicate one less byte in the buffer */
          n--;          
       }
    }
}